51
|
Ader F, Villard E, Ledeuil C, Charron P, Richard P. [Genotype-phenotype correlations of pathogenic variants in the FLNC gene]. Med Sci (Paris) 2018; 34 Hors série n°2:39-41. [PMID: 30418145 DOI: 10.1051/medsci/201834s211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Flavie Ader
- Unité Fonctionnelle de Cardiogénétique et Myogénétique, Centre de Génétique, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris, France
| | - Eric Villard
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, UMR_S 1166 and ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Céline Ledeuil
- Unité Fonctionnelle de Cardiogénétique et Myogénétique, Centre de Génétique, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris France
| | - Philippe Charron
- APHP, Centre de référence pour les maladies cardiaques héréditaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique, Centre de Génétique, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris, France
| |
Collapse
|
52
|
Mangum KD, Ferns SJ. A novel familial truncating mutation in the filamin C gene associated with cardiac arrhythmias. Eur J Med Genet 2018; 62:282-285. [PMID: 30118858 DOI: 10.1016/j.ejmg.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/25/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
The authors report for the first time a novel mutation in the FLNC gene associated with cardiac arrhythmias in two half-siblings. The FLNC gene on chromosome 7q32 encodes filamin C, which stabilizes the actin network within the cardiomyocyte. The proband is an 8-year-old asymptomatic patient with frequent premature ventricular contractions noted on serial monitoring. Interestingly, the proband and his half-brother harbored a heterozygous 13 base pair deletion that resulted in a frameshift mutation and introduction of a premature stop codon. Notably, the proband also had a very tragic family history of sudden death in young individuals involving three generations and five family members. Because of their concerning family history and arrhythmias, both siblings underwent off-label implantable cardiac device placement for primary prevention of sudden cardiac death. Whether or not the FLNC mutation is associated with sudden cardiac death requires additional investigation and is beyond the scope of this manuscript. While previous studies have identified several mutations in the FLNC gene associated with dilated and hypertrophic cardiomyopathies, the goal of this study was to report a novel mutation in the FLNC gene that is associated with cardiac arrhythmias. The current study indicates that this mutation may help identify patients at risk for cardiac arrhythmias who would benefit from further cardiac evaluation.
Collapse
Affiliation(s)
- Kevin D Mangum
- University of North Carolina, School of Medicine, Chapel Hill, NC, United States.
| | - Sunita J Ferns
- University of North Carolina, School of Medicine, Chapel Hill, NC, United States; UNC Department of Pediatrics, Chapel Hill, NC, United States
| |
Collapse
|
53
|
Tucker NR, McLellan MA, Hu D, Ye J, Parsons VA, Mills RW, Clauss S, Dolmatova E, Shea MA, Milan DJ, Scott NS, Lindsay M, Lubitz SA, Domian IJ, Stone JR, Lin H, Ellinor PT. Novel Mutation in FLNC (Filamin C) Causes Familial Restrictive Cardiomyopathy. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001780. [PMID: 29212899 DOI: 10.1161/circgenetics.117.001780] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) is a rare cardiomyopathy characterized by impaired diastolic ventricular function resulting in a poor clinical prognosis. Rarely, heritable forms of RCM have been reported, and mutations underlying RCM have been identified in genes that govern the contractile function of the cardiomyocytes. METHODS AND RESULTS We evaluated 8 family members across 4 generations by history, physical examination, electrocardiography, and echocardiography. Affected individuals presented with a pleitropic syndrome of progressive RCM, atrioventricular septal defects, and a high prevalence of atrial fibrillation. Exome sequencing of 5 affected members identified a single novel missense variant in a highly conserved residue of FLNC (filamin C; p.V2297M). FLNC encodes filamin C-a protein that acts as both a scaffold for the assembly and organization of the central contractile unit of striated muscle and also as a mechanosensitive signaling molecule during cell migration and shear stress. Immunohistochemical analysis of FLNC localization in cardiac tissue from an affected family member revealed a diminished localization at the z disk, whereas traditional localization at the intercalated disk was preserved. Stem cell-derived cardiomyocytes mutated to carry the effect allele had diminished contractile activity when compared with controls. CONCLUSION We have identified a novel variant in FLNC as pathogenic variant for familial RCM-a finding that further expands on the genetic basis of this rare and morbid cardiomyopathy.
Collapse
Affiliation(s)
- Nathan R Tucker
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Micheal A McLellan
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Dongjian Hu
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Jiangchuan Ye
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Victoria A Parsons
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Robert W Mills
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Sebastian Clauss
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Elena Dolmatova
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Marisa A Shea
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - David J Milan
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Nandita S Scott
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Mark Lindsay
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Steven A Lubitz
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Ibrahim J Domian
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - James R Stone
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Honghuang Lin
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Patrick T Ellinor
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.).
| |
Collapse
|
54
|
Jokl EJ, Hughes GL, Cracknell T, Pownall ME, Blanco G. Transcriptional upregulation of Bag3, a chaperone-assisted selective autophagy factor, in animal models of KY-deficient hereditary myopathy. Dis Model Mech 2018; 11:dmm033225. [PMID: 29914939 PMCID: PMC6078408 DOI: 10.1242/dmm.033225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
The importance of kyphoscoliosis peptidase (KY) in skeletal muscle physiology has recently been emphasised by the identification of novel human myopathies associated with KY deficiency. Neither the pathogenic mechanism of KY deficiency nor a specific role for KY in muscle function have been established. However, aberrant localisation of filamin C (FLNC) in muscle fibres has been shown in humans and mice with loss-of-function mutations in the KY gene. FLNC turnover has been proposed to be controlled by chaperone-assisted selective autophagy (CASA), a client-specific and tension-induced pathway that is required for muscle maintenance. Here, we have generated new C2C12 myoblast and zebrafish models of KY deficiency by CRISPR/Cas9 mutagenesis. To obtain insights into the pathogenic mechanism caused by KY deficiency, expression of the co-chaperone BAG3 and other CASA factors was analyzed in the cellular, zebrafish and ky/ky mouse models. Ky-deficient C2C12-derived clones show trends of higher transcription of CASA factors in differentiated myotubes. The ky-deficient zebrafish model (kyyo1/kyyo1 ) lacks overt signs of pathology, but shows significantly increased bag3 and flnca/b expression in embryos and adult muscle. Additionally, kyyo1/kyyo1 embryos challenged by swimming in viscous media show an inability to further increase expression of these factors in contrast with wild-type controls. The ky/ky mouse shows elevated expression of Bag3 in the non-pathological exterior digitorum longus (EDL) and evidence of impaired BAG3 turnover in the pathological soleus. Thus, upregulation of CASA factors appears to be an early and primary molecular hallmark of KY deficiency.
Collapse
Affiliation(s)
- Elliot J Jokl
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gideon L Hughes
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Tobias Cracknell
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Mary E Pownall
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gonzalo Blanco
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
55
|
Baudier J, Jenkins ZA, Robertson SP. The filamin-B–refilin axis – spatiotemporal regulators of the actin-cytoskeleton in development and disease. J Cell Sci 2018; 131:131/8/jcs213959. [DOI: 10.1242/jcs.213959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
During development, cycles of spatiotemporal remodeling of higher-order networks of actin filaments contribute to control cell fate specification and differentiation. Programs for controlling these dynamics are hard-wired into actin-regulatory proteins. The filamin family of actin-binding proteins exert crucial mechanotransduction and signaling functions in tissue morphogenesis. Filamin-B (FLNB) is a key player in chondrocyte progenitor differentiation for endochondral ossification. Biallelic loss-of-function mutations or gain-of-function mutations in FLNB cause two groups of skeletal disorders that can be attributed to either the loss of repressive function on TGF-β signaling or a disruption in mechanosensory properties, respectively. In this Review, we highlight a unique family of vertebrate-specific short-lived filamin-binding proteins, the refilins (refilin-A and refilin-B), that modulate filamin-dependent actin crosslinking properties. Refilins are downstream TGF-β effectors in epithelial cells. Double knockout of both refilin-A and refilin-B in mice results in precocious ossification of some axial skeletal elements, leading to malformations that are similar to those seen in FLNB-deficient mice. Based on these findings, we present a model summarizing the role of refilins in regulating the mechanosensory functions of FLNB during skeletal development. We also discuss the possible contribution of refilins to FLNB-related skeletal pathologies that are associated with gain-of-function mutations.
