51
|
Parrilli E, Ricciardelli A, Casillo A, Sannino F, Papa R, Tilotta M, Artini M, Selan L, Corsaro MM, Tutino ML. Large-scale biofilm cultivation of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 for physiologic studies and drug discovery. Extremophiles 2016; 20:227-34. [PMID: 26847199 DOI: 10.1007/s00792-016-0813-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Microbial biofilms are mainly studied due to detrimental effects on human health but they are also well established in industrial biotechnology for the production of chemicals. Moreover, biofilm can be considered as a source of novel drugs since the conditions prevailing within biofilm can allow the production of specific metabolites. Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 when grown in biofilm condition produces an anti-biofilm molecule able to inhibit the biofilm of the opportunistic pathogen Staphylococcus epidermidis. In this paper we set up a P. haloplanktis TAC125 biofilm cultivation methodology in automatic bioreactor. The biofilm cultivation was designated to obtain two goals: (1) the scale up of cell-free supernatant production in an amount necessary for the anti-biofilm molecule/s purification; (2) the recovery of P. haloplanktis TAC125 cells grown in biofilm for physiological studies. We set up a fluidized-bed reactor fermentation in which floating polystyrene supports were homogeneously mixed, exposing an optimal air-liquid interface to let bacterium biofilm formation. The proposed methodology allowed a large-scale production of anti-biofilm molecule and paved the way to study differences between P. haloplanktis TAC125 cells grown in biofilm and in planktonic conditions. In particular, the modifications occurring in the lipopolysaccharide of cells grown in biofilm were investigated.
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Annarita Ricciardelli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Angela Casillo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Filomena Sannino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tilotta
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| |
Collapse
|
52
|
Helicobacter pylori Resists the Antimicrobial Activity of Calprotectin via Lipid A Modification and Associated Biofilm Formation. mBio 2015; 6:e01349-15. [PMID: 26646009 PMCID: PMC4669380 DOI: 10.1128/mbio.01349-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori is one of several pathogens that persist within the host despite a robust immune response. H. pylori elicits a proinflammatory response from host epithelia, resulting in the recruitment of immune cells which manifests as gastritis. Relatively little is known about how H. pylori survives antimicrobials, including calprotectin (CP), which is present during the inflammatory response. The data presented here suggest that one way H. pylori survives the nutrient sequestration by CP is through alteration of its outer membrane. CP-treated H. pylori demonstrates increased bacterial fitness in response to further coculture with CP. Moreover, CP-treated H. pylori cultures form biofilms and demonstrate decreased cell surface hydrophobicity. In response to CP, the H. pylori Lpx lipid A biosynthetic enzymes are not fully functional. The lipid A molecules observed in H. pylori cultures treated with CP indicate that the LpxF, LpxL, and LpxR enzyme functions are perturbed. Transcriptional analysis of lpxF, lpxL, and lpxR indicates that metal restriction by CP does not control this pathway through transcriptional regulation. Analyses of H. pylori lpx mutants reveal that loss of LpxF and LpxL results in increased fitness, similar to what is observed in the presence of CP; moreover, these mutants have significantly increased biofilm formation and reduced cell surface hydrophobicity. Taken together, these results demonstrate a novel mechanism of H. pylori resistance to the antimicrobial activity of CP via lipid A modification strategies and resulting biofilm formation. Helicobacter pylori evades recognition of the host’s immune system by modifying the lipid A component of lipopolysaccharide. These results demonstrate for the first time that the lipid A modification pathway is influenced by the host’s nutritional immune response. H. pylori’s exposure to the host Mn- and Zn-binding protein calprotectin perturbs the function of 3 enzymes involved in the lipid A modification pathway. Moreover, CP treatment of H. pylori, or mutants with an altered lipid A, exhibit increased bacterial fitness and increased biofilm formation. This suggests that H. pylori modifies its cell surface structure to survive under the stress imposed by the host immune response. These results provide new insights into the molecular mechanisms that influence the biofilm lifestyle and how endotoxin modification, which renders H. pylori resistant to cationic antimicrobial peptides, can be inactivated in response to sequestration of nutrient metals.
Collapse
|
53
|
Abstract
The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface.
Collapse
|
54
|
Kesika P, Prasanth MI, Balamurugan K. Modulation of Caenorhabditis elegans immune response and modification of Shigella endotoxin upon interaction. J Basic Microbiol 2014; 55:432-50. [PMID: 25384571 DOI: 10.1002/jobm.201400511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/07/2014] [Indexed: 11/10/2022]
Abstract
To analyze the pathogenesis at both physiological and molecular level using the model organism, Caenorhabditis elegans at different developmental stages in response to Shigella spp. and its pathogen associated molecular patterns such as lipopolysaccharide. The solid plate and liquid culture-based infection assays revealed that Shigella spp. infects C. elegans and had an impact on the brood size and pharyngeal pumping rate. LPS of Shigella spp. was toxic to C. elegans. qPCR analysis revealed that host innate immune genes have been modulated upon Shigella spp. infections and its LPS challenges. Non-destructive analysis was performed to kinetically assess the alterations in LPS during interaction of Shigella spp. with C. elegans. The modulation of innate immune genes attributed the surrendering of host immune system to Shigella spp. by favoring the infection. LPS appeared to have a major role in Shigella-mediated pathogenesis and Shigella employs a tactic behavior of modifying its LPS content to escape from the recognition of host immune system.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | |
Collapse
|