51
|
Shieh GS, Chen CM, Yu CY, Huang J, Wang WF, Lo YC. Inferring transcriptional compensation interactions in yeast via stepwise structure equation modeling. BMC Bioinformatics 2008; 9:134. [PMID: 18312694 PMCID: PMC2323972 DOI: 10.1186/1471-2105-9-134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 03/03/2008] [Indexed: 11/10/2022] Open
Abstract
Background With the abundant information produced by microarray technology, various approaches have been proposed to infer transcriptional regulatory networks. However, few approaches have studied subtle and indirect interaction such as genetic compensation, the existence of which is widely recognized although its mechanism has yet to be clarified. Furthermore, when inferring gene networks most models include only observed variables whereas latent factors, such as proteins and mRNA degradation that are not measured by microarrays, do participate in networks in reality. Results Motivated by inferring transcriptional compensation (TC) interactions in yeast, a stepwise structural equation modeling algorithm (SSEM) is developed. In addition to observed variables, SSEM also incorporates hidden variables to capture interactions (or regulations) from latent factors. Simulated gene networks are used to determine with which of six possible model selection criteria (MSC) SSEM works best. SSEM with Bayesian information criterion (BIC) results in the highest true positive rates, the largest percentage of correctly predicted interactions from all existing interactions, and the highest true negative (non-existing interactions) rates. Next, we apply SSEM using real microarray data to infer TC interactions among (1) small groups of genes that are synthetic sick or lethal (SSL) to SGS1, and (2) a group of SSL pairs of 51 yeast genes involved in DNA synthesis and repair that are of interest. For (1), SSEM with BIC is shown to outperform three Bayesian network algorithms and a multivariate autoregressive model, checked against the results of qRT-PCR experiments. The predictions for (2) are shown to coincide with several known pathways of Sgs1 and its partners that are involved in DNA replication, recombination and repair. In addition, experimentally testable interactions of Rad27 are predicted. Conclusion SSEM is a useful tool for inferring genetic networks, and the results reinforce the possibility of predicting pathways of protein complexes via genetic interactions.
Collapse
Affiliation(s)
- Grace S Shieh
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan.
| | | | | | | | | | | |
Collapse
|
52
|
Madia F, Gattazzo C, Wei M, Fabrizio P, Burhans WC, Weinberger M, Galbani A, Smith JR, Nguyen C, Huey S, Comai L, Longo VD. Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. ACTA ACUST UNITED AC 2008; 180:67-81. [PMID: 18195102 PMCID: PMC2213615 DOI: 10.1083/jcb.200707154] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Werner and Bloom syndromes are human diseases characterized by premature age-related defects including elevated cancer incidence. Using a novel Saccharomyces cerevisiae model system for aging and cancer, we show that cells lacking the RecQ helicase SGS1 (WRN and BLM homologue) undergo premature age-related changes, including reduced life span under stress and calorie restriction (CR), G1 arrest defects, dedifferentiation, elevated recombination errors, and age-dependent increase in DNA mutations. Lack of SGS1 results in a 110-fold increase in gross chromosomal rearrangement frequency during aging of nondividing cells compared with that generated during the initial population expansion. This underscores the central role of aging in genomic instability. The deletion of SCH9 (homologous to AKT and S6K), but not CR, protects against the age-dependent defects in sgs1Δ by inhibiting error-prone recombination and preventing DNA damage and dedifferentiation. The conserved function of Akt/S6k homologues in lifespan regulation raises the possibility that modulation of the IGF-I–Akt–56K pathway can protect against premature aging syndromes in mammals.