Collapse
Affiliation(s)
- Jacques Baudier
- Aix Marseille Université, CNRS, IBDM, 13284 Marseille Cedex 07, France
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Campus de Luminy-Case 907, 13288 Marseille Cedex 9, France
| | - Zandra A. Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
56
|
Mercer EJ, Lin YF, Cohen-Gould L, Evans T. Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Dev Biol 2018; 435:41-55. [PMID: 29331499 DOI: 10.1016/j.ydbio.2018.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
Small heat shock proteins are chaperones with variable mechanisms of action. The function of cardiac family member Hspb7 is unknown, despite being identified through GWAS as a potential cardiomyopathy risk gene. We discovered that zebrafish hspb7 mutants display mild focal cardiac fibrosis and sarcomeric abnormalities. Significant mortality was observed in adult hspb7 mutants subjected to exercise stress, demonstrating a genetic and environmental interaction that determines disease outcome. We identified large sarcomeric proteins FilaminC and Titin as Hspb7 binding partners in cardiac cells. Damaged FilaminC undergoes autophagic processing to maintain sarcomeric homeostasis. Loss of Hspb7 in zebrafish or human cardiomyocytes stimulated autophagic pathways and expression of the sister gene encoding Hspb5. Inhibiting autophagy caused FilaminC aggregation in HSPB7 mutant human cardiomyocytes and developmental cardiomyopathy in hspb7 mutant zebrafish embryos. These studies highlight the importance of damage-processing networks in cardiomyocytes, and a previously unrecognized role in this context for Hspb7.
Collapse
Affiliation(s)
- Emily J Mercer
- Department of Surgery, Weill Cornell Medical College, United States
| | - Yi-Fan Lin
- Department of Surgery, Weill Cornell Medical College, United States
| | - Leona Cohen-Gould
- Department of Biochemistry, Weill Cornell Medical College, United States
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, United States.
| |
Collapse
|
57
|
Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. J Muscle Res Cell Motil 2017; 38:303-316. [PMID: 29119312 PMCID: PMC5742121 DOI: 10.1007/s10974-017-9487-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
Abstract
Cardiomyopathies are a diverse group of cardiac disorders with distinct phenotypes, depending on the proteins and pathways affected. A substantial proportion of cardiomyopathies are inherited and those will be the focus of this review article. With the wide application of high-throughput sequencing in the practice of clinical genetics, the roles of novel genes in cardiomyopathies are recognised. Here, we focus on a subgroup of cardiomyopathy genes [TTN, FHL1, CSRP3, FLNC and PLN, coding for Titin, Four and a Half LIM domain 1, Muscle LIM Protein, Filamin C and Phospholamban, respectively], which, despite their diverse biological functions, all have important signalling functions in the heart, suggesting that disturbances in signalling networks can contribute to cardiomyopathies.
Collapse
Affiliation(s)
- Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
58
|
Rossi D, Palmio J, Evilä A, Galli L, Barone V, Caldwell TA, Policke RA, Aldkheil E, Berndsen CE, Wright NT, Malfatti E, Brochier G, Pierantozzi E, Jordanova A, Guergueltcheva V, Romero NB, Hackman P, Eymard B, Udd B, Sorrentino V. A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. PLoS One 2017; 12:e0186642. [PMID: 29073160 PMCID: PMC5657976 DOI: 10.1371/journal.pone.0186642] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022] Open
Abstract
A novel FLNC c.5161delG (p.Gly1722ValfsTer61) mutation was identified in two members of a French family affected by distal myopathy and in one healthy relative. This FLNC c.5161delG mutation is one nucleotide away from a previously reported FLNC mutation (c.5160delC) that was identified in patients and in asymptomatic carriers of three Bulgarian families with distal muscular dystrophy, indicating a low penetrance of the FLNC frameshift mutations. Given these similarities, we believe that the two FLNC mutations alone can be causative of distal myopathy without full penetrance. Moreover, comparative analysis of the clinical manifestations indicates that patients of the French family show an earlier onset and a complete segregation of the disease. As a possible explanation of this, the two French patients also carry a OBSCN c.13330C>T (p.Arg4444Trp) mutation. The p.Arg4444Trp variant is localized within the OBSCN Ig59 domain that, together with Ig58, binds to the ZIg9/ZIg10 domains of titin at Z-disks. Structural and functional studies indicate that this OBSCN p.Arg4444Trp mutation decreases titin binding by ~15-fold. On this line, we suggest that the combination of the OBSCN p.Arg4444Trp variant and of the FLNC c.5161delG mutation, can cooperatively affect myofibril stability and increase the penetrance of muscular dystrophy in the French family.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
| | - Anni Evilä
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Lucia Galli
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Virginia Barone
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Tracy A. Caldwell
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Rachel A. Policke
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Esraa Aldkheil
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Christopher E. Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Edoardo Malfatti
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Albena Jordanova
- Molecular Neurogenomics Group, University of Antwerp, Antwerp, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria
| | | | - Norma Beatriz Romero
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bruno Eymard
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|
59
|
Abstract
Nonischemic dilated cardiomyopathy (DCM) often has a genetic pathogenesis. Because of the large number of genes and alleles attributed to DCM, comprehensive genetic testing encompasses ever-increasing gene panels. Genetic diagnosis can help predict prognosis, especially with regard to arrhythmia risk for certain subtypes. Moreover, cascade genetic testing in family members can identify those who are at risk or with early stage disease, offering the opportunity for early intervention. This review will address diagnosis and management of DCM, including the role of genetic evaluation. We will also overview distinct genetic pathways linked to DCM and their pathogenetic mechanisms. Historically, cardiac morphology has been used to classify cardiomyopathy subtypes. Determining genetic variants is emerging as an additional adjunct to help further refine subtypes of DCM, especially where arrhythmia risk is increased, and ultimately contribute to clinical management.
Collapse
Affiliation(s)
- Elizabeth M McNally
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| | - Luisa Mestroni
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| |
Collapse
|
60
|
Liao WC, Juo LY, Shih YL, Chen YH, Yan YT. HSPB7 prevents cardiac conduction system defect through maintaining intercalated disc integrity. PLoS Genet 2017; 13:e1006984. [PMID: 28827800 PMCID: PMC5587339 DOI: 10.1371/journal.pgen.1006984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/06/2017] [Accepted: 08/17/2017] [Indexed: 01/19/2023] Open
Abstract
HSPB7 is a member of the small heat-shock protein (HSPB) family and is expressed in the cardiomyocytes from cardiogenesis onwards. A dramatic increase in HSPB7 is detected in the heart and blood plasma immediately after myocardial infarction. Additionally, several single-nucleotide polymorphisms of HSPB7 have been identified to be associated with heart failure caused by cardiomyopathy in human patients. Although a recent study has shown that HSPB7 is required for maintaining myofiber structure in skeletal muscle, its molecular and physiological functions in the heart remain unclear. In the present study, we generated a cardiac-specific inducible HSPB7 knockout mouse and demonstrated that the loss of HSPB7 in cardiomyocytes results in rapid heart failure and sudden death. The electrocardiogram showed cardiac arrhythmia with abnormal conduction in the HSPB7 mutant mice before death. In HSPB7 CKO cardiomyocytes, no significant defect was detected in the organization of contractile proteins in sarcomeres, but a severe structural disruption was observed in the intercalated discs. The expression of connexin 43, a gap-junction protein located at the intercalated discs, was downregulated in HSPB7 knockout cardiomyocytes. Mislocalization of desmoplakin, and N-cadherin, the intercalated disc proteins, was also observed in the HSPB7 CKO hearts. Furthermore, filamin C, the interaction protein of HSPB7, was upregulated and aggregated in HSPB7 mutant cardiomyocytes. In conclusion, our findings characterize HSPB7 as an intercalated disc protein and suggest it has an essential role in maintaining intercalated disc integrity and conduction function in the adult heart. The intercalated disc is an indispensable structure that connects neighboring cardiomyocytes. It is also considered to be a single functional unit for cellular electric, mechanical, and signaling communication to maintain cardiomyocyte rigidity and synchrony. Mutation or defect in intercalated disc components usually results in distortions in the structure of intercalated discs and lethal cardiac abnormalities in patients. In this study, we found that the dynamic expression and subcellular location of HSPB7 are highly associated with intercalated disc component protein, N-cadherin, during the assembly and maturation of intercalated discs in cardiomyocytes. To identify the functional role of HSPB7 in the adult heart, we conducted a loss-of-function study of HSPB7 using a gene conditional knockout approach. We found that the loss of HSPB7 quickly results in the disruption of the intercalated disc structure, decreasing the expression of connexin 43 and mislocalization of N-cadherin and desmoplakin, and further inducing arrhythmic sudden death. In conclusion, our mouse model demonstrates that HSPB7 is required to maintain the structure and function of gap-junction complexes and intercalated discs, which has important implications for human heart disease.
