51
|
Fisch D, Clough B, Domart MC, Encheva V, Bando H, Snijders AP, Collinson LM, Yamamoto M, Shenoy AR, Frickel EM. Human GBP1 Differentially Targets Salmonella and Toxoplasma to License Recognition of Microbial Ligands and Caspase-Mediated Death. Cell Rep 2020; 32:108008. [PMID: 32783936 PMCID: PMC7435695 DOI: 10.1016/j.celrep.2020.108008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Interferon-inducible guanylate-binding proteins (GBPs) promote cell-intrinsic defense through host cell death. GBPs target pathogens and pathogen-containing vacuoles and promote membrane disruption for release of microbial molecules that activate inflammasomes. GBP1 mediates pyroptosis or atypical apoptosis of Salmonella Typhimurium (STm)- or Toxoplasma gondii (Tg)- infected human macrophages, respectively. The pathogen-proximal detection-mechanisms of GBP1 remain poorly understood, as humans lack functional immunity-related GTPases (IRGs) that assist murine Gbps. Here, we establish that GBP1 promotes the lysis of Tg-containing vacuoles and parasite plasma membranes, releasing Tg-DNA. In contrast, we show GBP1 targets cytosolic STm and recruits caspase-4 to the bacterial surface for its activation by lipopolysaccharide (LPS), but does not contribute to bacterial vacuole escape. Caspase-1 cleaves and inactivates GBP1, and a cleavage-deficient GBP1D192E mutant increases caspase-4-driven pyroptosis due to the absence of feedback inhibition. Our studies elucidate microbe-specific roles of GBP1 in infection detection and its triggering of the assembly of divergent caspase signaling platforms.
Collapse
Affiliation(s)
- Daniel Fisch
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Barbara Clough
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Vesela Encheva
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ambrosius P Snijders
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK; The Francis Crick Institute, London NW1 1AT, UK.
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
52
|
Wandel MP, Kim BH, Park ES, Boyle KB, Nayak K, Lagrange B, Herod A, Henry T, Zilbauer M, Rohde J, MacMicking JD, Randow F. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat Immunol 2020; 21:880-891. [PMID: 32541830 PMCID: PMC7381384 DOI: 10.1038/s41590-020-0697-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/29/2020] [Indexed: 02/01/2023]
Abstract
Bacterial lipopolysaccharide triggers human caspase-4 (murine caspase-11) to cleave gasdermin-D and induce pyroptotic cell death. How lipopolysaccharide sequestered in the membranes of cytosol-invading bacteria activates caspases remains unknown. Here we show that in interferon-γ-stimulated cells guanylate-binding proteins (GBPs) assemble on the surface of Gram-negative bacteria into polyvalent signaling platforms required for activation of caspase-4. Caspase-4 activation is hierarchically controlled by GBPs; GBP1 initiates platform assembly, GBP2 and GBP4 control caspase-4 recruitment, and GBP3 governs caspase-4 activation. In response to cytosol-invading bacteria, activation of caspase-4 through the GBP platform is essential to induce gasdermin-D-dependent pyroptosis and processing of interleukin-18, thereby destroying the replicative niche for intracellular bacteria and alerting neighboring cells, respectively. Caspase-11 and GBPs epistatically protect mice against lethal bacterial challenge. Multiple antagonists of the pathway encoded by Shigella flexneri, a cytosol-adapted bacterium, provide compelling evolutionary evidence for the importance of the GBP-caspase-4 pathway in antibacterial defense.
Collapse
Affiliation(s)
- Michal P Wandel
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Bae-Hoon Kim
- Howard Hughes Medical Institute and Systems Biology Institute, Yale University, West Haven, CT, USA
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Eui-Soon Park
- Howard Hughes Medical Institute and Systems Biology Institute, Yale University, West Haven, CT, USA
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Keith B Boyle
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK
| | - Brice Lagrange
- CIRI, Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University of Lyon, Lyon, France
| | - Adrian Herod
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University of Lyon, Lyon, France
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK
| | - John Rohde
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - John D MacMicking
- Howard Hughes Medical Institute and Systems Biology Institute, Yale University, West Haven, CT, USA
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Felix Randow
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK.
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
53
|
Sanchez-Garrido J, Shenoy AR. Regulation and repurposing of nutrient sensing and autophagy in innate immunity. Autophagy 2020; 17:1571-1591. [PMID: 32627660 PMCID: PMC8354595 DOI: 10.1080/15548627.2020.1783119] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nutrients not only act as building blocks but also as signaling molecules. Nutrient-availability promotes cell growth and proliferation and suppresses catabolic processes, such as macroautophagy/autophagy. These effects are mediated by checkpoint kinases such as MTOR (mechanistic target of rapamycin kinase), which is activated by amino acids and growth factors, and AMP-activated protein kinase (AMPK), which is activated by low levels of glucose or ATP. These kinases have wide-ranging activities that can be co-opted by immune cells upon exposure to danger signals, cytokines or pathogens. Here, we discuss recent insight into the regulation and repurposing of nutrient-sensing responses by the innate immune system during infection. Moreover, we examine how natural mutations and pathogen-mediated interventions can alter the balance between anabolic and autophagic pathways leading to a breakdown in tissue homeostasis and/or host defense.Abbreviations: AKT1/PKB: AKT serine/threonine kinase 1; ATG: autophagy related; BECN1: beclin 1; CGAS: cyclic GMP-AMP synthase; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; FFAR: free fatty acid receptor; GABARAP: GABA type A receptor-associated protein; IFN: interferon; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NLR: NOD (nucleotide-binding oligomerization domain) and leucine-rich repeat containing proteins; PI3K, phosphoinositide 3-kinase; PRR: pattern-recognition receptor; PtdIns3K: phosphatidylinositol 3-kinase; RALB: RAS like proto-oncogene B; RHEB: Ras homolog, MTORC1 binding; RIPK1: receptor interacting serine/threonine kinase 1; RRAG: Ras related GTP binding; SQSTM1/p62: sequestosome 1; STING1/TMEM173: stimulator of interferon response cGAMP interactor 1; STK11/LKB1: serine/threonine kinase 11; TBK1: TANK binding kinase 1; TLR: toll like receptor; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; TRIM: tripartite motif protein; ULK1: unc-51 like autophagy activating kinase 1; V-ATPase: vacuolar-type H+-proton-translocating ATPase.