Collapse
Affiliation(s)
- Federica Madia
- Andrus Gerontology Center and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Maloisel L, Fabre F, Gangloff S. DNA polymerase delta is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Mol Cell Biol 2008; 28:1373-82. [PMID: 18086882 PMCID: PMC2258756 DOI: 10.1128/mcb.01651-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/26/2007] [Accepted: 12/05/2007] [Indexed: 01/30/2023] Open
Abstract
DNA polymerases play a central role during homologous recombination (HR), but the identity of the enzyme(s) implicated remains elusive. The pol3-ct allele of the gene encoding the catalytic subunit of DNA polymerase delta (Poldelta) has highlighted a role for this polymerase in meiotic HR. We now address the ubiquitous role of Poldelta during HR in somatic cells. We find that pol3-ct affects gene conversion tract length during mitotic recombination whether the event is initiated by single-strand gaps following UV irradiation or by site-specific double-strand breaks. We show that the pol3-ct effects on gene conversion are completely independent of mismatch repair, indicating that shorter gene conversion tracts in pol3-ct correspond to shorter extensions of primed DNA synthesis. Interestingly, we find that shorter repair tracts do not favor synthesis-dependent strand annealing at the expense of double-strand-break repair. Finally, we show that the DNA polymerases that have been previously suspected to mediate HR repair synthesis (Polepsilon and Poleta) do not affect gene conversion during induced HR, including in the pol3-ct background. Our results argue strongly for the preferential recruitment of Poldelta during HR.
Collapse
|
54
|
Abstract
Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.
Collapse
Affiliation(s)
- Xuan Li
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616-8665, USA
| |
Collapse
|
55
|
Skibbens RV. Mechanisms of sister chromatid pairing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:283-339. [PMID: 18779060 DOI: 10.1016/s1937-6448(08)01005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The continuance of life through cell division requires high fidelity DNA replication and chromosome segregation. During DNA replication, each parental chromosome is duplicated exactly and one time only. At the same time, the resulting chromosomes (called sister chromatids) become tightly paired along their length. This S-phase pairing, or cohesion, identifies chromatids as sisters over time. During mitosis in most eukaryotes, sister chromatids bi-orient to the mitotic spindle. After each chromosome pair is properly oriented, the cohesion established during S phase is inactivated in a tightly regulated fashion, allowing sister chromatids to segregate away from each other. Recent findings of cohesin structure and enzymology provide new insights into cohesion, while many critical facets of cohesion (how cohesins tether together sister chromatids and how those tethers are established) remain actively debated.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
56
|
Nag DK, Cavallo SJ. Effects of mutations in SGS1 and in genes functionally related to SGS1 on inverted repeat-stimulated spontaneous unequal sister-chromatid exchange in yeast. BMC Mol Biol 2007; 8:120. [PMID: 18166135 PMCID: PMC2254439 DOI: 10.1186/1471-2199-8-120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 12/31/2007] [Indexed: 11/11/2022] Open
Abstract
Background The presence of inverted repeats (IRs) in DNA poses an obstacle to the normal progression of the DNA replication machinery, because these sequences can form secondary structures ahead of the replication fork. A failure to process and to restart the stalled replication machinery can lead to the loss of genome integrity. Consistently, IRs have been found to be associated with a high level of genome rearrangements, including deletions, translocations, inversions, and a high rate of sister-chromatid exchange (SCE). The RecQ helicase Sgs1, in Saccharomyces cerevisiae, is believed to act on stalled replication forks. To determine the role of Sgs1 when the replication machinery stalls at the secondary structure, we measured the rates of IR-associated and non-IR-associated spontaneous unequal SCE events in the sgs1 mutant, and in strains bearing mutations in genes that are functionally related to SGS1. Results The rate of SCE in sgs1 cells for both IR and non-IR-containing substrates was higher than the rate in the wild-type background. The srs2 and mus81 mutations had modest effects, compared to sgs1. The exo1 mutation increased SCE rates for both substrates. The sgs1 exo1 double mutant exhibited synergistic effects on spontaneous SCE. The IR-associated SCE events in sgs1 cells were partially MSH2-dependent. Conclusions These results suggest that Sgs1 suppresses spontaneous unequal SCE, and SGS1 and EXO1 regulate spontaneous SCE by independent mechanisms. The mismatch repair proteins, in contradistinction to their roles in mutation avoidance, promote secondary structure-associated genetic instability.
Collapse
Affiliation(s)
- Dilip K Nag
- Division of Molecular Medicine, Wadsworth Center, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12208, USA.
| | | |
Collapse
|
57
|
Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol Cell Biol 2007; 28:897-906. [PMID: 18039855 DOI: 10.1128/mcb.00524-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its "mediators," including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Delta mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Delta mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Delta and rad52Delta mutants, but not in a rad51Delta rad52Delta double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Delta mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Delta mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.