Collapse
Affiliation(s)
- Wern-Chir Liao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Liang-Yi Juo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yen-Ling Shih
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
61
|
Transcriptome analysis reveals long intergenic non-coding RNAs involved in skeletal muscle growth and development in pig. Sci Rep 2017; 7:8704. [PMID: 28821716 PMCID: PMC5562803 DOI: 10.1038/s41598-017-07998-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/06/2017] [Indexed: 02/06/2023] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) play essential roles in numerous biological processes and are widely studied. The skeletal muscle is an important tissue that plays an essential role in individual movement ability. However, lincRNAs in pig skeletal muscles are largely undiscovered and their biological functions remain elusive. In this study, we assembled transcriptomes using RNA-seq data published in previous studies of our laboratory group and identified 323 lincRNAs in porcine leg muscle. We found that these lincRNAs have shorter transcript length, fewer exons and lower expression level than protein-coding genes. Gene ontology and pathway analyses indicated that many potential target genes (PTGs) of lincRNAs were involved in skeletal-muscle-related processes, such as muscle contraction and muscle system process. Combined our previous studies, we found a potential regulatory mechanism in which the promoter methylation of lincRNAs can negatively regulate lincRNA expression and then positively regulate PTG expression, which can finally result in abnormal phenotypes of cloned piglets through a certain unknown pathway. This work detailed a number of lincRNAs and their target genes involved in skeletal muscle growth and development and can facilitate future studies on their roles in skeletal muscle growth and development.
Collapse
|
62
|
González-Morales N, Holenka TK, Schöck F. Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion. PLoS Genet 2017; 13:e1006880. [PMID: 28732005 PMCID: PMC5521747 DOI: 10.1371/journal.pgen.1006880] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
Many proteins contribute to the contractile properties of muscles, most notably myosin thick filaments, which are anchored at the M-line, and actin thin filaments, which are anchored at the Z-discs that border each sarcomere. In humans, mutations in the actin-binding protein Filamin-C result in myopathies, but the underlying molecular function is not well understood. Here we show using Drosophila indirect flight muscle that the filamin ortholog Cheerio in conjunction with the giant elastic protein titin plays a crucial role in keeping thin filaments stably anchored at the Z-disc. We identify the filamin domains required for interaction with the titin ortholog Sallimus, and we demonstrate a genetic interaction of filamin with titin and actin. Filamin mutants disrupting the actin- or the titin-binding domain display distinct phenotypes, with Z-discs breaking up in parallel or perpendicularly to the myofibril, respectively. Thus, Z-discs require filamin to withstand the strong contractile forces acting on them. The Z-disc is a macromolecular complex required to attach and stabilize actin thin filaments in the sarcomere, the smallest contractile unit of striated muscles. Mutations in Z-disc-associated proteins typically result in muscle disorders. Dimeric filamin organizes actin filaments, localizes at the Z-disc in vertebrates and causes muscle disorders in humans when mutated. Despite its clinical relevance, the molecular function of filamin in the sarcomere is not well understood. Here we use Drosophila muscles and an array of filamin mutations to address the molecular and cell biological function of filamin in the sarcomere. We show that filamin mainly serves as a Z-disc cohesive element, binding both thin filaments and titin. This configuration enables filamin to act as a bridge between thin filaments and the elastic scaffold protein titin from the adjacent sarcomere, maintaining sarcomere stability during muscle contraction.
Collapse
Affiliation(s)
| | | | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
63
|
Bhat HF, Mir SS, Dar KB, Bhat ZF, Shah RA, Ganai NA. ABC of multifaceted dystrophin glycoprotein complex (DGC). J Cell Physiol 2017; 233:5142-5159. [DOI: 10.1002/jcp.25982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/01/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Hina F. Bhat
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir SKUAST‐KShuhama, SrinagarJammu and KashmirIndia
| | - Saima S. Mir
- Department of BiotechnologyUniversity of KashmirHazratbal, SrinagarJammu and KashmirIndia
| | - Khalid B. Dar
- Department of BiochemistryUniversity of KashmirHazratbal, SrinagarJammu and KashmirIndia
| | - Zuhaib F. Bhat
- Division of Livestock Products and TechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST‐J), R.S. PoraJammuJammu and KashmirIndia
| | - Riaz A. Shah
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir SKUAST‐KShuhama, SrinagarJammu and KashmirIndia
| | - Nazir A. Ganai
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir SKUAST‐KShuhama, SrinagarJammu and KashmirIndia
| |
Collapse
|
64
|
Xie S, Chen L, Zhang X, Liu X, Chen Y, Mo D. An integrated analysis revealed different microRNA-mRNA profiles during skeletal muscle development between Landrace and Lantang pigs. Sci Rep 2017; 7:2516. [PMID: 28566753 PMCID: PMC5451474 DOI: 10.1038/s41598-017-02558-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/13/2017] [Indexed: 11/12/2022] Open
Abstract
Pigs supply vital dietary proteins for human consumption, and their economic value depends largely on muscle production. MicroRNAs are known to play important roles in skeletal muscle development. However, their relationship to distinct muscle production between pig breeds remains unknown. Here, we performed an integrated analysis of microRNA-mRNA expression profiles for Landrace (LR, lean) pigs and the Chinese indigenous Lantang pig (LT, lard-type) during 8 stages of skeletal muscle developmental, including at 35, 49, 63, 77 dpc (days post coitum) and 2, 28, 90, 180 dpn (days postnatal). As differentially expressed-miRNA expression profiles can be well classified into two clusters by PCA analysis, we grouped the embryonic stages as G1 and the postnatal stages as G2. A total of 203 genes were predicted miRNA targets, and a STEM analysis showed distinct expression patterns between G1 and G2 in both breeds based on their transcriptomic data. Furthermore, a STRING analysis predicted interactions between 22 genes and 35 miRNAs, including some crucial myogenic factors and myofibrillar genes. Thus, it can be reasonably speculated that myogenic miRNAs may regulate myofibrillar genes in myofiber formation during embryonic stages and muscle hypertrophy during postnatal stages, leading to distinct differences in muscle production between breeds.
Collapse
Affiliation(s)
- Shuihua Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
- General Station of Animal Husbandry Technology Extension, Department of Agriculture of Guangdong Province, Guangzhou, 510500, Guangdong, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
65
|
Janin A, N'Guyen K, Habib G, Dauphin C, Chanavat V, Bouvagnet P, Eschalier R, Streichenberger N, Chevalier P, Millat G. Truncating mutations on myofibrillar myopathies causing genes as prevalent molecular explanations on patients with dilated cardiomyopathy. Clin Genet 2017; 92:616-623. [PMID: 28436997 DOI: 10.1111/cge.13043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 12/16/2022]
Abstract
Dilated cardiomyopathy (DCM) is one of the leading causes of heart failure with high morbidity and mortality. More than 40 genes have been reported to cause DCM. To provide new insights into the pathophysiology of dilated cardiomyopathy, a next-generation sequencing (NGS) workflow based on a panel of 48 cardiomyopathies-causing genes was used to analyze a cohort of 222 DCM patients. Truncating variants were detected on 63 unrelated DCM cases (28.4%). Most of them were identified, as expected, on TTN (29 DCM probands), but truncating variants were also identified on myofibrillar myopathies causing genes in 17 DCM patients (7.7% of the DCM cohort): 10 variations on FLNC and 7 variations on BAG3 . This study confirms that truncating variants on myofibrillar myopathies causing genes are frequently associated with dilated cardiomyopathies and also suggest that FLNC mutations could be considered as a common cause of dilated cardiomyopathy. Molecular approaches that would allow to detect systematically truncating variants in FLNC and BAG3 into genetic testing should significantly increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy.