Collapse
Affiliation(s)
- Julia Sanchez-Garrido
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Avinash R Shenoy
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.,Satellite Group Leader, The Francis Crick Institute, London, UK
| |
Collapse
|
54
|
Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infect Immun 2020; 88:IAI.00920-19. [PMID: 32253250 DOI: 10.1128/iai.00920-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.
Collapse
|
55
|
Kutsch M, Sistemich L, Lesser CF, Goldberg MB, Herrmann C, Coers J. Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions. EMBO J 2020; 39:e104926. [PMID: 32510692 PMCID: PMC7327485 DOI: 10.15252/embj.2020104926] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
In the outer membrane of gram‐negative bacteria, O‐antigen segments of lipopolysaccharide (LPS) form a chemomechanical barrier, whereas lipid A moieties anchor LPS molecules. Upon infection, human guanylate binding protein‐1 (hGBP1) colocalizes with intracellular gram‐negative bacterial pathogens, facilitates bacterial killing, promotes activation of the lipid A sensor caspase‐4, and blocks actin‐driven dissemination of the enteric pathogen Shigella. The underlying molecular mechanism for hGBP1's diverse antimicrobial functions is unknown. Here, we demonstrate that hGBP1 binds directly to LPS and induces “detergent‐like” LPS clustering through protein polymerization. Binding of polymerizing hGBP1 to the bacterial surface disrupts the O‐antigen barrier, thereby unmasking lipid A, eliciting caspase‐4 recruitment, enhancing antibacterial activity of polymyxin B, and blocking the function of the Shigella outer membrane actin motility factor IcsA. These findings characterize hGBP1 as an LPS‐binding surfactant that destabilizes the rigidity of the outer membrane to exert pleiotropic effects on the functionality of gram‐negative bacterial cell envelopes.
Collapse
Affiliation(s)
- Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Linda Sistemich
- Department of Physical Chemistry I, Ruhr-University Bochum, Bochum, Germany
| | - Cammie F Lesser
- Division of Infectious Diseases, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, MA, USA.,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, MA, USA.,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr-University Bochum, Bochum, Germany
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
56
|
Ince S, Zhang P, Kutsch M, Krenczyk O, Shydlovskyi S, Herrmann C. Catalytic activity of human guanylate-binding protein 1 coupled to the release of structural restraints imposed by the C-terminal domain. FEBS J 2020; 288:582-599. [PMID: 32352209 DOI: 10.1111/febs.15348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/10/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Human guanylate-binding protein 1 (hGBP-1) shows a dimer-induced acceleration of the GTPase activity yielding GDP as well as GMP. While the head-to-head dimerization of the large GTPase (LG) domain is well understood, the role of the rest of the protein, particularly of the GTPase effector domain (GED), in dimerization and GTP hydrolysis is still obscure. In this study, with truncations and point mutations on hGBP-1 and by means of biochemical and biophysical methods, we demonstrate that the intramolecular communication between the LG domain and the GED (LG:GED) is crucial for protein dimerization and dimer-stimulated GTP hydrolysis. In the course of GTP binding and γ-phosphate cleavage, conformational changes within hGBP-1 are controlled by a chain of amino acids ranging from the region near the nucleotide-binding pocket to the distant LG:GED interface and lead to the release of the GED from the LG domain. This opening of the structure allows the protein to form GED:GED contacts within the dimer, in addition to the established LG:LG interface. After releasing the cleaved γ-phosphate, the dimer either dissociates yielding GDP as the final product or it stays dimeric to further cleave the β-phosphate yielding GMP. The second phosphate cleavage step, that is, the formation of GMP, is even more strongly coupled to structural changes and thus more sensitive to structural restraints imposed by the GED. Altogether, we depict a comprehensive mechanism of GTP hydrolysis catalyzed by hGBP-1, which provides a detailed molecular understanding of the enzymatic activity connected to large structural rearrangements of the protein. DATABASE: Structural data are available in RCSB Protein Data Bank under the accession numbers: 1F5N, 1DG3, 2B92.
Collapse
Affiliation(s)
- Semra Ince
- Physical Chemistry I, Ruhr-University, Bochum, Germany
| | - Ping Zhang
- Physical Chemistry I, Ruhr-University, Bochum, Germany
| | - Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
57
|
Kohler KM, Kutsch M, Piro AS, Wallace GD, Coers J, Barber MF. A Rapidly Evolving Polybasic Motif Modulates Bacterial Detection by Guanylate Binding Proteins. mBio 2020; 11:e00340-20. [PMID: 32430466 PMCID: PMC7240152 DOI: 10.1128/mbio.00340-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous immunity relies on the rapid detection of invasive pathogens by host proteins. Guanylate binding proteins (GBPs) have emerged as key mediators of vertebrate immune defense through their ability to recognize a diverse array of intracellular pathogens and pathogen-containing cellular compartments. Human and mouse GBPs have been shown to target distinct groups of microbes, although the molecular determinants of pathogen specificity remain unclear. We show that rapid diversification of a C-terminal polybasic motif (PBM) in primate GBPs controls recognition of the model cytosolic bacterial pathogen Shigella flexneri By swapping this membrane-binding motif between primate GBP orthologs, we found that the ability to target S. flexneri has been enhanced and lost in specific lineages of New World primates. Single substitutions in rapidly evolving sites of the GBP1 PBM are sufficient to abolish or restore bacterial detection abilities, illustrating a role for epistasis in the evolution of pathogen recognition. We further demonstrate that the squirrel monkey GBP2 C-terminal domain recently gained the ability to target S. flexneri through a stepwise process of convergent evolution. These findings reveal a mechanism by which accelerated evolution of a PBM shifts GBP target specificity and aid in resolving the molecular basis of GBP function in cell-autonomous immune defense.IMPORTANCE Many infectious diseases are caused by microbes that enter and survive within host cells. Guanylate binding proteins (GBPs) are a group of immune proteins which recognize and inhibit a variety of intracellular pathogenic microbes. We discovered that a short sequence within GBPs required for the detection of bacteria, the polybasic motif (PBM), has been rapidly evolving between primate species. By swapping PBMs between primate GBP1 genes, we were able to show that specific sequences can both reduce and improve the ability of GBP1 to target intracellular bacteria. We also show that the ability to envelop bacteria has independently evolved in GBP2 of South American monkeys. Taking the results together, this report illustrates how primate GBPs have adapted to defend against infectious pathogens.