Collapse
|
58
|
Bussen W, Raynard S, Busygina V, Singh AK, Sung P. Holliday junction processing activity of the BLM-Topo IIIalpha-BLAP75 complex. J Biol Chem 2007; 282:31484-92. [PMID: 17728255 DOI: 10.1074/jbc.m706116200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BLM, the protein mutated in Bloom's syndrome, possesses a helicase activity that can dissociate DNA structures, including the Holliday junction, expected to arise during homologous recombination. BLM is stably associated with topoisomerase IIIalpha (Topo IIIalpha) and the BLAP75 protein. The BLM-Topo IIIalpha-BLAP75 (BTB) complex can efficiently resolve a DNA substrate that harbors two Holliday junctions (the double Holliday junction) in a non-crossover manner. Here we show that the Holliday junction unwinding activity of BLM is greatly enhanced as a result of its association with Topo IIIalpha and BLAP75. Enhancement of this BLM activity requires both Topo IIIalpha and BLAP75. Importantly, Topo IIIalpha cannot be substituted by Escherichia coli Top3, and the Holliday junction unwinding activity of BLM-related helicases WRN and RecQ is likewise impervious to Topo IIIalpha and BLAP75. However, the topoisomerase activity of Topo IIIalpha is dispensable for the enhancement of the DNA unwinding reaction. We have also ascertained the requirement for the BLM ATPase activity in double Holliday junction dissolution and DNA unwinding by constructing, purifying, and characterizing specific mutant variants that lack this activity. These results provide valuable information concerning how the functional integrity of the BTB complex is governed by specific protein-protein interactions among the components of this complex and the enzymatic activities of BLM and Topo IIIalpha.
Collapse
Affiliation(s)
- Wendy Bussen
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
59
|
Neuwirth EAH, Honma M, Grosovsky AJ. Interchromosomal crossover in human cells is associated with long gene conversion tracts. Mol Cell Biol 2007; 27:5261-74. [PMID: 17515608 PMCID: PMC1952082 DOI: 10.1128/mcb.01852-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 11/02/2006] [Accepted: 04/23/2007] [Indexed: 11/20/2022] Open
Abstract
Crossovers have rarely been observed in specific association with interchromosomal gene conversion in mammalian cells. In this investigation two isogenic human B-lymphoblastoid cell lines, TI-112 and TSCER2, were used to select for I-SceI-induced gene conversions that restored function at the selectable thymidine kinase locus. Additionally, a haplotype linkage analysis methodology enabled the rigorous detection of all crossover-associated convertants, whether or not they exhibited loss of heterozygosity. This methodology also permitted characterization of conversion tract length and structure. In TI-112, gene conversion tracts were required to be complex in tract structure and at least 7.0 kb in order to be selectable. The results demonstrated that 85% (39/46) of TI-112 convertants extended more than 11.2 kb and 48% also exhibited a crossover, suggesting a mechanistic link between long tracts and crossover. In contrast, continuous tracts as short as 98 bp are selectable in TSCER2, although selectable gene conversion tracts could include a wide range of lengths. Indeed, only 16% (14/95) of TSCER2 convertants were crossover associated, further suggesting a link between long tracts and crossover. Overall, these results demonstrate that gene conversion tracts can be long in human cells and that crossovers are observable when long tracts are recoverable.
Collapse
Affiliation(s)
- Efrem A H Neuwirth
- University of California, Department of Cell Biology and Neuroscience and Environmental Toxicology Graduate Program, 2211 Biological Sciences Building, Riverside, CA 92521, USA
| | | | | |
Collapse
|
60
|
Davies SL, North PS, Hickson ID. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol 2007; 14:677-9. [PMID: 17603497 DOI: 10.1038/nsmb1267] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 06/06/2007] [Indexed: 11/09/2022]
Abstract
Mutations in BLM give rise to Bloom's syndrome, a genetic disorder associated with cancer predisposition and chromosomal instability. Using a dual-labeling system in isolated chromosome fibers, we show that the BLM protein is required for two aspects of the cellular response to replicative stress: efficient replication-fork restart and suppression of new origin firing. These functions require the helicase activity of BLM and the Thr99 residue targeted by stress-activated kinases.