Collapse
Affiliation(s)
- A Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,NeuroMyoGen Institute, CNRS UMR 5310 - INSERM U1217, Université de Lyon 1, Lyon, France
| | - K N'Guyen
- Department of Medical Genetics, Timone Hospital, Marseille Teaching Hospital, Marseille, France
| | - G Habib
- Cardiology Department, Timone Hospital, Marseille, France
| | - C Dauphin
- Image Science for Interventional Techniques (ISIT), UMR6284, and CHU Clermont-Ferrand, Cardiology Department, Clermont Université, Université d'Auvergne, Cardio Vascular Interventional Therapy and Imaging (CaVITI), Clermont-Ferrand, France
| | - V Chanavat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,NeuroMyoGen Institute, CNRS UMR 5310 - INSERM U1217, Université de Lyon 1, Lyon, France
| | - P Bouvagnet
- NeuroMyoGen Institute, CNRS UMR 5310 - INSERM U1217, Université de Lyon 1, Lyon, France.,Groupe Hospitalier Est, Hospices Civils de Lyon, Service de Cardiologie C, Lyon, France
| | - R Eschalier
- Image Science for Interventional Techniques (ISIT), UMR6284, and CHU Clermont-Ferrand, Cardiology Department, Clermont Université, Université d'Auvergne, Cardio Vascular Interventional Therapy and Imaging (CaVITI), Clermont-Ferrand, France
| | - N Streichenberger
- NeuroMyoGen Institute, CNRS UMR 5310 - INSERM U1217, Université de Lyon 1, Lyon, France.,Laboratoire d'Anatomo-Cyto-Pathologie, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - P Chevalier
- Hôpital Cardiologique Louis-Pradel, Service de Rythmologie, Bron, France
| | - G Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,NeuroMyoGen Institute, CNRS UMR 5310 - INSERM U1217, Université de Lyon 1, Lyon, France
| |
Collapse
|
66
|
Reimann L, Wiese H, Leber Y, Schwäble AN, Fricke AL, Rohland A, Knapp B, Peikert CD, Drepper F, van der Ven PFM, Radziwill G, Fürst DO, Warscheid B. Myofibrillar Z-discs Are a Protein Phosphorylation Hot Spot with Protein Kinase C (PKCα) Modulating Protein Dynamics. Mol Cell Proteomics 2016; 16:346-367. [PMID: 28028127 DOI: 10.1074/mcp.m116.065425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
The Z-disc is a protein-rich structure critically important for the development and integrity of myofibrils, which are the contractile organelles of cross-striated muscle cells. We here used mouse C2C12 myoblast, which were differentiated into myotubes, followed by electrical pulse stimulation (EPS) to generate contracting myotubes comprising mature Z-discs. Using a quantitative proteomics approach, we found significant changes in the relative abundance of 387 proteins in myoblasts versus differentiated myotubes, reflecting the drastic phenotypic conversion of these cells during myogenesis. Interestingly, EPS of differentiated myotubes to induce Z-disc assembly and maturation resulted in increased levels of proteins involved in ATP synthesis, presumably to fulfill the higher energy demand of contracting myotubes. Because an important role of the Z-disc for signal integration and transduction was recently suggested, its precise phosphorylation landscape further warranted in-depth analysis. We therefore established, by global phosphoproteomics of EPS-treated contracting myotubes, a comprehensive site-resolved protein phosphorylation map of the Z-disc and found that it is a phosphorylation hotspot in skeletal myocytes, underscoring its functions in signaling and disease-related processes. In an illustrative fashion, we analyzed the actin-binding multiadaptor protein filamin C (FLNc), which is essential for Z-disc assembly and maintenance, and found that PKCα phosphorylation at distinct serine residues in its hinge 2 region prevents its cleavage at an adjacent tyrosine residue by calpain 1. Fluorescence recovery after photobleaching experiments indicated that this phosphorylation modulates FLNc dynamics. Moreover, FLNc lacking the cleaved Ig-like domain 24 exhibited remarkably fast kinetics and exceedingly high mobility. Our data set provides research community resource for further identification of kinase-mediated changes in myofibrillar protein interactions, kinetics, and mobility that will greatly advance our understanding of Z-disc dynamics and signaling.
Collapse
Affiliation(s)
- Lena Reimann
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Heike Wiese
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Yvonne Leber
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Anja N Schwäble
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anna L Fricke
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Rohland
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Bettina Knapp
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Peter F M van der Ven
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Gerald Radziwill
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,§BIOSS Centre for Biological Signalling Studies, University of Freiburg
| | - Dieter O Fürst
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Bettina Warscheid
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; .,§BIOSS Centre for Biological Signalling Studies, University of Freiburg
| |
Collapse
|
67
|
Tsui JCC, Lau CPY, Cheung AC, Wong KC, Huang L, Tsui SKW, Kumta SM. Differential expression of filamin B splice variants in giant cell tumor cells. Oncol Rep 2016; 36:3181-3187. [PMID: 27779699 PMCID: PMC5112600 DOI: 10.3892/or.2016.5197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022] Open
Abstract
Giant cell tumor of bone (GCT) is the most commonly reported non-malignant bone tumor in Hong Kong. This kind of tumor usually affects people aged 20–40 years. Also, it is well known for recurrence locally, especially when the tumor cannot be removed completely. Filamins are actin-binding proteins which contain three family members, filamin A, B and C. They are the products of three different genes, FLNA, FLNB and FLNC, which can generate various transcript variants in different cell types. In this study, we focused on the effects of FLNBv2 and FLNBv4 toward GCT cells. The only difference between FLNBv2 and FLNBv4 is that FLNBv4 does not contain hinge 1 region. We found that the relative abundance of FLNBv4 varies among different GCT cell lines while the expression level of FLNBv4 in normal osteoblasts was only marginally detectable. In the functional aspect, overexpression of FLNBv4 led to upregulation of RANKL, OCN, OPG and RUNX2, which are closely related to GCT cell survival and differentiation. Moreover, FLNBv4 can have a negative effect on cell viability of GCT cells when compare with FLNBv2. In conclusion, splicing variants of FLNB are differentially expressed in GCT cells and may play a role in the proliferation and differentiation of tumor cells.
Collapse
Affiliation(s)
- Joseph Chi-Ching Tsui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Carol Po-Ying Lau
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Alex Chun Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Kwok-Chuen Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Lin Huang
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Shekhar Madhukar Kumta
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| |
Collapse
|
68
|
Vasilevska J, De Souza GA, Stensland M, Skrastina D, Zhulenvovs D, Paplausks R, Kurena B, Kozlovska T, Zajakina A. Comparative protein profiling of B16 mouse melanoma cells susceptible and non-susceptible to alphavirus infection: Effect of the tumor microenvironment. Cancer Biol Ther 2016; 17:1035-1050. [PMID: 27636533 DOI: 10.1080/15384047.2016.1219813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alphavirus vectors are promising tools for cancer treatment. However, relevant entry mechanisms and interactions with host cells are still not clearly understood. The first step toward a more effective therapy is the identification of novel intracellular alterations that could be associated with cancer aggressiveness and could affect the therapeutic potential of these vectors. In this study, we observed that alphaviruses efficiently infected B16 mouse melanoma tumors/tumor cells in vivo, whereas their transduction efficiency in B16 cells under in vitro conditions was blocked. Therefore, we further aimed to understand the mechanisms pertaining to the differential transduction efficacy of alphaviruses in B16 tumor cells under varying growth conditions. We hypothesized that the tumor microenvironment might alter gene expression in B16 cells, leading to an up-regulation of the expression of virus-binding receptors or factors associated with virus entry and replication. To test our hypothesis, we performed a proteomics analysis of B16 cells cultured in vitro and of B16 cells isolated from tumors, and we identified 277 differentially regulated proteins. A further in-depth analysis to identify the biological and molecular functions of the detected proteins revealed a set of candidate genes that could affect virus infectivity. Importantly, we observed a decrease in the expression of interferon α (IFN-α) in tumor-isolated cells that resulted in the suppression of several IFN-regulated genes, thereby abrogating host cell antiviral defense. Additionally, differences in the expression of genes that regulate cytoskeletal organization caused significant alterations in cell membrane elasticity. Taken together, our findings demonstrated favorable intracellular conditions for alphavirus transduction/replication that occurred during tumor transformation. These results pave the way for optimizing the development of strategies for the application of alphaviral vectors as a potent cancer therapy.