Collapse
Affiliation(s)
- Kristin M Kohler
- Institute of Ecology & Evolution, University of Oregon, Eugene, Oregon, USA
| | - Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anthony S Piro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Graham D Wallace
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew F Barber
- Institute of Ecology & Evolution, University of Oregon, Eugene, Oregon, USA
- Department of Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
58
|
Berglund J, Gjondrekaj R, Verney E, Maupin-Furlow JA, Edelmann MJ. Modification of the host ubiquitome by bacterial enzymes. Microbiol Res 2020; 235:126429. [PMID: 32109687 PMCID: PMC7369425 DOI: 10.1016/j.micres.2020.126429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
Attachment of ubiquitin molecules to protein substrates is a reversible post-translational modification (PTM), which occurs ubiquitously in eukaryotic cells and controls most cellular processes. As a consequence, ubiquitination is an attractive target of pathogen-encoded virulence factors. Pathogenic bacteria have evolved multiple mechanisms to hijack the host's ubiquitin system to their advantage. In this review, we discuss the bacteria-encoded E3 ligases and deubiquitinases translocated to the host for an addition or removal of eukaryotic ubiquitin modification, effectively hijacking the host's ubiquitination processes. We review bacterial enzymes homologous to host proteins in sequence and functions, as well as enzymes with novel mechanisms in ubiquitination, which have significant structural differences in comparison to the mammalian E3 ligases. Finally, we will also discuss examples of molecular "counter-weapons" - eukaryotic proteins, which counteract pathogen-encoded E3 ligases. The many examples of the pathogen effector molecules that catalyze eukaryotic ubiquitin modification bring to light the intricate pathways involved in the pathogenesis of some of the most virulent bacterial infections with human pathogens. The role of these effector molecules remains an essential determinant of bacterial virulence in terms of infection, invasion, and replication. A comprehensive understanding of the mechanisms dictating the mimicry employed by bacterial pathogens is of vital importance in developing new strategies for therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Berglund
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Rafaela Gjondrekaj
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Ellen Verney
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA.
| |
Collapse
|
59
|
Place DE, Briard B, Samir P, Karki R, Bhattacharya A, Guy CS, Peters JL, Frase S, Vogel P, Neale G, Yamamoto M, Kanneganti TD. Interferon inducible GBPs restrict Burkholderia thailandensis motility induced cell-cell fusion. PLoS Pathog 2020; 16:e1008364. [PMID: 32150572 PMCID: PMC7082077 DOI: 10.1371/journal.ppat.1008364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/19/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Innate immunity responds to pathogens by producing alarm signals and activating pathways that make host cells inhospitable for pathogen replication. The intracellular bacterium Burkholderia thailandensis invades the cytosol, hijacks host actin, and induces cell fusion to spread to adjacent cells, forming multinucleated giant cells (MNGCs) which promote bacterial replication. We show that type I interferon (IFN) restricts macrophage MNGC formation during B. thailandensis infection. Guanylate-binding proteins (GBPs) expressed downstream of type I IFN were required to restrict MNGC formation through inhibition of bacterial Arp2/3-dependent actin motility during infection. GTPase activity and the CAAX prenylation domain were required for GBP2 recruitment to B. thailandensis, which restricted bacterial actin polymerization required for MNGC formation. Consistent with the effects in in vitro macrophages, Gbp2-/-, Gbp5-/-, GbpChr3-KO mice were more susceptible to intranasal infection with B. thailandensis than wildtype mice. Our findings reveal that IFN and GBPs play a critical role in restricting cell-cell fusion and bacteria-induced pathology during infection.
Collapse
Affiliation(s)
- David E. Place
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Benoit Briard
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Parimal Samir
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Rajendra Karki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anannya Bhattacharya
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jennifer L. Peters
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sharon Frase
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Osaka University, 3–1 Yamadaoka, Suita, Osaka, Japan
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
60
|
Sistemich L, Kutsch M, Hämisch B, Zhang P, Shydlovskyi S, Britzen-Laurent N, Stürzl M, Huber K, Herrmann C. The Molecular Mechanism of Polymer Formation of Farnesylated Human Guanylate-binding Protein 1. J Mol Biol 2020; 432:2164-2185. [PMID: 32087202 DOI: 10.1016/j.jmb.2020.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023]
Abstract
The human guanylate-binding protein 1 (hGBP1) belongs to the dynamin superfamily proteins and represents a key player in the innate immune response. Farnesylation at the C-terminus is required for hGBP1's activity against microbial pathogens, as well as for its antiproliferative and antitumor activity. The farnesylated hGBP1 (hGBP1fn) retains many characteristics of the extensively studied nonfarnesylated protein and gains additional abilities like binding to lipid membranes and formation of hGBP1fn polymers. These polymers are believed to serve as a protein depot, making the enzyme immediately available to fight the invasion of intracellular pathogens. Here we study the molecular mechanism of hGBP1 polymer formation as it is a crucial state of this enzyme, allowing for a rapid response demanded by the biological function. We employ Förster resonance energy transfer in order to trace intra and intermolecular distance changes of protein domains. Light scattering techniques yield deep insights into the changes in size and shape. The GTP hydrolysis driven cycling between a closed, farnesyl moiety hidden state and an opened, farnesyl moiety exposed state represents the first phase, preparing the molecule for polymerization. Within the second phase of polymer growth, opened hGBP1 molecules can be incorporated in the growing polymer where the opened structure is stabilized, similar to a surfactant molecule in a micelle, pointing the farnesyl moieties into the hydrophobic center and positioning the head groups at the periphery of the polymer. We contribute the molecular mechanism of polymer formation, paving the ground for a detailed understanding of hGBP1 function.
