51
|
Liu W, Zhou L, Zhou C, Zhang S, Jing J, Xie L, Sun N, Duan X, Jing W, Liang X, Zhao H, Ye L, Chen Q, Yuan Q. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun 2016; 7:12794. [PMID: 27653144 PMCID: PMC5036163 DOI: 10.1038/ncomms12794] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is an age-related disease that affects millions of people. Growth differentiation factor 11 (GDF11) is a secreted member of the transforming growth factor beta (TGF-β) superfamily. Deletion of Gdf11 has been shown to result in a skeletal anterior-posterior patterning disorder. Here we show a role for GDF11 in bone remodelling. GDF11 treatment leads to bone loss in both young and aged mice. GDF11 inhibits osteoblast differentiation and also stimulates RANKL-induced osteoclastogenesis through Smad2/3 and c-Fos-dependent induction of Nfatc1. Injection of GDF11 impairs bone regeneration in mice and blocking GDF11 function prevents oestrogen-deficiency-induced bone loss and ameliorates age-related osteoporosis. Our data demonstrate that GDF11 is a previously unrecognized regulator of bone remodelling and suggest that GDF11 is a potential target for treatment of osteoporosis.
Collapse
Affiliation(s)
- Weiqing Liu
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liyan Zhou
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenchen Zhou
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shiwen Zhang
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junjun Jing
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liang Xie
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ningyuan Sun
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaobo Duan
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Jing
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xing Liang
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hu Zhao
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
52
|
Van Bortle K, Peterson AJ, Takenaka N, O'Connor MB, Corces VG. CTCF-dependent co-localization of canonical Smad signaling factors at architectural protein binding sites in D. melanogaster. Cell Cycle 2016; 14:2677-87. [PMID: 26125535 DOI: 10.1080/15384101.2015.1053670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) pathways transduce extracellular signals into tissue-specific transcriptional responses. During this process, signaling effector Smad proteins translocate into the nucleus to direct changes in transcription, but how and where they localize to DNA remain important questions. We have mapped Drosophila TGF-β signaling factors Mad, dSmad2, Medea, and Schnurri genome-wide in Kc cells and find that numerous sites for these factors overlap with the architectural protein CTCF. Depletion of CTCF by RNAi results in the disappearance of a subset of Smad sites, suggesting Smad proteins localize to CTCF binding sites in a CTCF-dependent manner. Sensitive Smad binding sites are enriched at low occupancy CTCF peaks within topological domains, rather than at the physical domain boundaries where CTCF may function as an insulator. In response to Decapentaplegic, CTCF binding is not significantly altered, whereas Mad, Medea, and Schnurri are redirected from CTCF to non-CTCF binding sites. These results suggest that CTCF participates in the recruitment of Smad proteins to a subset of genomic sites and in the redistribution of these proteins in response to BMP signaling.
Collapse
|
53
|
Chen S, Feng T, Vujić Spasić M, Altamura S, Breitkopf-Heinlein K, Altenöder J, Weiss TS, Dooley S, Muckenthaler MU. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes. J Biol Chem 2016; 291:13160-74. [PMID: 27129231 DOI: 10.1074/jbc.m115.691543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/15/2022] Open
Abstract
The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels.
Collapse
Affiliation(s)
- Simeng Chen
- From the Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69117 Heidelberg, Germany, the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany, the Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany, and
| | - Teng Feng
- the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Maja Vujić Spasić
- From the Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69117 Heidelberg, Germany, the Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany, and
| | - Sandro Altamura
- From the Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69117 Heidelberg, Germany, the Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany, and
| | - Katja Breitkopf-Heinlein
- the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jutta Altenöder
- the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Thomas S Weiss
- Center for Liver Cell Research, Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, 93053 Regensburg, Germany
| | - Steven Dooley
- the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany,
| | - Martina U Muckenthaler
- From the Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69117 Heidelberg, Germany, the Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany, and
| |
Collapse
|
54
|
Augeri DJ, Langenfeld E, Castle M, Gilleran JA, Langenfeld J. Inhibition of BMP and of TGFβ receptors downregulates expression of XIAP and TAK1 leading to lung cancer cell death. Mol Cancer 2016; 15:27. [PMID: 27048361 PMCID: PMC4822253 DOI: 10.1186/s12943-016-0511-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone morphogenetic proteins (BMP) are embryonic proteins that are part of the transforming growth factor (TGFβ) superfamily, which are aberrantly expressed in many carcinomas. Inhibition of BMP receptors with small molecule inhibitors decreases growth and induces death of lung cancer cells, which involves the downregulation of Id1 and Id3 by a Smad dependent mechanism. Developmentally, BMP and TGFβ signaling utilizes Smad-1/5 independent mechanisms to stabilize the expression of X-linked inhibitor of apoptosis protein (XIAP) and activate TGFβ activated kinase 1 (TAK1), which are known to be potent inhibitors of apoptosis. The role of BMP signaling in regulating XIAP and TAK1 in cancer cells is poorly understood. Furthermore, the interaction between the BMP and TGFβ signaling cascades in regulating the activation of TAK1 in cancer cells has not been elucidated. Methods Feedback regulation between the BMP and TGFβ signaling pathways and their regulation of XIAP, TAK1, and Id1 were examined in lung cancer cells utilizing siRNA and inhibitors targeting BMP type I receptors, inhibitors of BMP and TGFβ type I receptors, and an inhibitor of BMP and TGFβ type I and type II receptors. Results We show that upon inhibition of BMP signaling in lung cancer cells, the TGFβ signaling cascade is activated. Both the BMP and TGFβ pathways activate TAK1, which then increases the expression of Id1. Inhibition of TGFβ signaling increased Id1 expression except when BMP signaling is suppressed, which then causes a dose-related decrease in the expression of Id1. Inhibition of both BMP and TGFβ signaling enhances the downregulation of TAK1. Our data also suggests that the blockade of the BMP type II receptor enhances the downregulation XIAP, which is important in decreasing the activity of TAK1. Knockdown studies demonstrate that both XIAP and TAK1 regulate the survival of lung cancer cells. Conclusions This paper highlights that targeting the BMP and TGFβ type I and type II receptors causes a downregulation of XIAP, TAK1, and Id1 leading to cell death of lung cancer cells. Small molecule inhibitors targeting the BMP and TGFβ receptors represents a potential novel means to treat cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0511-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dave J Augeri
- Rutgers Translational Sciences, Department of Medicinal Chemistry, School of Pharmacy, New Brunswick, NJ, USA
| | - Elaine Langenfeld
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, MEB 536, One Robert Wood Johnson Place, P.O. Box 19, New Brunswick, NJ, 08903-0019, USA
| | - Monica Castle
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, MEB 536, One Robert Wood Johnson Place, P.O. Box 19, New Brunswick, NJ, 08903-0019, USA
| | - John A Gilleran
- Rutgers Translational Sciences, Department of Medicinal Chemistry, School of Pharmacy, New Brunswick, NJ, USA
| | - John Langenfeld
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, MEB 536, One Robert Wood Johnson Place, P.O. Box 19, New Brunswick, NJ, 08903-0019, USA.