Collapse
Affiliation(s)
- Jelena Vasilevska
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | | | - Maria Stensland
- b Department of Immunology , Oslo University Hospital , Oslo , Norway
| | - Dace Skrastina
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | - Dmitry Zhulenvovs
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | | | - Baiba Kurena
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | - Tatjana Kozlovska
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | - Anna Zajakina
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| |
Collapse
|
69
|
Congenital dilated cardiomyopathy caused by biallelic mutations in Filamin C. Eur J Hum Genet 2016; 24:1792-1796. [PMID: 27601210 DOI: 10.1038/ejhg.2016.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 11/09/2022] Open
Abstract
In the vast majority of pediatric patients with dilated cardiomyopathy, the specific etiology is unknown. Studies on families with dilated cardiomyopathy have exemplified the role of genetic factors in cardiomyopathy etiology. In this study, we applied whole-exome sequencing to members of a non-consanguineous family affected by a previously unreported congenital dilated cardiomyopathy syndrome necessitating early-onset heart transplant. Exome analysis identified compound heterozygous variants in the FLNC gene. Histological analysis of the cardiac muscle demonstrated marked sarcomeric and myofibrillar abnormalities, and immunohistochemical staining demonstrated the presence of Filamin C aggregates in cardiac myocytes. We conclude that biallelic variants in FLNC can cause congenital dilated cardiomyopathy. As the associated clinical features of affected patients are mild, and can be easily overlooked, testing for FLNC should be considered in children presenting with dilated cardiomyopathy.
Collapse
|
70
|
Evidence for the mechanosensor function of filamin in tissue development. Sci Rep 2016; 6:32798. [PMID: 27597179 PMCID: PMC5011733 DOI: 10.1038/srep32798] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Cells integrate mechanical properties of their surroundings to form multicellular, three-dimensional tissues of appropriate size and spatial organisation. Actin cytoskeleton-linked proteins such as talin, vinculin and filamin function as mechanosensors in cells, but it has yet to be tested whether the mechanosensitivity is important for their function in intact tissues. Here we tested, how filamin mechanosensing contributes to oogenesis in Drosophila. Mutations that require more or less force to open the mechanosensor region demonstrate that filamin mechanosensitivity is important for the maturation of actin-rich ring canals that are essential for Drosophila egg development. The open mutant was more tightly bound to the ring canal structure while the closed mutant dissociated more frequently. Thus, our results show that an appropriate level of mechanical sensitivity is required for filamins’ function and dynamics during Drosophila egg growth and support the structure-based model in which the opening and closing of the mechanosensor region regulates filamin binding to cellular components.
Collapse
|
71
|
Liu CM, Hsieh CL, Shen CN, Lin CC, Shigemura K, Sung SY. Exosomes from the tumor microenvironment as reciprocal regulators that enhance prostate cancer progression. Int J Urol 2016; 23:734-44. [PMID: 27397852 DOI: 10.1111/iju.13145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022]
Abstract
Distant organ metastasis of prostate cancer is a puzzle, and various theories have successively arisen to explain the mechanism of lethal cancer progression. While perhaps agreeable to many cancer biologists, the very statement of "seed and soil" proposed by Stephan Paget in 1881 is arguably still the major statement for organ-specific cancer metastasis. Since recent studies showed important correlations of regulation of cancer cells and the microenvironment, exosomes from cancer and stromal cells seem to create another important niche for metastasis. Stromal cells pretreated with exosomes from metastatic cancer cells increase the potential of change stromal cells. The poorly metastatic cancer cells could also enhance malignancy through transfer of proteins, microribonucleic acid and messenger ribonucleic acid to recipient cancer cells. Herein, we reviewed extracellular exosomes as a factor involved in cross-talk between stromal and prostate cancer epithelial cells.
Collapse
Affiliation(s)
- Che-Ming Liu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chieh Lin
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Katsumi Shigemura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
72
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
73
|
Leber Y, Ruparelia AA, Kirfel G, van der Ven PFM, Hoffmann B, Merkel R, Bryson-Richardson RJ, Fürst DO. Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Hum Mol Genet 2016; 25:2776-2788. [PMID: 27206985 DOI: 10.1093/hmg/ddw135] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/12/2022] Open
Abstract
Filamin c (FLNc) is a large dimeric actin-binding protein located at premyofibrils, myofibrillar Z-discs and myofibrillar attachment sites of striated muscle cells, where it is involved in mechanical stabilization, mechanosensation and intracellular signaling. Mutations in the gene encoding FLNc give rise to skeletal muscle diseases and cardiomyopathies. Here, we demonstrate by fluorescence recovery after photobleaching that a large fraction of FLNc is highly mobile in cultured neonatal mouse cardiomyocytes and in cardiac and skeletal muscles of live transgenic zebrafish embryos. Analysis of cardiomyocytes from Xirp1 and Xirp2 deficient animals indicates that both Xin actin-binding repeat-containing proteins stabilize FLNc selectively in premyofibrils. Using a novel assay to analyze myofibrillar microdamage and subsequent repair in cultured contracting cardiomyocytes by live cell imaging, we demonstrate that repair of damaged myofibrils is achieved within only 4 h, even in the absence of de novo protein synthesis. FLNc is immediately recruited to these sarcomeric lesions together with its binding partner aciculin and precedes detectable assembly of filamentous actin and recruitment of other myofibrillar proteins. These data disclose an unprecedented degree of flexibility of the almost crystalline contractile machinery and imply FLNc as a dynamic signaling hub, rather than a primarily structural protein. Our myofibrillar damage/repair model illustrates how (cardio)myocytes are kept functional in their mechanically and metabolically strained environment. Our results help to better understand the pathomechanisms and pathophysiology of early stages of FLNc-related myofibrillar myopathy and skeletal and cardiac diseases preceding pathological protein aggregation.
Collapse
Affiliation(s)
- Yvonne Leber
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Avnika A Ruparelia
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Gregor Kirfel
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Bernd Hoffmann
- Department of Biomechanics (ICS-7), Institute of Complex Systems, Forschungszentrum Jülich, D52428 Jülich, Germany and
| | - Rudolf Merkel
- Department of Biomechanics (ICS-7), Institute of Complex Systems, Forschungszentrum Jülich, D52428 Jülich, Germany and.,Department of Biomechanics, Institute for Physical and Theoretical Chemistry, University of Bonn, D53115 Bonn, Germany
| | | | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| |
Collapse
|
74
|
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2016; 5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Citation(s) in RCA: 487] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Florian Bentzinger
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
75
|
Zou C, Fu Y, Li C, Liu H, Li G, Li J, Zhang H, Wu Y, Li C. Genome-wide gene expression and DNA methylation differences in abnormally cloned and normally natural mating piglets. Anim Genet 2016; 47:436-50. [DOI: 10.1111/age.12436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 01/24/2023]
Affiliation(s)
- C. Zou
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - Y. Fu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - C. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - H. Liu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - G. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - J. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - H. Zhang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - Y. Wu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - C. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| |
Collapse
|
76
|
Ruparelia AA, Oorschot V, Ramm G, Bryson-Richardson RJ. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet 2016; 25:2131-2142. [PMID: 26969713 DOI: 10.1093/hmg/ddw080] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/07/2016] [Indexed: 01/23/2023] Open
Abstract
Myofibrillar myopathy is a progressive muscle disease characterized by the disintegration of muscle fibers and formation of protein aggregates. Causative mutations have been identified in nine genes encoding Z-disk proteins, including the actin binding protein filamin C (FLNC). To investigate the mechanism of disease in FLNCW2710X myopathy we overexpressed fluorescently tagged FLNC or FLNCW2710X in zebrafish. Expression of FLNCW2710X causes formation of protein aggregates but surprisingly, our studies reveal that the mutant protein localizes correctly to the Z-disk and is capable of rescuing the fiber disintegration phenotype that results from FLNC knockdown. This demonstrates that the functions necessary for muscle integrity are not impaired, and suggests that it is the formation of protein aggregates and subsequent sequestration of FLNC away from the Z-disk that results in myofibrillar disintegration. Similar to those found in patients, the aggregates in FLNCW2710X expressing fish contain the co-chaperone BAG3. FLNC is a target of the BAG3-mediated chaperone assisted selective autophagy (CASA) pathway and therefore we investigated its role, and the role of autophagy in general, in clearing protein aggregates. We reveal that despite BAG3 recruitment to the aggregates they are not degraded via CASA. Additionally, recruitment of BAG3 is sufficient to block alternative autophagy pathways which would otherwise clear the aggregates. This blockage can be relieved by reducing BAG3 levels or by stimulating autophagy. This study therefore identifies both BAG3 reduction and autophagy promotion as potential therapies for FLNCW2710X myofibrillar myopathy, and identifies protein insufficiency due to sequestration, compounded by impaired autophagy, as the cause.