Collapse
Affiliation(s)
- Linda Sistemich
- Physical Chemistry I, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710, USA
| | - Benjamin Hämisch
- Chemistry Department, University of Paderborn, 33098, Paderborn, Germany
| | - Ping Zhang
- Physical Chemistry I, Ruhr-University Bochum, 44780, Bochum, Germany
| | | | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Klaus Huber
- Chemistry Department, University of Paderborn, 33098, Paderborn, Germany
| | | |
Collapse
|
61
|
Abstract
Guanylate-binding proteins (GBPs) are induced by the inflammatory cytokine interferon gamma (IFN-γ) and have been shown to be important factors in the defense of the intracellular pathogen Toxoplasma gondii. In previous studies, we showed that members of the mouse GBP family, such as mGBP2 and mGBP7, accumulate at the parasitophorous vacuole of T. gondii, which is the replicatory niche of the parasite. In this study, we show that mice deficient in mGBP7 succumb early after infection with T. gondii, showing a complete failure of resistance to the pathogen. On a molecular level, mGBP7 is found directly at the parasite, likely mediating its destruction. Members of the murine guanylate-binding protein family (mGBP) are induced by interferon gamma (IFN-γ) and have been shown to be important factors in cell-autonomous immunity toward the intracellular pathogen Toxoplasma gondii. Previously, we identified that mGBP2 mediates disruption of the parasitophorous vacuole membrane (PVM) and directly assaults the plasma membrane of the parasite. Here, we show that mGBP7-deficient mice are highly susceptible to T. gondii infection. This is demonstrated by the loss of parasite replication control, pronounced development of ascites, and death of the animals in the acute infection phase. Interestingly, live-cell microscopy revealed that mGBP7 recruitment to the PVM occurs after mGBP2 recruitment, followed by disruption of the PVM and T. gondii integrity and accumulation of mGBP7 inside the parasite. This study defines mGBP7 as a crucial effector protein in resistance to intracellular T. gondii.
Collapse
|
62
|
Guanylate-binding protein 6 is a novel biomarker for tumorigenesis and prognosis in tongue squamous cell carcinoma. Clin Oral Investig 2019; 24:2673-2682. [PMID: 31707626 DOI: 10.1007/s00784-019-03129-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Guanylate-binding protein 6 (GBP6) is a member of the guanylate-binding protein family, and its role in cancer has not yet been reported. We aimed to investigate the clinical significance of GBP6 in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Next-generation sequencing was applied for analyzing differential gene expression profiling between corresponding tumor adjacent normal (CTAN) and tumor tissue from two paired OSCC patients. Real-time PCRs (RT-PCRs) were used to investigate the gene expression level of GBP6 of CTAN and tumor tissue samples from 14 TSCC patients. Immunohistochemistry was used to investigate the protein expression level of GBP6 in tumor tissues and paired CTAN tissues from 488 OSCC patients, including 183 buccal mucosa squamous cell carcinoma (BMSCC), 245 tongue squamous cell carcinoma (TSCC), and 60 lip squamous cell carcinoma (LSCC) patients. RESULTS Compared with CTAN tissues of OSCC patients, GBP6 is identified as a downregulated gene using the NGS platform, which was confirmed in 14 OSCC patients by RT-PCR. Moreover, protein expression level of GBP6 in tumor tissues was lower than that in CTAN tissues and the low GBP6 expression was correlated with poor cell differentiation/lymph node metastasis in TSCC patients. In addition, TSCC patients with low expression levels of GBP6 had poor disease-specific survival rate. CONCLUSION The low expression of GBP6 was associated with tumorigenesis and poor prognosis in OSCC patients, especially in TSCC patients. CLINICAL RELEVANCE GBP6 may serve as a novel favorable diagnostic and prognostic biomarker in TSCC patients.
Collapse
|
63
|
Gomes MTR, Cerqueira DM, Guimarães ES, Campos PC, Oliveira SC. Guanylate-binding proteins at the crossroad of noncanonical inflammasome activation during bacterial infections. J Leukoc Biol 2019; 106:553-562. [PMID: 30897250 PMCID: PMC7516346 DOI: 10.1002/jlb.4mr0119-013r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system is armed with a broad range of receptors to detect and initiate the elimination of bacterial pathogens. Inflammasomes are molecular platforms that sense a diverse range of microbial insults to develop appropriate host response. In that context, noncanonical inflammasome arose as a sensor for Gram-negative bacteria-derived LPS leading to the control of infections. This review describes the role of caspase-11/gasdermin-D-dependent immune response against Gram-negative bacteria and presents an overview of guanylate-binding proteins (GBPs) at the interface of noncanonical inflammasome activation. Indeed, caspase-11 acts as a receptor for LPS and this interaction elicits caspase-11 autoproteolysis that is required for its optimal catalytic activity. Gasdermin-D is cleaved by activated caspase-11 generating an N-terminal domain that is inserted into the plasmatic membrane to form pores that induce pyroptosis, a cell death program involved in intracellular bacteria elimination. This mechanism also promotes IL-1β release and potassium efflux that connects caspase-11 to NLRP3 activation. Furthermore, GBPs display many features to allow LPS recognition by caspase-11, initiating the noncanonical inflammasome response prompting the immune system to control bacterial infections. In this review, we discuss the recent findings and nuances related to this mechanism and its biological functions.