| |
Collapse
|
55
|
Amarnath S, Agarwala S. Cell-cycle-dependent TGFβ-BMP antagonism regulates neural tube closure by modulating tight junctions. J Cell Sci 2016; 130:119-131. [PMID: 27034139 DOI: 10.1242/jcs.179192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/18/2016] [Indexed: 12/15/2022] Open
Abstract
Many organs form by invaginating and rolling flat epithelial cell sheets into tubes. Invagination of the ventral midline of the neural plate forms the median hinge point (MHP), an event that elevates the neural folds and is essential for neural tube closure (NTC). MHP formation involves dynamic spatiotemporal modulations of cell shape, but how these are achieved is not understood. Here, we show that cell-cycle-dependent BMP and TGFβ antagonism elicits MHP formation by dynamically regulating interactions between apical (PAR complex) and basolateral (LGL) polarity proteins. TGFβ and BMP-activated receptor (r)-SMADs [phosphorylated SMAD2 or SMAD3 (pSMAD2,3), or phosphorylated SMAD1, SMAD5 or SMAD8 (pSMAD1,5,8)] undergo cell-cycle-dependent modulations and nucleo-cytosolic shuttling along the apicobasal axis of the neural plate. Non-canonical TGFβ and BMP activity in the cytosol determines whether pSMAD2,3 or pSMAD1,5,8 associates with the tight junction (PAR complex) or with LGL, and whether cell shape changes can occur at the MHP. Thus, the interactions of BMP and TGFβ with polarity proteins dynamically modulate MHP formation by regulating r-SMAD competition for tight junctions and r-SMAD sequestration by LGL.
Collapse
Affiliation(s)
- Smita Amarnath
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Seema Agarwala
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA .,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.,Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
56
|
Kokabu S, Tsuchiya-Hirata S, Fukushima H, Sugiyama G, Lowery JW, Katagiri T, Jimi E. Inhibition of bone morphogenetic protein-induced osteoblast differentiation. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
Chai N, Li WX, Wang J, Wang ZX, Yang SM, Wu JW. Structural basis for the Smad5 MH1 domain to recognize different DNA sequences. Nucleic Acids Res 2015; 43:9051-64. [PMID: 26304548 PMCID: PMC4605309 DOI: 10.1093/nar/gkv848] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022] Open
Abstract
Smad proteins are important intracellular mediators of TGF-β signalling, which transmit signals directly from cell surface receptors to the nucleus. The MH1 domain of Smad plays a key role in DNA recognition. Two types of DNA sequence were identified as Smad binding motifs: the Smad binding element (SBE) and the GC-rich sequence. Here we report the first crystal structure of the Smad5 MH1 domain in complex with the GC-rich sequence. Compared with the Smad5-MH1/SBE complex structure, the Smad5 MH1 domain contacts the GC-rich site with the same β-hairpin, but the detailed interaction modes are different. Conserved β-hairpin residues make base specific contacts with the minimal GC-rich site, 5′-GGC-3′. The assembly of Smad5-MH1 on the GC-rich DNA also results in distinct DNA conformational changes. Moreover, the crystal structure of Smad5-MH1 in complex with a composite DNA sequence demonstrates that the MH1 domain is targeted to each binding site (GC-rich or SBE) with modular binding modes, and the length of the DNA spacer affects the MH1 assembly. In conclusion, our work provides the structural basis for the recognition and binding specificity of the Smad MH1 domain with the DNA targets.
Collapse
Affiliation(s)
- Nan Chai
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wan-Xin Li
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jue Wang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi-Xin Wang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shi-Ming Yang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jia-Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
58
|
Andrzejewski D, Brown ML, Ungerleider N, Burnside A, Schneyer AL. Activins A and B Regulate Fate-Determining Gene Expression in Islet Cell Lines and Islet Cells From Male Mice. Endocrinology 2015; 156:2440-50. [PMID: 25961841 DOI: 10.1210/en.2015-1167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGFβ superfamily ligands, receptors, and second messengers, including activins A and B, have been identified in pancreatic islets and proposed to have important roles regulating development, proliferation, and function. We previously demonstrated that Fstl3 (an antagonist of activin activity) null mice have larger islets with β-cell hyperplasia and improved glucose tolerance and insulin sensitivity in the absence of altered β-cell proliferation. This suggested the hypothesis that increased activin signaling influences β-cell expansion by destabilizing the α-cell phenotype and promoting transdifferentiation to β-cells. We tested the first part of this hypothesis by treating α- and β-cell lines and sorted mouse islet cells with activin and related ligands. Treatment of the αTC1-6 α cell line with activins A or B suppressed critical α-cell gene expression, including Arx, glucagon, and MafB while also enhancing β-cell gene expression. In INS-1E β-cells, activin A treatment induced a significant increase in Pax4 (a fate determining β-cell gene) and insulin expression. In sorted primary islet cells, α-cell gene expression was again suppressed by activin treatment in α-cells, whereas Pax4 was enhanced in β-cells. Activin treatment in both cell lines and primary cells resulted in phosphorylated mothers against decapentaplegic-2 phosphorylation. Finally, treatment of αTC1-6 cells with activins A or B significantly inhibited proliferation. These results support the hypothesis that activin signaling destabilized the α-cell phenotype while promoting a β-cell fate. Moreover, these results support a model in which the β-cell expansion observed in Fstl3 null mice may be due, at least in part, to enhanced α- to β-cell transdifferentiation.