Collapse
Affiliation(s)
| | - Viola Oorschot
- The Clive and Vera Ramaciotti Centre for Structural Cryo-Electron Microscopy and and
| | - Georg Ramm
- The Clive and Vera Ramaciotti Centre for Structural Cryo-Electron Microscopy and and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | | |
Collapse
|
77
|
Juo LY, Liao WC, Shih YL, Yang BY, Liu AB, Yan YT. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles. J Cell Sci 2016; 129:1661-70. [PMID: 26929074 PMCID: PMC4852768 DOI: 10.1242/jcs.179887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/17/2016] [Indexed: 12/30/2022] Open
Abstract
HSPB7 belongs to the small heat-shock protein (sHSP) family, and its expression is restricted to cardiac and skeletal muscles from embryonic stages to adulthood. Here, we found that skeletal-muscle-specific ablation of the HspB7 does not affect myogenesis during embryonic stages to postnatal day 1 (P1), but causes subsequent postnatal death owing to a respiration defect, with progressive myopathy phenotypes in the diaphragm. Deficiency of HSPB7 in the diaphragm muscle resulted in muscle fibrosis, sarcomere disarray and sarcolemma integrity loss. We identified dimerized filamin C (FLNC) as an interacting partner of HSPB7. Immunofluorescence studies demonstrated that the aggregation and mislocalization of FLNC occurred in the muscle of HspB7 mutant adult mice. Furthermore, the components of dystrophin glycoprotein complex, γ- and δ-sarcoglycan, but not dystrophin, were abnormally upregulated and mislocalized in HSPB7 mutant muscle. Collectively, our findings suggest that HSPB7 is essential for maintaining muscle integrity, which is achieved through its interaction with FLNC, in order to prevent the occurrence and progression of myopathy. Highlighted Article: HSPB7 plays a crucial role in the maintenance of the muscle integrity, possibly through stabilizing the function of FLNC.
Collapse
Affiliation(s)
- Liang-Yi Juo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wern-Chir Liao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yen-Ling Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Bih-Ying Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - An-Bang Liu
- Department of Neurology, Buddhist Tzu Chi General Hospital and Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Yu-Ting Yan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
78
|
Abstract
Mammalian life begins with a cell-cell fusion event, i.e. the fusion of the spermatozoid with the oocyte and needs further cell-cell fusion processes for the development, growth, and maintenance of tissues and organs over the whole life span. Furthermore, cellular fusion plays a role in infection, cancer, and stem cell-dependent regeneration as well as including an expanded meaning of partial cellular fusion, nanotube formation, and microparticle-cell fusion. The cellular fusion process is highly regulated by proteins which carry the information to organize and regulate membranes allowing the merge of two separate lipid bilayers into one. The regulation of this genetically and epigenetically controlled process is achieved by different kinds of signals leading to communication of fusing cells. The local cellular and extracellular environment additionally initiates specific cell signaling necessary for the induction of the cell-cell fusion process. Common motifs exist in distinct cell-cell fusion processes and their regulation. However, there is specific regulation of different cell-cell fusion processes, e.g. myoblast, placental, osteoclast, and stem cell fusion. Hence, specialized fusion events vary between cell types and species. Molecular mechanisms remain largely unknown, especially limited knowledge is present for cancer and stem cell fusion mechanisms and regulation. More research is necessary for the understanding of cellular fusion processes which can lead to development of new therapeutic strategies grounding on cellular fusion regulation.
Collapse
Affiliation(s)
- Lena Willkomm
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | | |
Collapse
|
79
|
Brodehl A, Ferrier RA, Hamilton SJ, Greenway SC, Brundler MA, Yu W, Gibson WT, McKinnon ML, McGillivray B, Alvarez N, Giuffre M, Schwartzentruber J, Gerull B. Mutations inFLNCare Associated with Familial Restrictive Cardiomyopathy. Hum Mutat 2016; 37:269-79. [DOI: 10.1002/humu.22942] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Andreas Brodehl
- Department of Cardiac Sciences; Libin Cardiovascular Institute of Alberta; University of Calgary; Calgary Alberta Canada
| | - Raechel A. Ferrier
- Department of Medical Genetics; University of Calgary and Alberta Health Services; Calgary Alberta Canada
| | - Sara J. Hamilton
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Steven C. Greenway
- Department of Cardiac Sciences; Libin Cardiovascular Institute of Alberta; University of Calgary; Calgary Alberta Canada
- Department of Paediatrics; Alberta Children's Hospital Research Institute; University of Calgary; Calgary Alberta Canada
| | - Marie-Anne Brundler
- Department of Paediatrics; Alberta Children's Hospital Research Institute; University of Calgary; Calgary Alberta Canada
- Departments of Pathology and Laboratory Medicine; University of Calgary; Calgary Alberta Canada
| | - Weiming Yu
- Departments of Pathology and Laboratory Medicine; University of Calgary; Calgary Alberta Canada
| | - William T. Gibson
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
- Child and Family Research Institute; Vancouver British Columbia Canada
| | - Margaret L. McKinnon
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Barbara McGillivray
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Nanette Alvarez
- Department of Cardiac Sciences; Libin Cardiovascular Institute of Alberta; University of Calgary; Calgary Alberta Canada
| | - Michael Giuffre
- Department of Cardiac Sciences; Libin Cardiovascular Institute of Alberta; University of Calgary; Calgary Alberta Canada
| | | | - Brenda Gerull
- Department of Cardiac Sciences; Libin Cardiovascular Institute of Alberta; University of Calgary; Calgary Alberta Canada
- Department of Medical Genetics; University of Calgary and Alberta Health Services; Calgary Alberta Canada
| | | |
Collapse
|
80
|
Chevessier F, Schuld J, Orfanos Z, Plank AC, Wolf L, Maerkens A, Unger A, Schlötzer-Schrehardt U, Kley RA, Von Hörsten S, Marcus K, Linke WA, Vorgerd M, van der Ven PFM, Fürst DO, Schröder R. Myofibrillar instability exacerbated by acute exercise in filaminopathy. Hum Mol Genet 2015; 24:7207-20. [PMID: 26472074 DOI: 10.1093/hmg/ddv421] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNC) mutations in humans cause myofibrillar myopathy (MFM) and cardiomyopathy, characterized by protein aggregation and myofibrillar degeneration. We generated the first patient-mimicking knock-in mouse harbouring the most common disease-causing filamin C mutation (p.W2710X). These heterozygous mice developed muscle weakness and myofibrillar instability, with formation of filamin C- and Xin-positive lesions streaming between Z-discs. These lesions, which are distinct from the classical MFM protein aggregates by their morphology and filamentous appearance, were greatly increased in number upon acute physical exercise in the mice. This pathology suggests that mutant filamin influences the mechanical stability of myofibrillar Z-discs, explaining the muscle weakness in mice and humans. Re-evaluation of biopsies from MFM-filaminopathy patients with different FLNC mutations revealed a similar, previously unreported lesion pathology, in addition to the classical protein aggregates, and suggested that structures previously interpreted as aggregates may be in part sarcomeric lesions. We postulate that these lesions define preclinical disease stages, preceding the formation of protein aggregates.