Collapse
Affiliation(s)
- Marco Túlio R Gomes
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daiane M Cerqueira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erika S Guimarães
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Priscila C Campos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
64
|
Clough B, Finethy R, Khan RT, Fisch D, Jordan S, Patel H, Coers J, Frickel EM. C57BL/6 and 129 inbred mouse strains differ in Gbp2 and Gbp2b expression in response to inflammatory stimuli in vivo. Wellcome Open Res 2019; 4:124. [PMID: 31544161 PMCID: PMC6749937 DOI: 10.12688/wellcomeopenres.15329.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Infections cause the production of inflammatory cytokines such as Interferon gamma (IFNγ). IFNγ in turn prompts the upregulation of a range of host defence proteins including members of the family of guanylate binding proteins (Gbps). In humans and mice alike, GBPs restrict the intracellular replication of invasive microbes and promote inflammation. To study the physiological functions of Gbp family members, the most commonly chosen in vivo models are mice harbouring loss-of-function mutations in either individual Gbp genes or the entire Gbp gene cluster on mouse chromosome 3. Individual Gbp deletion strains differ in their design, as some strains exist on a pure C57BL/6 genetic background, while other strains contain a 129-derived genetic interval encompassing the Gbp gene cluster on an otherwise C57BL/6 genetic background. Methods: To determine whether the presence of 129 alleles of paralogous Gbps could influence the phenotypes of 129-congenic Gbp-deficient strains, we studied the expression of Gbps in both C57BL/6J and 129/Sv mice following in vivo stimulation with adjuvants and after infection with either Toxoplasma gondii or Shigella flexneri. Results: We show that C57BL/6J relative to 129/Sv mice display moderately elevated expression of Gbp2, but more prominently, are also defective for Gbp2b (formerly Gbp1) mRNA induction upon immune priming. Notably, Toxoplasma infections induce robust Gbp2b protein expression in both strains of mice, suggestive of a Toxoplasma-activated mechanism driving Gbp2b protein translation. We further find that the higher expression of Gbp2b mRNA in 129/Sv mice correlates with a gene duplication event at the Gbp2b locus resulting in two copies of the Gbp2b gene on the haploid genome of the 129/Sv strain. Conclusions: Our findings demonstrate functional differences between 129 and C57BL/6 Gbp alleles which need to be considered in the design and interpretation of studies utilizing mouse models, particularly for phenotypes influenced by Gbp2 or Gbp2b expression.
Collapse
Affiliation(s)
- Barbara Clough
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Rabia T Khan
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Daniel Fisch
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah Jordan
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
65
|
Rajan S, Pandita E, Mittal M, Sau AK. Understanding the lower GMP formation in large GTPase hGBP-2 and role of its individual domains in regulation of GTP hydrolysis. FEBS J 2019; 286:4103-4121. [PMID: 31199074 DOI: 10.1111/febs.14957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/28/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
Abstract
The interferon γ-inducible large GTPases, human guanylate-binding protein (hGBP)-1 and hGBP-2, mediate antipathogenic and antiproliferative effects in human cells. Both proteins hydrolyse GTP to GDP and GMP through successive cleavages of phosphate bonds, a property that functionally distinguishes them from other GTPases. However, it is unclear why hGBP-2 yields lower GMP than hGBP-1 despite sharing a high sequence identity (~ 78%). We previously reported that the hGBP-1 tetramer is crucial for enhanced GMP formation. We show here that the hGBP-2 tetramer has no role in GMP formation. Using truncated hGBP-2 variants, we found that its GTP-binding domain alone hydrolyses GTP only to GDP. However, this domain along with the intermediate region enabled dimerization and hydrolysed GTP further to GMP. We observed that unlike in hGBP-1, the helical domain of hGBP-2 has an insignificant role in the regulation of GTP hydrolysis, suggesting that the differences in GMP formation between hGBP-2 and hGBP-1 arise from differences in their GTP-binding domains. A large sequence variation seen in the guanine cap may be responsible for the lower GMP formation in hGBP-2. Moreover, we identified the sites in the hGBP-2 domains that are critical for both dimerization and tetramerization. We also found the existence of hGBP-2 tetramer in mammalian cells, which might have a role in the suppression of the carcinomas. Our study suggests that sequence variation near the active site in these two close homologues leads to differential second phosphate cleavage and highlights the role of individual hGBP-2 domains in the regulation of GTP hydrolysis.
Collapse
Affiliation(s)
| | - Esha Pandita
- National Institute of Immunology, New Delhi, India
| | | | | |
Collapse
|
66
|
Fisch D, Bando H, Clough B, Hornung V, Yamamoto M, Shenoy AR, Frickel E. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J 2019; 38:e100926. [PMID: 31268602 PMCID: PMC6600649 DOI: 10.15252/embj.2018100926] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022] Open
Abstract
The guanylate binding protein (GBP) family of interferon-inducible GTPases promotes antimicrobial immunity and cell death. During bacterial infection, multiple mouse Gbps, human GBP2, and GBP5 support the activation of caspase-1-containing inflammasome complexes or caspase-4 which trigger pyroptosis. Whether GBPs regulate other forms of cell death is not known. The apicomplexan parasite Toxoplasma gondii causes macrophage death through unidentified mechanisms. Here we report that Toxoplasma-induced death of human macrophages requires GBP1 and its ability to target Toxoplasma parasitophorous vacuoles through its GTPase activity and prenylation. Mechanistically, GBP1 promoted Toxoplasma detection by AIM2, which induced GSDMD-independent, ASC-, and caspase-8-dependent apoptosis. Identical molecular determinants targeted GBP1 to Salmonella-containing vacuoles. GBP1 facilitated caspase-4 recruitment to Salmonella leading to its enhanced activation and pyroptosis. Notably, GBP1 could be bypassed by the delivery of Toxoplasma DNA or bacterial LPS into the cytosol, pointing to its role in liberating microbial molecules. GBP1 thus acts as a gatekeeper of cell death pathways, which respond specifically to infecting microbes. Our findings expand the immune roles of human GBPs in regulating not only pyroptosis, but also apoptosis.