Collapse
Affiliation(s)
- Danielle Andrzejewski
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Melissa L Brown
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Nathan Ungerleider
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Amy Burnside
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Alan L Schneyer
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
59
|
hBMP-2 and hTGF-β1 expressed in implanted BMSCs synergistically promote the repairing of segmental bone defects. J Orthop Sci 2015; 20:717-27. [PMID: 25814267 DOI: 10.1007/s00776-015-0714-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/05/2015] [Indexed: 02/09/2023]
Abstract
OBJECTIVE To evaluate the effects of co-expressing hBMP-2 and hTGF-β1 in BMSCs (bone marrow-derived mesenchymal stem cells) on the repairing process of radial segmental defects in rats. METHODS BMSCs were infected with a high titer recombinant adenovirus carrying hTGF-βl and/or hBMP-2 genes. Expression of exogenous genes in BMSCs was confirmed by RT-PCR and ELISA assays. In vitro effects of exogenous genes were assessed by MTT and ALP activity tests. A left radial defect model was created using 120 SD rats. Genetically modified or unmodified BMSCs were implanted with collagen sponge scaffolds into the 5-mm radial defect. The bone repair process was systematically monitored and evaluated by X-ray examinations, gross anatomic examinations, histological analyses, and biomechanical tests. RESULTS Expression of hBMP-2 and hTGF-β1 showed synergistic effects on promoting BMSC proliferation and enhancing ALP activity in vitro. Bone repair assays showed that hBMP-2 and hTGF-β1 promoted the production of chondrocytes and osteoblasts. Implanted BMSCs transfected with both hBMP-2 and hTGF-β1 led to the best bone repair outcome. CONCLUSION hBMP-2 and hTGF-β1 can synergistically improve the bone repair process. Our results suggest a potential clinical value of combining hBMP-2 and hTGF-β1 in repairing bone defects.
Collapse
|
60
|
Wang W, Rigueur D, Lyons KM. TGFβ signaling in cartilage development and maintenance. ACTA ACUST UNITED AC 2015; 102:37-51. [PMID: 24677722 DOI: 10.1002/bdrc.21058] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome-wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, California, 90095
| | | | | |
Collapse
|
61
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|
62
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to discuss the involvement of bone and morphogenetic proteins (BMPs) in the control of muscle mass. RECENT FINDINGS The transforming growth factor-beta (TGFβ) superfamily comprises a large number of secreted proteins that regulate a variety of fundamental biological processes. Sequence similarities define two ligand subfamilies: the TGFβ/Activin subfamily and the BMP subfamily. Within the members of TGFβ subfamily, myostatin emerged as the most critical ligand that affects muscle size and function. Indeed, mutations that inactivate Myostatin lead to important muscle growth in animals and humans. However, recent findings have increased the complexity of the TGFβ superfamily. Indeed, two independent groups have shown that BMP pathway, acting through Smad1/5/8, is the fundamental hypertrophic signal and dominates Myostatin signalling. Moreover, BMP-Smad1/5/8 negatively regulates a novel ubiquitin ligase, named MUSA1 that is required for muscle loss. This article reviews the rapid progress made in the last year regarding the signalling downstream TGFβ superfamily and its involvement in the homeostasis of adult muscle fibres. SUMMARY The recent insights gained into the interplay of TGFβ and BMP signalling in muscle have challenged our pre-existing ideas of how the adult skeletal muscle phenotype is regulated in health and disease.
Collapse
Affiliation(s)
- Roberta Sartori
- aDulbecco Telethon Institute, Venetian Institute of Molecular Medicine bDepartment of Biomedical Sciences, University of Padova, Padova cTelethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy
| | | |
Collapse
|
63
|
Hayata T, Ezura Y, Asashima M, Nishinakamura R, Noda M, Noda M. Dullard/Ctdnep1 regulates endochondral ossification via suppression of TGF-β signaling. J Bone Miner Res 2015; 30:318-29. [PMID: 25155999 DOI: 10.1002/jbmr.2343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 08/10/2014] [Accepted: 08/17/2014] [Indexed: 01/04/2023]
Abstract
Transforming growth factor (TGF)-β signaling plays critical roles during skeletal development and its excessive signaling causes genetic diseases of connective tissues including Marfan syndrome and acromelic dysplasia. However, the mechanisms underlying prevention of excessive TGF-β signaling in skeletogenesis remain unclear. We previously reported that Dullard/Ctdnep1 encoding a small phosphatase is required for nephron maintenance after birth through suppression of bone morphogenetic protein (BMP) signaling. Unexpectedly, we found that Dullard is involved in suppression of TGF-β signaling during endochondral ossification. Conditional Dullard-deficient mice in the limb and sternum mesenchyme by Prx1-Cre displayed the impaired growth and ossification of skeletal elements leading to postnatal lethality. Dullard was expressed in early cartilage condensations and later in growth plate chondrocytes. The tibia growth plate of newborn Dullard mutant mice showed reduction of the proliferative and hypertrophic chondrocyte layers. The sternum showed deformity of cartilage primordia and delayed hypertrophy. Micromass culture experiments revealed that Dullard deficiency enhanced early cartilage condensation and differentiation, but suppressed mineralized hypertrophic chondrocyte differentiation, which was reversed by treatment with TGF-β type I receptor kinase blocker LY-364947. Dullard deficiency induced upregulation of protein levels of both phospho-Smad2/3 and total Smad2/3 in micromass cultures without increase of Smad2/3 mRNA levels, suggesting that Dullard may affect Smad2/3 protein stability. The phospho-Smad2/3 level was also upregulated in perichondrium and hypertrophic chondrocytes in Dullard-deficient embryos. Response to TGF-β signaling was enhanced in Dullard-deficient primary chondrocyte cultures at late, but not early, time point. Moreover, perinatal administration of LY-364947 ameliorated the sternum deformity in vivo. Thus, we identified Dullard as a new negative regulator of TGF-β signaling in endochondral ossification.