Collapse
Affiliation(s)
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Zacharias Orfanos
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Anne-C Plank
- Department for Experimental Therapy, Preclinical Experimental Animal Center and
| | | | - Alexandra Maerkens
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Department of Functional Proteomics, Medizinisches Proteom-Center and
| | - Andreas Unger
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Rudolf A Kley
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil
| | - Stephan Von Hörsten
- Department for Experimental Therapy, Preclinical Experimental Animal Center and
| | - Katrin Marcus
- Department of Functional Proteomics, Medizinisches Proteom-Center and
| | - Wolfgang A Linke
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany,
| | | |
Collapse
|
81
|
The diagnosis value of promoter methylation of UCHL1 in the serum for progression of gastric cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:741030. [PMID: 26550574 PMCID: PMC4624918 DOI: 10.1155/2015/741030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/23/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
Background. Aberrant promoter methylation has been considered as a potential molecular marker for gastric cancer (GC). However, the role of methylation of FLNC, THBS1, and UCHL1 in the development and progression of GC has not been explored. Methods. The promoter methylation status of UCHL1, FLNC, THBS1, and DLEC1 was assessed by quantitative methylation-specific PCR (QMSP) in the serum of 82 GC patients, 46 chronic atrophic gastritis (CAG) subjects, and 40 healthy controls. Results. All four genes had significantly higher methylation levels in GC patients than in CAG and control subjects. However, only UCHL1 methylation was significantly correlated with the tumor stage and lymph node metastasis. While THBS1 methylation was altered in an age-dependent manner, FLNC methylation was correlated with differentiation and Helicobacter pylori infection. DLEC1 methylation was only associated with tumor size. Moreover, methylated UCHL1 with or without THBS1 in the serum was found to be significantly associated with a poor prognosis. Conclusion. The promoter methylation degree of FLNC, THBS1, UCHL1, and DLEC1 in serum could tell the existence of GC and only UCHL1 in the serum was also associated with poor prognosis of GC.
Collapse
|
82
|
Feng HZ, Chen X, Malek MH, Jin JP. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers. Am J Physiol Cell Physiol 2015; 310:C27-40. [PMID: 26447205 DOI: 10.1152/ajpcell.00173.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/05/2015] [Indexed: 02/08/2023]
Abstract
Unloading or disuse rapidly results in skeletal muscle atrophy, switching to fast-type fibers, and decreased resistance to fatigue. The recovery process is of major importance in rehabilitation for various clinical conditions. Here we studied mouse soleus muscle during 60 days of reloading after 4 wk of hindlimb suspension. Unloading produced significant atrophy of soleus muscle with decreased contractile force and fatigue resistance, accompanied by switches of myosin isoforms from IIa to IIx and IIb and fast troponin T to more low-molecular-weight splice forms. The total mass, fiber size, and contractile force of soleus muscle recovered to control levels after 15 days of reloading. However, the fatigue resistance showed a trend of worsening during this period with significant infiltration of inflammatory cells at days 3 and 7, indicating reloading injuries that were accompanied by active regeneration with upregulations of filamin-C, αB-crystallin, and desmin. The fatigue resistance partially recovered after 30-60 days of reloading. The expression of peroxisome proliferator-activated receptor γ coactivator 1α and mitofusin-2 showed changes parallel to that of fatigue resistance after unloading and during reloading, suggesting a causal role of decreased mitochondrial function. Slow fiber contents in the soleus muscle were increased after 30-60 days of reloading to become significantly higher than the normal level, indicating a secondary adaption to compensate for the slow recovery of fatigue resistance.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Xuequn Chen
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Moh H Malek
- Department of Health Care Sciences, Wayne State University, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University, Detroit, Michigan;
| |
Collapse
|
83
|
MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein. PLoS One 2015; 10:e0124873. [PMID: 25915937 PMCID: PMC4410957 DOI: 10.1371/journal.pone.0124873] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022] Open
Abstract
Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.
Collapse
|
84
|
Valdés-Mas R, Gutiérrez-Fernández A, Gómez J, Coto E, Astudillo A, Puente DA, Reguero JR, Álvarez V, Morís C, León D, Martín M, Puente XS, López-Otín C. Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy. Nat Commun 2014; 5:5326. [PMID: 25351925 DOI: 10.1038/ncomms6326] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 09/19/2014] [Indexed: 01/21/2023] Open
Abstract
Mutations in different genes encoding sarcomeric proteins are responsible for 50-60% of familial cases of hypertrophic cardiomyopathy (HCM); however, the genetic alterations causing the disease in one-third of patients are currently unknown. Here we describe a case with familial HCM of unknown cause. Whole-exome sequencing reveals a variant in the gene encoding the sarcomeric protein filamin C (p.A1539T) that segregates with the disease in this family. Sequencing of 92 HCM cases identifies seven additional variants segregating with the disease in eight families. Patients with FLNC mutations show marked sarcomeric abnormalities in cardiac muscle, and functional analysis reveals that expression of these FLNC variants resulted in the formation of large filamin C aggregates. Clinical studies indicate that FLNC-mutated patients have higher incidence of sudden cardiac death. On the basis of these findings, we conclude that mutations in the gene encoding the sarcomeric protein filamin C cause a new form of familial HMC.
Collapse
Affiliation(s)
- Rafael Valdés-Mas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología-IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ana Gutiérrez-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología-IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Juan Gómez
- Genética Molecular, Red de Investigación Renal (REDINREN), 33006 Oviedo, Spain
| | - Eliecer Coto
- 1] Genética Molecular, Red de Investigación Renal (REDINREN), 33006 Oviedo, Spain [2] Departamento de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - Diana A Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología-IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julián R Reguero
- Servicio de Cardiología, Fundación Asturcor, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - Victoria Álvarez
- Genética Molecular, Red de Investigación Renal (REDINREN), 33006 Oviedo, Spain
| | - César Morís
- 1] Departamento de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain [2] Servicio de Cardiología, Fundación Asturcor, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - Diego León
- Servicio de Cardiología, Fundación Asturcor, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - María Martín
- Servicio de Cardiología, Fundación Asturcor, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología-IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología-IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
85
|
Li G, Jia Q, Zhao J, Li X, Yu M, Samuel MS, Zhao S, Prather RS, Li C. Dysregulation of genome-wide gene expression and DNA methylation in abnormal cloned piglets. BMC Genomics 2014; 15:811. [PMID: 25253444 PMCID: PMC4189204 DOI: 10.1186/1471-2164-15-811] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 09/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Epigenetic modifications (especially altered DNA methylation) resulting in altered gene expression may be one reason for development failure or abnormalities in cloned animals, but the underlying mechanism of the abnormal phenotype in cloned piglets remains unknown. Some cloned piglets in our study showed abnormal phenotypes such as large tongue (longer and thicker), weak muscles, and exomphalos. Here we conducted DNA methylation (DNAm) immunoprecipitation and high throughput sequencing (MeDIP-seq) and RNA sequencing (RNA-seq) of muscle tissues of cloned piglets to investigate the relationship of abnormal DNAm with gene dysregulation and the unusual phenotypes in cloned piglets. Results Analysis of the methylomes revealed that abnormal cloned piglets suffered more hypomethylation than hypermethylation compared to the normal cloned piglets, although the DNAm level in the CpG Island was higher in the abnormal cloned piglets. Some repetitive elements, such as SINE/tRNA-Glu Satellite/centr also showed differences. We detected 1,711 differentially expressed genes (DEGs) between the two groups, of which 243 genes also changed methylation level in the abnormal cloned piglets. The altered DNA methylation mainly affected the low and silently expressed genes. There were differences in both pathways and genes, such as the MAPK signalling pathway, the hypertrophic cardiomyopathy pathway, and the imprinted gene PLAGL1; all of which may play important roles in development of the abnormal phenotype. Conclusions The abnormal cloned piglets showed substantial changes both in the DNAm and the gene expression. Our data may provide new insights into understanding the molecular mechanisms of the reprogramming of genetic information in cloned animals. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-811) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
86
|
Delling FN, Vasan RS. Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation 2014; 129:2158-70. [PMID: 24867995 DOI: 10.1161/circulationaha.113.006702] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Francesca N Delling
- From the Framingham Heart Study, Framingham, MA (F.N.D., R.S.V.); Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.N.D.); and Cardiology Section, and Preventive Medicine Section, Boston University School of Medicine, Boston, MA (R.S.V.).