Collapse
Affiliation(s)
- Sally L Davies
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
61
|
Krishna S, Wagener BM, Liu HP, Lo YC, Sterk R, Petrini JH, Nickoloff JA. Mre11 and Ku regulation of double-strand break repair by gene conversion and break-induced replication. DNA Repair (Amst) 2007; 6:797-808. [PMID: 17321803 PMCID: PMC1948817 DOI: 10.1016/j.dnarep.2007.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 01/08/2007] [Accepted: 01/17/2007] [Indexed: 02/06/2023]
Abstract
The yeast Mre11-Rad50-Xrs2 (MRX) and Ku complexes regulate single-strand resection at DNA double-strand breaks (DSB), a key early step in homologous recombination (HR). A prior plasmid gap repair study showed that mre11 mutations, which slow single-strand resection, reduce gene conversion tract lengths and the frequency of associated crossovers. Here we tested whether mre11Delta or nuclease-defective mre11 mutations reduced gene conversion tract lengths during HR between homologous chromosomes in diploid yeast. We found that mre11 mutations reduced the efficiency of HR but did not reduce tract lengths or crossovers, despite substantially reduced end-resection at the test (ura3) locus. End-resection is increased in yku70Delta, but this change also had no effect on tract lengths. Thus, heteroduplex formation and tract lengths are not regulated by the extent of end-resection during DSB repair in a chromosomal context. In a plasmid-chromosome DSB repair assay, tract lengths were again similar in wild-type and mre11Delta, but they were reduced in mre11Delta in a gap repair assay. These results indicate that tract lengths are not affected by the extent of end processing when broken ends can invade nearby sites, perhaps because MRX coordination of the two broken ends is dispensable when ends invade nearby sites. Although HR outcome was largely unaffected in mre11 mutants, break-induced replication (BIR) and chromosome loss increased, suggesting that Mre11 function in mitotic HR is limited to early HR stages. Interestingly, yku70Delta suppressed BIR in mre11 mutants. BIR is also elevated in rad51 mutants, but yku70Delta did not suppress BIR in a rad51 background. These results indicate that Mre11 functions in Rad51-independent BIR, and that Ku functions in Rad51-dependent BIR.
Collapse
Affiliation(s)
- Sanchita Krishna
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Brant M. Wagener
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Hui Ping Liu
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Yi-Chen Lo
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Rosa Sterk
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - John H.J. Petrini
- Molecular Biology Program Memorial Sloan-Kettering Cancer Center New York, NY 10021
| | - Jac A. Nickoloff
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| |
Collapse
|
62
|
Hope JC, Cruzata LD, Duvshani A, Mitsumoto J, Maftahi M, Freyer GA. Mus81-Eme1-dependent and -independent crossovers form in mitotic cells during double-strand break repair in Schizosaccharomyces pombe. Mol Cell Biol 2007; 27:3828-38. [PMID: 17353272 PMCID: PMC1900003 DOI: 10.1128/mcb.01596-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 09/18/2006] [Accepted: 03/02/2007] [Indexed: 11/20/2022] Open
Abstract
During meiosis, double-strand breaks (DSBs) lead to crossovers, thought to arise from the resolution of double Holliday junctions (HJs) by an HJ resolvase. In Schizosaccharomyces pombe, meiotic crossovers are produced primarily through a mechanism requiring the Mus81-Eme1 endonuclease complex. Less is known about the processes that produces crossovers during the repair of DSBs in mitotic cells. We employed an inducible DSB system to determine the role of Rqh1-Top3 and Mus81-Eme1 in mitotic DSB repair and crossover formation in S. pombe. In agreement with the meiotic data, crossovers are suppressed in cells lacking Mus81-Eme1. And relative to the wild type, rqh1Delta cells show a fourfold increase in crossover frequency. This suppression of crossover formation by Rqh1 is dependent on its helicase activity. We found that the synthetic lethality of cells lacking both Rqh1 and Eme1 is suppressed by loss of swi5(+), which allowed us to show that the excess crossovers formed in an rqh1Delta background are independent of Mus81-Eme1. This result suggests that a second process for crossover formation exists in S. pombe and is consistent with our finding that deletion of swi5(+) restored meiotic crossovers in eme1Delta cells. Evidence suggesting that Rqh1 also acts downstream of Swi5 in crossover formation was uncovered in these studies. Our results suggest that during Rhp51-dependent repair of DSBs, Rqh1-Top3 suppresses crossovers in the Rhp57-dependent pathway while Mus81-Eme1 and possibly Rqh1 promote crossovers in the Swi5-dependent pathway.