Collapse
Affiliation(s)
- Daniel Fisch
- Host‐Toxoplasma Interaction LaboratoryThe Francis Crick InstituteLondonUK
- MRC Centre for Molecular Bacteriology & InfectionImperial CollegeLondonUK
| | - Hironori Bando
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversityOsakaJapan
- Laboratory of ImmunoparasitologyWPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Barbara Clough
- Host‐Toxoplasma Interaction LaboratoryThe Francis Crick InstituteLondonUK
| | - Veit Hornung
- Gene Center and Department of Biochemistry & Center for Integrated Protein Science (CIPSM)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Masahiro Yamamoto
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversityOsakaJapan
- Laboratory of ImmunoparasitologyWPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology & InfectionImperial CollegeLondonUK
- The Francis Crick InstituteLondonUK
| | - Eva‐Maria Frickel
- Host‐Toxoplasma Interaction LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
67
|
Ji C, Du S, Li P, Zhu Q, Yang X, Long C, Yu J, Shao F, Xiao J. Structural mechanism for guanylate-binding proteins (GBPs) targeting by the Shigella E3 ligase IpaH9.8. PLoS Pathog 2019; 15:e1007876. [PMID: 31216343 PMCID: PMC6602295 DOI: 10.1371/journal.ppat.1007876] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023] Open
Abstract
The guanylate-binding proteins (GBPs) belong to the dynamin superfamily of GTPases and function in cell-autonomous defense against intracellular pathogens. IpaH9.8, an E3 ligase from the pathogenic bacterium Shigella flexneri, ubiquitinates a subset of GBPs and leads to their proteasomal degradation. Here we report the structure of a C-terminally truncated GBP1 in complex with the IpaH9.8 Leucine-rich repeat (LRR) domain. IpaH9.8LRR engages the GTPase domain of GBP1, and differences in the Switch II and α3 helix regions render some GBPs such as GBP3 and GBP7 resistant to IpaH9.8. Comparisons with other IpaH structures uncover interaction hot spots in their LRR domains. The C-terminal region of GBP1 undergoes a large rotation compared to previously determined structures. We further show that the C-terminal farnesylation modification also plays a role in regulating GBP1 conformation. Our results suggest a general mechanism by which the IpaH proteins target their cellular substrates and shed light on the structural dynamics of the GBPs. Shigella flexneri is a Gram-negative bacteria that causes diarrhea in humans and leads to a million deaths every year. Once inside the cell, S. flexneri injects the host cell cytoplasm with effector proteins to suppress host defense. The guanylate-binding proteins (GBPs) have potent antimicrobial functions against a number of pathogens including S. flexneri. For successful infection, S. flexneri relies on an effector protein known as IpaH9.8, a unique ubiquitin E3 ligase to target a subset of GBPs for proteasomal degradation. How these GBPs are specifically recognized by IpaH9.8 was unclear. Here, using a combination of structural and biochemical approaches, we reveal the molecular basis of GBP-IpaH9.8 interaction, and show that subtle differences in the seven human GBPs can significantly impact the targeting specificity of IpaH9.8. We also show that the GBPs have considerable structural flexibility, which is likely important for their function. Our results provide further insights into S. flexneri pathogenesis, and laid the groundwork for future biophysical and biochemical studies to investigate the functional mechanism of GBPs.
Collapse
Affiliation(s)
- Chenggong Ji
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuo Du
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peng Li
- National Institute of Biological Science (NIBS), Beijing, China
| | - Qinyu Zhu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoke Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chunhong Long
- Beijing Computational Science Research Center, Beijing, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing, China
| | - Feng Shao
- National Institute of Biological Science (NIBS), Beijing, China
- * E-mail: (FS); (JX)
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail: (FS); (JX)
| |
Collapse
|
68
|
Cell-autonomous immunity by IFN-induced GBPs in animals and plants. Curr Opin Immunol 2019; 60:71-80. [PMID: 31176142 DOI: 10.1016/j.coi.2019.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
Abstract
Inside host cells, guanylate binding proteins (GBPs) rapidly assemble into large antimicrobial defense complexes that combat a wide variety of bacterial pathogens. These massive nanomachines often completely coat targeted microbes where they act as recruitment platforms for downstream effectors capable of direct bactericidal activity. GBP-containing platforms also serve as sensory hubs to activate inflammasome-driven responses in the mammalian cytosol while in plants like Arabidopsis, GBP orthologues may facilitate intranuclear signaling for immunity against invasive phytopathogens. Together, this group of immune GTPases serve as a major defensive repertoire to protect the host cell interior from bacterial colonization across plant and animal kingdoms.
Collapse
|
69
|
Abstract
ABSTRACT
Shigella
is a genus of Gram-negative enteropathogens that have long been, and continue to be, an important public health concern worldwide. Over the past several decades,
Shigella
spp. have also served as model pathogens in the study of bacterial pathogenesis, and
Shigella flexneri
has become one of the best-studied pathogens on a molecular, cellular, and tissue level. In the arms race between
Shigella
and the host immune system,
Shigella
has developed highly sophisticated mechanisms to subvert host cell processes in order to promote infection, escape immune detection, and prevent bacterial clearance. Here, we give an overview of
Shigella
pathogenesis while highlighting innovative techniques and methods whose application has significantly advanced our understanding of
Shigella
pathogenesis in recent years.
Collapse
|
70
|
Abstract
Inflammasomes are multiprotein signaling complexes that are assembled by cytosolic sensors upon the detection of infectious or noxious stimuli. These complexes activate inflammatory caspases to induce host cell death and cytokine secretion and are an essential part of antimicrobial host defense. In this review, I discuss how intracellular bacteria are detected by inflammasomes, how the specific sensing mechanism of each inflammasome receptor restricts the ability of bacteria to evade immune recognition, and how host cell death is used to control bacterial replication in vivo.
Collapse
|
71
|
Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE. Functional degradation: A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 2019; 364:science.aau1330. [PMID: 30872533 PMCID: PMC6532986 DOI: 10.1126/science.aau1330] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Inflammasomes are multiprotein platforms that initiate innate immunity by recruitment and activation of caspase-1. The NLRP1B inflammasome is activated upon direct cleavage by the anthrax lethal toxin protease. However, the mechanism by which cleavage results in NLRP1B activation is unknown. In this study, we find that cleavage results in proteasome-mediated degradation of the amino-terminal domains of NLRP1B, liberating a carboxyl-terminal fragment that is a potent caspase-1 activator. Proteasome-mediated degradation of NLRP1B is both necessary and sufficient for NLRP1B activation. Consistent with our functional degradation model, we identify IpaH7.8, a Shigella flexneri ubiquitin ligase secreted effector, as an enzyme that induces NLRP1B degradation and activation. Our results provide a unified mechanism for NLRP1B activation by diverse pathogen-encoded enzymatic activities.