Collapse
Affiliation(s)
- Tadayoshi Hayata
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
64
|
Flanders KC, Heger CD, Conway C, Tang B, Sato M, Dengler SL, Goldsmith PK, Hewitt SM, Wakefield LM. Brightfield proximity ligation assay reveals both canonical and mixed transforming growth factor-β/bone morphogenetic protein Smad signaling complexes in tissue sections. J Histochem Cytochem 2014; 62:846-63. [PMID: 25141865 PMCID: PMC4244299 DOI: 10.1369/0022155414550163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/18/2014] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is an important regulator of cellular homeostasis and disease pathogenesis. Canonical TGF-β signaling occurs through Smad2/3-Smad4 complexes; however, recent in vitro studies suggest that elevated levels of TGF-β may activate a novel mixed Smad complex (Smad2/3-Smad1/5/9), which is required for some of the pro-oncogenic activities of TGF-β. To determine if mixed Smad complexes are evident in vivo, we developed antibodies that can be used with a proximity ligation assay to detect either canonical or mixed Smad complexes in formalin-fixed paraffin-embedded sections. We demonstrate high expression of mixed Smad complexes in the tissues from mice genetically engineered to express high levels of TGF-β1. Mixed Smad complexes were also prominent in 15-16 day gestation mouse embryos and in breast cancer xenografts, suggesting important roles in embryonic development and tumorigenesis. In contrast, mixed Smad complexes were expressed at extremely low levels in normal adult mouse tissue, where canonical complexes were correspondingly higher. We show that this methodology can be used in archival patient samples and tissue microarrays, and we have developed an algorithm to quantitate the brightfield read-out. These methods will allow quantitative analysis of cell type-specific Smad signaling pathways in physiological and pathological processes.
Collapse
Affiliation(s)
- Kathleen C Flanders
- Laboratory of Cancer Biology and Genetics (KCF, BT, MS, SLD, LMW), Center for Cancer Research, National Cancer Institute, Bethesda, MDAntibody and Protein Purification Unit (CDH, PKG), Center for Cancer Research, National Cancer Institute, Bethesda, MDLaboratory of Pathology (CC, SMH), Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Christopher D Heger
- Laboratory of Cancer Biology and Genetics (KCF, BT, MS, SLD, LMW), Center for Cancer Research, National Cancer Institute, Bethesda, MDAntibody and Protein Purification Unit (CDH, PKG), Center for Cancer Research, National Cancer Institute, Bethesda, MDLaboratory of Pathology (CC, SMH), Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Catherine Conway
- Laboratory of Cancer Biology and Genetics (KCF, BT, MS, SLD, LMW), Center for Cancer Research, National Cancer Institute, Bethesda, MDAntibody and Protein Purification Unit (CDH, PKG), Center for Cancer Research, National Cancer Institute, Bethesda, MDLaboratory of Pathology (CC, SMH), Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics (KCF, BT, MS, SLD, LMW), Center for Cancer Research, National Cancer Institute, Bethesda, MDAntibody and Protein Purification Unit (CDH, PKG), Center for Cancer Research, National Cancer Institute, Bethesda, MDLaboratory of Pathology (CC, SMH), Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Misako Sato
- Laboratory of Cancer Biology and Genetics (KCF, BT, MS, SLD, LMW), Center for Cancer Research, National Cancer Institute, Bethesda, MDAntibody and Protein Purification Unit (CDH, PKG), Center for Cancer Research, National Cancer Institute, Bethesda, MDLaboratory of Pathology (CC, SMH), Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Samuel L Dengler
- Laboratory of Cancer Biology and Genetics (KCF, BT, MS, SLD, LMW), Center for Cancer Research, National Cancer Institute, Bethesda, MDAntibody and Protein Purification Unit (CDH, PKG), Center for Cancer Research, National Cancer Institute, Bethesda, MDLaboratory of Pathology (CC, SMH), Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Paul K Goldsmith
- Laboratory of Cancer Biology and Genetics (KCF, BT, MS, SLD, LMW), Center for Cancer Research, National Cancer Institute, Bethesda, MDAntibody and Protein Purification Unit (CDH, PKG), Center for Cancer Research, National Cancer Institute, Bethesda, MDLaboratory of Pathology (CC, SMH), Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Stephen M Hewitt
- Laboratory of Cancer Biology and Genetics (KCF, BT, MS, SLD, LMW), Center for Cancer Research, National Cancer Institute, Bethesda, MDAntibody and Protein Purification Unit (CDH, PKG), Center for Cancer Research, National Cancer Institute, Bethesda, MDLaboratory of Pathology (CC, SMH), Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics (KCF, BT, MS, SLD, LMW), Center for Cancer Research, National Cancer Institute, Bethesda, MDAntibody and Protein Purification Unit (CDH, PKG), Center for Cancer Research, National Cancer Institute, Bethesda, MDLaboratory of Pathology (CC, SMH), Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
65
|
Yang G, Yuan G, Ye W, Cho KWY, Chen Y. An atypical canonical bone morphogenetic protein (BMP) signaling pathway regulates Msh homeobox 1 (Msx1) expression during odontogenesis. J Biol Chem 2014; 289:31492-502. [PMID: 25274628 DOI: 10.1074/jbc.m114.600064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays an essential role in early tooth development, evidenced by disruption of BMP signaling leading to an early arrested tooth development. Despite being a central mediator of BMP canonical signaling pathway, inactivation of Smad4 in dental mesenchyme does not result in early developmental defects. In the current study, we investigated the mechanism of receptor-activated Smads (R-Smads) and Smad4 in the regulation of the odontogenic gene Msx1 expression in the dental mesenchyme. We showed that the canonical BMP signaling is not operating in the early developing tooth, as assessed by failed activation of the BRE-Gal transgenic allele and the absence of phospho-(p)Smad1/5/8-Smad4 complexes. The absence of pSmad1/5/8-Smad4 complex appeared to be the consequence of saturation of Smad4 by pSmad2/3 in the dental mesenchyme as knockdown of Smad2/3 or overexpression of Smad4 led to the formation of pSmad1/5/8-Smad4 complexes and activation of canonical BMP signaling in dental mesenchymal cells. We showed that Smad1/5 but not Smad4 are required for BMP-induced expression of Msx1 in dental mesenchymal cells. We further presented evidence that in the absence of Smad4, BMPs are still able to induce pSmad1/5/8 nuclear translocation and their binding to the Msx1 promoter directly in dental mesenchymal cells. Our results demonstrate the functional operation of an atypical canonical BMP signaling (Smad4-independent and Smad1/5/8-dependent) pathway in the dental mesenchyme during early odontogenesis, which may have general implication in the development of other organs.