Collapse
Affiliation(s)
- Justin C Hope
- Graduate Program in Anatomy and Cell Biology, Columbia University, 722 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
63
|
Anand SP, Zheng H, Bianco PR, Leuba SH, Khan SA. DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange. J Bacteriol 2007; 189:4502-9. [PMID: 17449621 PMCID: PMC1913354 DOI: 10.1128/jb.00376-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PcrA is a conserved DNA helicase present in all gram-positive bacteria. Bacteria lacking PcrA show high levels of recombination. Lethality induced by PcrA depletion can be overcome by suppressor mutations in the recombination genes recFOR. RecFOR proteins load RecA onto single-stranded DNA during recombination. Here we test whether an essential function of PcrA is to interfere with RecA-mediated DNA recombination in vitro. We demonstrate that PcrA can inhibit the RecA-mediated DNA strand exchange reaction in vitro. Furthermore, PcrA displaced RecA from RecA nucleoprotein filaments. Interestingly, helicase mutants of PcrA also displaced RecA from DNA and inhibited RecA-mediated DNA strand exchange. Employing a novel single-pair fluorescence resonance energy transfer-based assay, we demonstrate a lengthening of double-stranded DNA upon polymerization of RecA and show that PcrA and its helicase mutants can reverse this process. Our results show that the displacement of RecA from DNA by PcrA is not dependent on its translocase activity. Further, our results show that the helicase activity of PcrA, although not essential, might play a facilitatory role in the RecA displacement reaction.
Collapse
Affiliation(s)
- Syam P Anand
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
64
|
Weinert BT, Rio DC. DNA strand displacement, strand annealing and strand swapping by the Drosophila Bloom's syndrome helicase. Nucleic Acids Res 2007; 35:1367-76. [PMID: 17272294 PMCID: PMC1849897 DOI: 10.1093/nar/gkl831] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic analysis of the Drosophila Bloom's syndrome helicase homolog (mus309/DmBLM) indicates that DmBLM is required for the synthesis-dependent strand annealing (SDSA) pathway of homologous recombination. Here we report the first biochemical study of DmBLM. Recombinant, epitope-tagged DmBLM was expressed in Drosophila cell culture and highly purified protein was prepared from nuclear extracts. Purified DmBLM exists exclusively as a high molecular weight (∼1.17 MDa) species, is a DNA-dependent ATPase, has 3′→5′ DNA helicase activity, prefers forked substrate DNAs and anneals complementary DNAs. High-affinity DNA binding is ATP-dependent and low-affinity ATP-independent interactions contribute to forked substrate DNA binding and drive strand annealing. DmBLM combines DNA strand displacement with DNA strand annealing to catalyze the displacement of one DNA strand while annealing a second complementary DNA strand.
Collapse
Affiliation(s)
| | - Donald C. Rio
- To whom correspondence should be addressed. Tel: +1 510 642 1071; Fax: +1 510 642 6062;
| |
Collapse
|
65
|
Ira G, Satory D, Haber JE. Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion. Mol Cell Biol 2006; 26:9424-9. [PMID: 17030630 PMCID: PMC1698534 DOI: 10.1128/mcb.01654-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To distinguish among possible mechanisms of repair of a double-strand break (DSB) by gene conversion in budding yeast, Saccharomyces cerevisiae, we employed isotope density transfer to analyze budding yeast mating type (MAT) gene switching in G2/M-arrested cells. Both of the newly synthesized DNA strands created during gene conversion are found at the repaired locus, leaving the donor unchanged. These results support suggestions that mitotic DSBs are primarily repaired by a synthesis-dependent strand-annealing mechanism. We also show that the proportion of crossing-over associated with DSB-induced ectopic recombination is not affected by the presence of nonhomologous sequences at one or both ends of the DSB or the presence of additional sequences that must be copied from the donor.
Collapse
Affiliation(s)
- Grzegorz Ira
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02453-2728, USA
| | | | | |
Collapse
|
66
|
Sharma S, Doherty K, Brosh R. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 2006; 398:319-37. [PMID: 16925525 PMCID: PMC1559444 DOI: 10.1042/bj20060450] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Kevin M. Doherty
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|