Collapse
Affiliation(s)
- Andrew Sandstrom
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Patrick S Mitchell
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Lisa Goers
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Edward W Mu
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
72
|
Tretina K, Park ES, Maminska A, MacMicking JD. Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. J Exp Med 2019; 216:482-500. [PMID: 30755454 PMCID: PMC6400534 DOI: 10.1084/jem.20182031] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/31/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
Guanylate-binding proteins (GBPs) have recently emerged as central orchestrators of immunity to infection, inflammation, and neoplastic diseases. Within numerous host cell types, these IFN-induced GTPases assemble into large nanomachines that execute distinct host defense activities against a wide variety of microbial pathogens. In addition, GBPs customize inflammasome responses to bacterial infection and sepsis, where they act as critical rheostats to amplify innate immunity and regulate tissue damage. Similar functions are becoming evident for metabolic inflammatory syndromes and cancer, further underscoring the importance of GBPs within infectious as well as altered homeostatic settings. A better understanding of the basic biology of these IFN-induced GTPases could thus benefit clinical approaches to a wide spectrum of important human diseases.
Collapse
Affiliation(s)
- Kyle Tretina
- Howard Hughes Medical Institute, Chevy Chase, MD
- Yale Systems Biology Institute, West Haven, CT
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Eui-Soon Park
- Howard Hughes Medical Institute, Chevy Chase, MD
- Yale Systems Biology Institute, West Haven, CT
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Agnieszka Maminska
- Howard Hughes Medical Institute, Chevy Chase, MD
- Yale Systems Biology Institute, West Haven, CT
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - John D MacMicking
- Howard Hughes Medical Institute, Chevy Chase, MD
- Yale Systems Biology Institute, West Haven, CT
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
73
|
Lobato‐Márquez D, Krokowski S, Sirianni A, Larrouy‐Maumus G, Mostowy S. A requirement for septins and the autophagy receptor p62 in the proliferation of intracellular Shigella. Cytoskeleton (Hoboken) 2019; 76:163-172. [PMID: 29752866 PMCID: PMC6519264 DOI: 10.1002/cm.21453] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Shigella flexneri, a Gram-negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial cells, Shigella escape from the phagosome to the cytosol, where they reroute host cell glycolysis to obtain nutrients for proliferation. Septins, a poorly understood component of the cytoskeleton, can entrap cytosolic Shigella targeted to autophagy in cage-like structures to restrict bacterial proliferation. Although bacterial entrapment by septin caging has been the subject of intense investigation, the role of septins and the autophagy machinery in the proliferation of noncaged Shigella is mostly unknown. Here, we found that intracellular Shigella fail to efficiently proliferate in SEPT2-, SEPT7-, or p62/SQSTM1-depleted cells. Consistent with a failure to proliferate, single cell analysis of bacteria not entrapped in septin cages showed that the number of metabolically active Shigella in septin- or p62-depleted cells is reduced. Targeted metabolomic analysis revealed that host cell glycolysis is dysregulated in septin-depleted cells, suggesting a key role for septins in modulation of glycolysis. Together, these results suggest that septins and the autophagy machinery may regulate metabolic pathways that promote the proliferation of intracellular Shigella not entrapped in septin cages.
Collapse
Affiliation(s)
- Damián Lobato‐Márquez
- MRC Centre for Molecular Bacteriology and Infection, Department of MedicineSection of Microbiology, Imperial College LondonLondonUnited Kingdom
- Department of Immunology and InfectionLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUnited Kingdom
| | - Sina Krokowski
- MRC Centre for Molecular Bacteriology and Infection, Department of MedicineSection of Microbiology, Imperial College LondonLondonUnited Kingdom
- Department of Immunology and InfectionLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUnited Kingdom
| | - Andrea Sirianni
- MRC Centre for Molecular Bacteriology and Infection, Department of MedicineSection of Microbiology, Imperial College LondonLondonUnited Kingdom
| | - Gerald Larrouy‐Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural SciencesImperial College LondonLondonUnited Kingdom
| | - Serge Mostowy
- MRC Centre for Molecular Bacteriology and Infection, Department of MedicineSection of Microbiology, Imperial College LondonLondonUnited Kingdom
- Department of Immunology and InfectionLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUnited Kingdom
| |
Collapse
|
74
|
Coers J, Brown HM, Hwang S, Taylor GA. Partners in anti-crime: how interferon-inducible GTPases and autophagy proteins team up in cell-intrinsic host defense. Curr Opin Immunol 2018; 54:93-101. [PMID: 29986303 PMCID: PMC6196122 DOI: 10.1016/j.coi.2018.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023]
Abstract
Once pathogens have breached the mechanical barriers to infection, survived extracellular immunity and successfully invaded host cells, cell-intrinsic immunity becomes the last line of defense to protect the mammalian host against viruses, bacteria, fungi and protozoa. Many cell-intrinsic defense programs act as high-precision weapons that specifically target intracellular microbes or cytoplasmic sites of microbial replication while leaving endogenous organelles unharmed. Critical executioners of cell-autonomous immunity include interferon-inducible dynamin-like GTPases and autophagy proteins, which often act cooperatively in locating and antagonizing intracellular pathogens. Here, we discuss possible mechanistic models to account for the functional interactions that occur between these two distinct classes of host defense proteins.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hailey M Brown
- Committee on Immunology, The University of Chicago, IL 60637, USA
| | - Seungmin Hwang
- Committee on Immunology, The University of Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, IL 60637, USA; Department of Pathology, The University of Chicago, IL 60637, USA
| | - Gregory A Taylor
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Geriatrics, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC 27710, USA; Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC 27705, USA
| |
Collapse
|
75
|
Norkowski S, Schmidt MA, Rüter C. The species-spanning family of LPX-motif harbouring effector proteins. Cell Microbiol 2018; 20:e12945. [PMID: 30137651 DOI: 10.1111/cmi.12945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
The delivery of effector proteins into infected eukaryotic cells represents a key virulence feature of many microbial pathogens in order to derail essential cellular processes and effectively counter the host defence system. Although bacterial effectors are truly numerous and exhibit a wide range of biochemical activities, commonalities in terms of protein structure and function shared by many bacterial pathogens exist. Recent progress has shed light on a species-spanning family of bacterial effectors containing an LPX repeat motif as a subtype of the leucine-rich repeat superfamily, partially combined with a novel E3 ubiquitin ligase domain. This review highlights the immunomodulatory effects of LPX effector proteins, with particular emphasis on the exploitation of the host ubiquitin system.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
76
|
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiol Mol Biol Rev 2018; 82:82/4/e00015-18. [PMID: 30209070 DOI: 10.1128/mmbr.00015-18] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.