Collapse
Affiliation(s)
- Guobin Yang
- From the State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China, the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, and
| | - Guohua Yuan
- From the State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China, the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, and
| | - Wenduo Ye
- the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, and
| | - Ken W Y Cho
- the Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92697
| | - YiPing Chen
- the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, and
| |
Collapse
|
66
|
Sartori R, Gregorevic P, Sandri M. TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 2014; 25:464-71. [PMID: 25042839 DOI: 10.1016/j.tem.2014.06.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/07/2023]
Abstract
The transforming growth factor beta (TGFβ) superfamily comprises a large number of secreted proteins that regulate various fundamental biological processes underlying embryonic development and the postnatal regulation of many cell types and organs. Sequence similarities define two ligand subfamilies: the TGFβ/activin subfamily and the bone morphogenetic protein (BMP) subfamily. The discovery that myostatin, a member of the TGFβ/activin subfamily, negatively controls muscle mass attracted attention to this pathway. However, recent findings of a positive role for BMP-mediated signaling in muscle have challenged the model of how the TGFβ network regulates skeletal muscle phenotype. This review illustrates how this complex network integrates crosstalk among members of the TGFβ superfamily and downstream signaling elements to regulate muscle in health and disease.
Collapse
Affiliation(s)
- Roberta Sartori
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Paul Gregorevic
- Division of Cell Signaling and Metabolism, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Marco Sandri
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy.
| |
Collapse
|
67
|
Peterson AJ, O'Connor MB. Strategies for exploring TGF-β signaling in Drosophila. Methods 2014; 68:183-93. [PMID: 24680699 PMCID: PMC4057889 DOI: 10.1016/j.ymeth.2014.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
The TGF-β pathway is an evolutionarily conserved signal transduction module that mediates diverse biological processes in animals. In Drosophila, both the BMP and Activin branches are required for viability. Studies rooted in classical and molecular genetic approaches continue to uncover new developmental roles for TGF-β signaling. We present an overview of the secreted ligands, transmembrane receptors and cellular Smad transducer proteins that compose the core pathway in Drosophila. An assortment of tools have been developed to conduct tissue-specific loss- and gain-of-function experiments for these pathway components. We discuss the deployment of these reagents, with an emphasis on appropriate usage and limitations of the available tools. Throughout, we note reagents that are in need of further improvement or development, and signaling features requiring further study. A general theme is that comparison of phenotypes for ligands, receptors, and Smads can be used to map tissue interactions, and to separate canonical and non-canonical signaling activities. Core TGF-β signaling components are subject to multiple layers of regulation, and are coupled to context-specific inputs and outputs. In addition to fleshing out how TGF-β signaling serves the fruit fly, we anticipate that future studies will uncover new regulatory nodes and modes and will continue to advance paradigms for how TGF-β signaling regulates general developmental processes.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
68
|
Kirmizitas A, Gillis WQ, Zhu H, Thomsen GH. Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. Dev Biol 2014; 392:358-67. [PMID: 24858484 DOI: 10.1016/j.ydbio.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/27/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022]
Abstract
Smad proteins convey canonical intracellular signals for activated receptors in the TGFβ superfamily, but the activity of Smads and their impact on target genes are further regulated by a wide variety of cofactors and partner proteins. We have identified a new Smad1 partner, a GTPase named Gtpbp2 that is a distant relative of the translation factor eEf1a. Gtpbp2 affects canonical signaling in the BMP branch of the TGFβ superfamily, as morpholino knockdown of Gtpbp2 decreases, and overexpression of Gtpbp2 enhances, animal cap responses to BMP4. During Xenopus development, gtpbp2 transcripts are maternally expressed and localized to the egg animal pole, and partitioned into the nascent ectodermal and mesodermal cells during cleavage and early gastrulation stages. Subsequently, gtpbp2 is expressed in the neural folds, and in early tadpoles undergoing organogenesis gtpbp2 is expressed prominently in the brain, eyes, somites, ventral blood island and branchial arches. Consistent with its expression, morpholino knockdown of Gtpbp2 causes defects in ventral-posterior germ layer patterning, gastrulation and tadpole morphology. Overexpressed Gtpbp2 can induce ventral-posterior marker genes and localize to cell nuclei in Xenopus animal caps, highlighting its role in regulating BMP signaling in the early embryo. Here, we introduce this large GTPase as a novel factor in BMP signaling and ventral-posterior patterning.
Collapse
Affiliation(s)
- Arif Kirmizitas
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - William Q Gillis
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Haitao Zhu
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
69
|
Kopf J, Paarmann P, Hiepen C, Horbelt D, Knaus P. BMP growth factor signaling in a biomechanical context. Biofactors 2014; 40:171-87. [PMID: 24123658 DOI: 10.1002/biof.1137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/07/2013] [Accepted: 08/01/2013] [Indexed: 01/10/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) are members of the transforming growth factor-β superfamily of secreted polypeptide growth factors and are important regulators in a multitude of cellular processes. To ensure the precise and balanced propagation of their pleiotropic signaling responses, BMPs and their corresponding signaling pathways are subject to tight control. A large variety of regulatory mechanisms throughout different biological levels combines into a complex network and provides the basis for physiological BMP function. This regulatory network not only includes biochemical factors but also mechanical cues. Both BMP signaling and mechanotransduction pathways are tightly interconnected and represent an elaborate signaling network active during development but also during organ homeostasis. Moreover, its dysregulation is associated with a number of human pathologies. A more detailed understanding of this crosstalk in respect to molecular interactions will be indispensable in the future, in particular to understand BMP-related diseases as well as with regard to an efficient clinical application of BMP ligands.
Collapse
Affiliation(s)
- Jessica Kopf
- Institute for Chemistry/Biochemistry, Freie Universität, Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
70
|
Upton PD, Davies RJ, Tajsic T, Morrell NW. Transforming growth factor-β(1) represses bone morphogenetic protein-mediated Smad signaling in pulmonary artery smooth muscle cells via Smad3. Am J Respir Cell Mol Biol 2014; 49:1135-45. [PMID: 23937428 DOI: 10.1165/rcmb.2012-0470oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies of pulmonary arterial hypertension (PAH) have implicated excessive transforming growth factor (TGF)-β1 signaling and reduced bone morphogenetic protein (BMP) signaling in the disease pathogenesis. Reduced BMP signaling in pulmonary artery smooth muscle cells (PASMCs) from patients with heritable PAH is a consequence of germline mutations in the BMP type II receptor (BMPR-II). We sought to establish whether the TGF-β1 and BMP4 pathways interact in PASMCs, and if this is altered in cells with BMPR-II mutations. Control PASMCs or from patients with PAH harboring BMPR-II mutations were treated with BMP4, TGF-β1, or cotreated with both ligands. Signaling was assessed by examination of Smad phosphorylation, luciferase reporters, and the transcription of BMP4 or TGF-β1-responsive genes. TGF-β1 attenuated BMP4-mediated inhibitors of differentiation 1/2 induction and abolished the response in BMPR-II mutant PASMCs, whereas BMP4 did not alter TGF-β1-mediated transcription. Activin-like kinase 5 inhibition blocked this effect, whereas cycloheximide or pharmacological inhibitors of TGF-β-activated kinase 1, extracellular signal-regulated kinase 1/2, or p38 mitogen-activated protein kinase were ineffective. BMP4 and TGF-β1 cotreatment did not alter the activation or nuclear translocation of their respective Smad signaling proteins. Small interfering RNA for Smad3, but not Smad2, Smad6, or Smad7, reversed the inhibition by TGF-β1. In addition, TGF-β-activated kinase 1 inhibition blocked Smad3 phosphorylation, implying that C-terminal Smad3 phosphorylation is not required for the inhibition of BMP4 signaling by TGF-β1. TGF-β1 reduces BMP4 signaling in PASMCs, a response that is exacerbated on the background of reduced BMP responsiveness due to BMPR-II mutations. These data provide a rationale for therapeutic inhibition of TGF-β1 signaling in PAH.
Collapse
Affiliation(s)
- Paul D Upton
- 1 Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
71
|
Vizán P, Miller DSJ, Gori I, Das D, Schmierer B, Hill CS. Controlling long-term signaling: receptor dynamics determine attenuation and refractory behavior of the TGF-β pathway. Sci Signal 2013; 6:ra106. [PMID: 24327760 DOI: 10.1126/scisignal.2004416] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the complex dynamics of growth factor signaling requires both mechanistic and kinetic information. Although signaling dynamics have been studied for pathways downstream of receptor tyrosine kinases and G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors, they have not been investigated for the transforming growth factor-β (TGF-β) superfamily pathways. Using an integrative experimental and mathematical modeling approach, we dissected the dynamic behavior of the TGF-β to Smad pathway, which is mediated by type I and type II receptor serine/threonine kinases, in response to acute, chronic, and repeated ligand stimulations. TGF-β exposure produced a transient response that attenuated over time, resulting in desensitized cells that were refractory to further acute stimulation. This loss of signaling competence depended on ligand binding, but not on receptor activity, and was restored only after the ligand had been depleted. Furthermore, TGF-β binding triggered the rapid depletion of signaling-competent receptors from the cell surface, with the type I and type II receptors exhibiting different degradation and trafficking kinetics. A computational model of TGF-β signal transduction from the membrane to the nucleus that incorporates our experimental findings predicts that autocrine signaling, such as that associated with tumorigenesis, severely compromises the TGF-β response, which we confirmed experimentally. Thus, we have shown that the long-term signaling behavior of the TGF-β pathway is determined by receptor dynamics, does not require TGF-β-induced gene expression, and influences context-dependent responses in vivo.
Collapse
Affiliation(s)
- Pedro Vizán
- 1Developmental Signalling Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | |
Collapse
|
72
|
Brady K, Dickinson SC, Guillot PV, Polak J, Blom AW, Kafienah W, Hollander AP. Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis. Stem Cells Dev 2013; 23:541-54. [PMID: 24172175 DOI: 10.1089/scd.2013.0301] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cartilage injuries and osteoarthritis are leading causes of disability in developed countries. The regeneration of damaged articular cartilage using cell transplantation or tissue engineering holds much promise but requires the identification of an appropriate cell source with a high proliferative propensity and consistent chondrogenic capacity. Human fetal mesenchymal stem cells (MSCs) have been isolated from a range of perinatal tissues, including first-trimester bone marrow, and have demonstrated enhanced expansion and differentiation potential. However, their ability to form mature chondrocytes for use in cartilage tissue engineering has not been clearly established. Here, we compare the chondrogenic potential of human MSCs isolated from fetal and adult bone marrow and show distinct differences in their responsiveness to specific growth factors. Transforming growth factor beta 3 (TGFβ3) induced chondrogenesis in adult but not fetal MSCs. In contrast, bone morphogenetic protein 2 (BMP2) induced chondrogenesis in fetal but not adult MSCs. When fetal MSCs co-stimulated with BMP2 and TGFβ3 were used for cartilage tissue engineering, they generated tissue with type II collagen and proteoglycan content comparable to adult MSCs treated with TGFβ3 alone. Investigation of the TGFβ/BMP signaling pathway showed that TGFβ3 induced phosphorylation of SMAD3 in adult but not fetal MSCs. These findings demonstrate that the initiation of chondrogenesis is modulated by distinct signaling mechanisms in fetal and adult MSCs. This study establishes the feasibility of using fetal MSCs in cartilage repair applications and proposes their potential as an in vitro system for modeling chondrogenic differentiation and skeletal development studies.
Collapse
Affiliation(s)
- Kyla Brady
- 1 Faculty of Medical and Veterinary Sciences, School of Cellular and Molecular Medicine, University of Bristol , Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
73
|
Winbanks CE, Chen JL, Qian H, Liu Y, Bernardo BC, Beyer C, Watt KI, Thomson RE, Connor T, Turner BJ, McMullen JR, Larsson L, McGee SL, Harrison CA, Gregorevic P. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. ACTA ACUST UNITED AC 2013; 203:345-57. [PMID: 24145169 PMCID: PMC3812980 DOI: 10.1083/jcb.201211134] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The BMP signaling pathway promotes muscle growth and inhibits muscle wasting via SMAD1/5-dependent signaling. Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders.