Collapse
|
77
|
Kang E, Crouse A, Chevallier L, Pontier SM, Alzahrani A, Silué N, Campbell-Valois FX, Montagutelli X, Gruenheid S, Malo D. Enterobacteria and host resistance to infection. Mamm Genome 2018; 29:558-576. [PMID: 29785663 DOI: 10.1007/s00335-018-9749-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Enterobacteriaceae are a large family of Gram-negative, non-spore-forming bacteria. Although many species exist as part of the natural flora of animals including humans, some members are associated with both intestinal and extraintestinal diseases. In this review, we focus on members of this family that have important roles in human disease: Salmonella, Escherichia, Shigella, and Yersinia, providing a brief overview of the disease caused by these bacteria, highlighting the contribution of animal models to our understanding of their pathogenesis and of host genetic determinants involved in susceptibility or resistance to infection.
Collapse
Affiliation(s)
- Eugene Kang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Alanna Crouse
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Lucie Chevallier
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Stéphanie M Pontier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ashwag Alzahrani
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xavier Montagutelli
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Danielle Malo
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
78
|
Kutsch M, Ince S, Herrmann C. Homo and hetero dimerisation of the human guanylate-binding proteins hGBP-1 and hGBP-5 characterised by affinities and kinetics. FEBS J 2018; 285:2019-2036. [PMID: 29618166 DOI: 10.1111/febs.14459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/16/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
Abstract
The human guanylate-binding proteins (hGBPs) exhibit diverse antipathogenic and tumour-related functions which make them key players in the innate immune response. The isoforms hGBP-1 to hGBP-5 form homomeric complexes and localise to specific cellular compartments. Upon heteromeric interactions, hGBPs are able to guide each other to their specific compartments. Thus, homo- and heteromeric interactions allow the hGBPs to build a network within the cell which might be important for their diverse biological functions. We characterised homomeric complexes of hGBPs in vitro and presented most recently that nonprenylated hGBP-1 and hGBP-5 form dimers as highest oligomeric species while farnesylated hGBP-1 is able to form polymers. We continued to work on the biochemical characterisation of the heteromeric interactions between hGBPs and present here results for nonprenylated hGBP-1 and hGBP-5. Multiangle light scattering identified the GTP-dependent heteromeric complex as dimer. Also hGBP-5's tumour-associated splice variant (hGBP-5ta) was able to form a hetero dimer with hGBP-1. Intriguingly, both hGBP-5 splice variants were able to induce domain rearrangements within hGBP-1. We further characterised the homo and hetero dimers with Förster resonance energy transfer-based experiments. This allowed us to obtain affinities and kinetics of the homo and hetero dimer formation. Furthermore, we identified that the LG domains of hGBP-1 and hGBP-5 build an interaction site within the hetero dimer. Our in vitro study provides mechanistic insights into the homomeric and heteromeric interactions of hGBP-1 and hGBP-5 and present useful strategies to characterise the hGBP network further.
Collapse
Affiliation(s)
- Miriam Kutsch
- Physical Chemistry I, Ruhr-University Bochum, Germany
| | - Semra Ince
- Physical Chemistry I, Ruhr-University Bochum, Germany
| | | |
Collapse
|
79
|
Encheva V, Foltz C, Snijders AP, Frickel EM. Murine Gbp1 and Gbp2 are ubiquitinated independent of Toxoplasma gondii infection. BMC Res Notes 2018; 11:166. [PMID: 29510761 PMCID: PMC5840767 DOI: 10.1186/s13104-018-3267-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/24/2018] [Indexed: 11/21/2022] Open
Abstract
Objective The intracellular parasite Toxoplasma gondii can invade any nucleated cell residing inside a parasitophorous vacuole (PV). Upon infection, the cytokine interferon gamma (IFNγ) is produced and elicits host defence mechanisms able to recognise the PV and destroy the parasite. Hereby, Guanylate binding proteins, ubiquitin and the E3 ubiquitin ligases Tripartite Motif Containing 21 (TRIM21) and TNF receptor associated factor 6 are targeted to the murine PV leading to its destruction. This study is the side product of research aiming to identify ubiquitinated substrates in a TRIM21-dependent fashion in murine cells infected with Toxoplasma. Results We infected IFNγ-stimulated murine embryonic fibroblasts (MEFs) from either C57BL/6×129 wild-type (WT) mice or C57BL/6 TRIM21−/− mice with Toxoplasma. Using mass spectrometry, we analysed proteins in both cell backgrounds presenting with the di-glycine remnant of ubiquitination. In addition, we compared peptide levels between WT and TRIM21−/− cells. In line with earlier reports, Gbp1 was expressed to higher levels in the C57BL/6×129 WT MEFs compared to the C57BL/6-only background TRIM21−/− MEFs. Protein expression differences in these different murine backgrounds thus precluded identification of TRIM21-dependent ubiquitinated substrates. Nevertheless, we identified and confirmed Gbp1 and Gbp2 as being ubiquitinated in a Toxoplasma-infection independent manner. Electronic supplementary material The online version of this article (10.1186/s13104-018-3267-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vesela Encheva
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Clémence Foltz
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|