Collapse
Affiliation(s)
- Catherine E Winbanks
- Division of Cell Signaling and Metabolism, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
MicroRNA-155 controls RB phosphorylation in normal and malignant B lymphocytes via the noncanonical TGF-β1/SMAD5 signaling module. Blood 2013; 123:86-93. [PMID: 24136167 DOI: 10.1182/blood-2013-07-515254] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-155 (miR-155) plays pleiotropic roles in the biology of normal and malignant B lymphocytes, including the modulation of the transforming growth factor β (TGF-β) pathway via the targeting of SMAD5. However, the extent of the miR-155-mediated disruption of the TGF-β1/SMAD5 axis remains to be elucidated. To address this issue, we used the miR-155 knockout (KO) mouse and diffuse large B-cell lymphoma (DLBCL) cell lines ectopically expressing miR-155. In the DLBCL models, expression of miR-155 blocked TGF-β1-mediated activation of the retinoblastoma protein (RB), decreasing the abundance of the inhibitory pRB-E2F1 complex and limiting G0/G1 arrest. Genetic knockdown of SMAD5, p15, or p21 recapitulated these effects, establishing a circuitry whereby the targeting of SMAD5 by miR-155 blunts the TGF-β1-induced transcription of p15 and p21, thus sustaining RB phosphorylation and inactivity. Next, we demonstrated that SMAD5 levels are elevated in mature B lymphocytes from the miR-155 KO mice, which display a heightened sensitivity to TGF-β1 characterized by suppression of RB phosphorylation and more pronounced G0/G1 cell cycle arrest. Our findings suggest that a miR-155-mediated perturbation of the RB/E2F axis may play a role in DLBCL pathogenesis, and contribute to the reduced number of germinal center B cells and impaired T cell-dependent antibody response found in the miR-155 KO mice.
Collapse
|
75
|
Maurya VK, Jha RK, Kumar V, Joshi A, Chadchan S, Mohan JJ, Laloraya M. Transforming growth factor-beta 1 (TGF-B1) liberation from its latent complex during embryo implantation and its regulation by estradiol in mouse. Biol Reprod 2013; 89:84. [PMID: 23926286 DOI: 10.1095/biolreprod.112.106542] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transforming growth factor-beta (TGF-B) plays an important role in embryo implantation; however, TGF-B requires liberation from its inactive latent forms (i.e., large latent TGF-B complex [LLC] and small latent TGF-B complex [SLC]) to its biologically active (i.e., monomer or dimer) forms in order to act on its receptors (TGF-BRs), which in turn activate SMAD2/3. Activation of TGF-B1 from its latent complexes in the uterus is not yet deciphered. We investigated uterine latent TGF-B1 complex and its biologically active form during implantation, decidualization, and delayed implantation. Our study, utilizing nonreducing SDS-PAGE followed by Western blotting and immunoblotting with TGF-B1, LTBP1, and latency-associated peptide, showed the presence of LLC and SLC in the uterine extracellular matrix and plasma membranous protein fraction during stages of the implantation period. A biologically active form of TGF-B1 (~17-kDa monomer) was highly elevated in the uterine plasma membranous compartment at the peri-implantation stage (implantation and nonimplantation sites). Administration of hydroxychloroquine (an inhibitor of pro-TGF-B processing) at the preimplantation stage was able to block the liberation of biologically active TGF-B1 from its latent complex at the postimplantation stage; as a consequence, the number of implantation sites was reduced at Day 5 (1000 h), as was the number of fetuses at Day 13. The inhibition of TGF-B1 showed reduced levels of phosphorylated SMAD3. Further, the delayed-implantation mouse model showed progesterone and estradiol coordination to release the active TGF-B1 form from its latent complex in the receptive endometrium. This study demonstrates the importance of liberation of biologically active TGF-B1 during the implantation period and its regulation by estradiol.
Collapse
Affiliation(s)
- Vineet Kumar Maurya
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | |
Collapse
|
76
|
Ramel MC, Hill CS. The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Dev Biol 2013; 378:170-82. [PMID: 23499658 PMCID: PMC3899928 DOI: 10.1016/j.ydbio.2013.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/26/2022]
Abstract
In the early zebrafish embryo, a ventral to dorsal gradient of bone morphogenetic protein (BMP) activity is established, which is essential for the specification of cell fates along this axis. To visualise and mechanistically determine how this BMP activity gradient forms, we have used a transgenic zebrafish line that expresses monomeric red fluorescent protein (mRFP) under the control of well-characterised BMP responsive elements. We demonstrate that mRFP expression in this line faithfully reports BMP and GDF signalling at both early and late stages of development. Taking advantage of the unstable nature of mRFP transcripts, we use in situ hybridisation to reveal the dynamic spatio-temporal pattern of BMP activity and establish the timing and sequence of events that lead to the formation of the BMP activity gradient. We show that the BMP transcriptional activity gradient is established between 30% and 40% epiboly stages and that it is preceded by graded mRNA expression of the BMP ligands. Both Dharma and FGF signalling contribute to graded bmp transcription during these early stages and it is subsequently maintained through autocrine BMP signalling. We show that BMP2B protein is also expressed in a gradient as early as blastula stages, but do not find any evidence of diffusion of this BMP to generate the BMP transcriptional activity gradient. Thus, in contrast to diffusion/transport-based models of BMP gradient formation in Drosophila, our results indicate that the establishment of the BMP activity gradient in early zebrafish embryos is determined by graded expression of the BMP ligands.
Collapse
Affiliation(s)
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| |
Collapse
|
77
|
Yang J, Li X, Li Y, Southwood M, Ye L, Long L, Al-Lamki RS, Morrell NW. Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2013; 305:L312-21. [PMID: 23771884 DOI: 10.1152/ajplung.00054.2013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic protein type II receptor (BMPR-II) mutations are responsible for over 70% of cases of heritable pulmonary arterial hypertension (PAH). Loss of BMP signaling promotes pulmonary vascular remodeling via modulation of pulmonary artery smooth muscle cell (PASMC) proliferation. Id proteins (Id1-4) are major downstream transcriptional targets of BMP signaling. However, the impact of BMPR-II mutation on the expression of the range of Id proteins and the contribution of individual Id proteins to abnormal PASMC function remain unclear. Human PASMCs were used to determine the expression of Id proteins (Id1-4) by real-time PCR and immunoblotting. The BMP responses in control cells were compared with PASMCs harboring BMPR-II mutations and cells in which BMPR-II was knocked down by siRNA transfection. Id3 expression in pulmonary vessels was also investigated in BMPR-II mutant mice and in patients with heritable PAH. BMP4 and BMP6, but not BMP9, induced mRNA expression of Id1, Id2, and Id3. The BMP-stimulated induction of Id1 and Id3 was markedly reduced in BMPR-II mutant PASMCs and in control PASMCs following siRNA silencing of BMPR-II. Pulmonary arteries in BMPR-II mutant mice and patients with heritable PAH demonstrated reduced levels of Id3 compared with control subjects. Lentiviral overexpression of Id3 reduced cell cycle progression and inhibited proliferation of PASMCs. Lipopolysaccharide further reduced Id3 expression in mutant PASMCs. In conclusion, Id proteins, and particularly Id1 and Id3, are critical downstream effectors of BMP signaling in PASMCs. Loss of BMPR-II function reduces the induction of Id genes in PASMCs, Id1, and Id3 regulate the proliferation of PASMCs via cell cycle inhibition, an effect that may be exacerbated by inflammatory stimuli.
Collapse
Affiliation(s)
- Jun Yang
- Dept. of Medicine, Level 5, Box 157 Addenbrooke's Hospitals, Hills Rd., Cambridge, CB2 0QQ, UK..
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Malhotra N, Kang J. SMAD regulatory networks construct a balanced immune system. Immunology 2013; 139:1-10. [PMID: 23347175 DOI: 10.1111/imm.12076] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/17/2022] Open
Abstract
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
79
|
Sakaki-Yumoto M, Liu J, Ramalho-Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem 2013; 288:18546-60. [PMID: 23649632 DOI: 10.1074/jbc.m112.446591] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-β/activin signaling. TGF-β and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However, the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We addressed the individual roles of Smad2 and Smad3 in the maintenance of primed pluripotency. We found that Smad2, but not Smad3, is required to maintain the undifferentiated pluripotent state. We defined a Smad2 regulatory circuit in human embryonic stem cells and mouse epiblast stem cells, in which Smad2 acts through binding to regulatory promoter sequences to activate Nanog expression while in parallel repressing autocrine bone morphogenetic protein signaling. Increased autocrine bone morphogenetic protein signaling caused by Smad2 down-regulation leads to cell differentiation toward the trophectoderm, mesoderm, and germ cell lineages. Additionally, induction of Cdx2 expression, as a result of decreased Smad2 expression, leads to repression of Oct4 expression, which, together with the decreased Nanog expression, accelerates the loss of pluripotency. These findings reveal that Smad2 is a unique integrator of transcription and signaling events and is essential for the maintenance of the mouse and human primed pluripotent stem cell state.
Collapse
Affiliation(s)
- Masayo Sakaki-Yumoto
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Program in Cell Biology, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
80
|
Abstract
Much of the focus on the transforming growth factor-β (TGFβ) superfamily in cancer has revolved around the TGFβ ligands themselves. However, it is now becoming apparent that deregulated signalling by many of the other superfamily members also has crucial roles in both the development of tumours and metastasis. Furthermore, these signalling pathways are emerging as plausible therapeutic targets. Their roles in tumorigenesis frequently reflect their function in embryonic development or in adult tissue homeostasis, and their influence extends beyond the tumours themselves, to the tumour microenvironment and more widely to complications of cancer such as cachexia and bone loss.
Collapse
Affiliation(s)
- Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| | | |
Collapse
|
81
|
Abstract
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
82
|
Pereira PNG, Dobreva MP, Maas E, Cornelis FM, Moya IM, Umans L, Verfaillie CM, Camus A, de Sousa Lopes SMC, Huylebroeck D, Zwijsen A. Antagonism of Nodal signaling by BMP/Smad5 prevents ectopic primitive streak formation in the mouse amnion. Development 2012; 139:3343-54. [PMID: 22912414 DOI: 10.1242/dev.075465] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The strength and spatiotemporal activity of Nodal signaling is tightly controlled in early implantation mouse embryos, including by autoregulation and feedback loops, and involves secreted and intracellular antagonists. These control mechanisms, which are established at the extra-embryonic/embryonic interfaces, are essential for anterior-posterior patterning of the epiblast and correct positioning of the primitive streak. Formation of an ectopic primitive streak, or streak expansion, has previously been reported in mutants lacking antagonists that target Nodal signaling. Here, we demonstrate that loss-of-function of a major bone morphogenetic protein (BMP) effector, Smad5, results in formation of an ectopic primitive streak-like structure in mutant amnion accompanied by ectopic Nodal expression. This suggests that BMP/Smad5 signaling contributes to negative regulation of Nodal. In cultured cells, we find that BMP-activated Smad5 antagonizes Nodal signaling by interfering with the Nodal-Smad2/4-Foxh1 autoregulatory pathway through the formation of an unusual BMP4-induced Smad complex containing Smad2 and Smad5. Quantitative expression analysis supports that ectopic Nodal expression in the Smad5 mutant amnion is induced by the Nodal autoregulatory loop and a slow positive-feedback loop. The latter involves BMP4 signaling and also induction of ectopic Wnt3. Ectopic activation of these Nodal feedback loops in the Smad5 mutant amnion results in the eventual formation of an ectopic primitive streak-like structure. We conclude that antagonism of Nodal signaling by BMP/Smad5 signaling prevents primitive streak formation in the amnion of normal mouse embryos.
Collapse
Affiliation(s)
- Paulo N G Pereira
- Laboratory of Developmental Signaling of the VIB11 Center for the Biology of Disease, VIB, and Center for Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|