| | - Ramachandran S Vasan
- From the Framingham Heart Study, Framingham, MA (F.N.D., R.S.V.); Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.N.D.); and Cardiology Section, and Preventive Medicine Section, Boston University School of Medicine, Boston, MA (R.S.V.)
| |
Collapse
|
87
|
Molt S, Bührdel JB, Yakovlev S, Schein P, Orfanos Z, Kirfel G, Winter L, Wiche G, van der Ven PFM, Rottbauer W, Just S, Belkin AM, Fürst DO. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. J Cell Sci 2014; 127:3578-92. [PMID: 24963132 DOI: 10.1242/jcs.152157] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.
Collapse
Affiliation(s)
- Sibylle Molt
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - John B Bührdel
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Sergiy Yakovlev
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Schein
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Lilli Winter
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Alexey M Belkin
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
88
|
Jeon GW, Lee MN, Jung JM, Hong SY, Kim YN, Sin JB, Ki CS. Identification of a de novo heterozygous missense FLNB mutation in lethal atelosteogenesis type I by exome sequencing. Ann Lab Med 2014; 34:134-8. [PMID: 24624349 PMCID: PMC3948826 DOI: 10.3343/alm.2014.34.2.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/10/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022] Open
Abstract
Background Atelosteogenesis type I (AO-I) is a rare lethal skeletal dysplastic disorder characterized by severe short-limbed dwarfism and dislocated hips, knees, and elbows. AO-I is caused by mutations in the filamin B (FLNB) gene; however, several other genes can cause AO-like lethal skeletal dysplasias. Methods In order to screen all possible genes associated with AO-like lethal skeletal dysplasias simultaneously, we performed whole-exome sequencing in a female newborn having clinical features of AO-I. Results Exome sequencing identified a novel missense variant (c.517G>A; p.Ala173Thr) in exon 2 of the FLNB gene in the patient. Sanger sequencing validated this variant, and genetic analysis of the patient's parents suggested a de novo occurrence of the variant. Conclusions This study shows that exome sequencing can be a useful tool for the identification of causative mutations in lethal skeletal dysplasia patients.
Collapse
Affiliation(s)
- Ga Won Jeon
- Department of Pediatrics, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Mi-Na Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Mi Jung
- Department of Pediatrics, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Seong Yeon Hong
- Department of Obstetrics and Gynecology, Catholic University of Daegu, Daegu Catholic University Medical Center, Daegu, Korea
| | - Young Nam Kim
- Department of Obstetrics and Gynecology, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Jong Beom Sin
- Department of Pediatrics, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
89
|
Sun Q, Li Y, He S, Situ C, Wu Z, Qu JY. Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development. BIOMEDICAL OPTICS EXPRESS 2013; 5:158-66. [PMID: 24466484 PMCID: PMC3891328 DOI: 10.1364/boe.5.000158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 05/06/2023]
Abstract
We developed a label-free nonlinear optical (NLO) microscope integrating the stimulated Raman scattering, multi-color two-photon excited fluorescence and second harmonic generation. The system produces multimodal images of protein content, mitochondria distribution and sarcomere structure of fresh muscle samples. With the advanced imaging technique, we studied the mal-development of skeletal muscle caused by sarcomeric gene deficiency. In addition, important development processes of normal muscle from neonatal to adult stage were also clearly revealed based on the changing sarcomere structure, mitochondria distribution and muscle fiber size. The results demonstrate that the newly developed multimodal NLO microscope is a powerful tool to assess the muscle integrity and function.
Collapse
Affiliation(s)
- Qiqi Sun
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- These authors contributed equally to this work
| | - Yanfeng Li
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- These authors contributed equally to this work
| | - Sicong He
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chenghao Situ
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jianan Y. Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
90
|
Identification of putative ortholog gene blocks involved in gestant and lactating mammary gland development: a rodent cross-species microarray transcriptomics approach. Int J Genomics 2013; 2013:624681. [PMID: 24288657 PMCID: PMC3830774 DOI: 10.1155/2013/624681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/23/2023] Open
Abstract
The mammary gland (MG) undergoes functional and metabolic changes during the transition from pregnancy to lactation, possibly by regulation of conserved genes. The objective was to elucidate orthologous genes, chromosome clusters and putative conserved transcriptional modules during MG development. We analyzed expression of 22,000 transcripts using murine microarrays and RNA samples of MG from virgin, pregnant, and lactating rats by cross-species hybridization. We identified 521 transcripts differentially expressed; upregulated in early (78%) and midpregnancy (89%) and early lactation (64%), but downregulated in mid-lactation (61%). Putative orthologous genes were identified. We mapped the altered genes to orthologous chromosomal locations in human and mouse. Eighteen sets of conserved genes associated with key cellular functions were revealed and conserved transcription factor binding site search entailed possible coregulation among all eight block sets of genes. This study demonstrates that the use of heterologous array hybridization for screening of orthologous gene expression from rat revealed sets of conserved genes arranged in chromosomal order implicated in signaling pathways and functional ontology. Results demonstrate the utilization power of comparative genomics and prove the feasibility of using rodent microarrays to identification of putative coexpressed orthologous genes involved in the control of human mammary gland development.
Collapse
|
91
|
Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca. PLoS Genet 2013; 9:e1003510. [PMID: 23671426 PMCID: PMC3650001 DOI: 10.1371/journal.pgen.1003510] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/30/2013] [Indexed: 12/05/2022] Open
Abstract
The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue. During organism development and normal physiological function cells sense, integrate, and respond to a variety of cues or signals including biochemical and mechanical stimuli. In this study we used Caenorhabditis elegans, a small transparent worm, to study filamin (FLN-1), a structural protein that may act as a molecular strain gauge. The C. elegans spermatheca is a contractile tube that is stretched during normal function, making it an ideal candidate for study of how cells respond to stretch. Oocytes are ovulated into the spermatheca, fertilized, and then pushed into the uterus by constriction of the spermatheca. The ability of the spermatheca to constrict depends on inositol 1,4,5-triphosphate (IP3), a signaling molecule produced by the enzyme phospholipase C (PLC-1) that triggers calcium release within cells. In animals with mutated FLN-1 or PLC-1 the spermathecal cells fail to constrict. Using genetic analysis and a calcium-sensitive fluorescent protein, we show that FLN-1 functions with PLC-1 to regulate IP3 production, calcium release, and contraction of the spermatheca. Filamin may function to sense stretch caused by entering oocytes and to trigger constriction. These findings establish a link between filamin and calcium signaling that may apply to similar signaling pathways in other systems.
Collapse
|
92
|
Fürst DO, Goldfarb LG, Kley RA, Vorgerd M, Olivé M, van der Ven PFM. Filamin C-related myopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:33-46. [PMID: 23109048 DOI: 10.1007/s00401-012-1054-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/22/2012] [Accepted: 10/11/2012] [Indexed: 01/20/2023]
Abstract
The term filaminopathy was introduced after a truncating mutation in the dimerization domain of filamin C (FLNc) was shown to be responsible for a devastating muscle disease. Subsequently, the same mutation was found in patients from diverse ethnical origins, indicating that this specific alteration is a mutational hot spot. Patients initially present with proximal muscle weakness, while distal and respiratory muscles become affected with disease progression. Muscle biopsies of these patients show typical signs of myofibrillar myopathy, including disintegration of myofibrils and aggregation of several proteins into distinct intracellular deposits. Highly similar phenotypes were observed in patients with other mutations in Ig-like domains of FLNc that result in expression of a noxious protein. Biochemical and biophysical studies showed that the mutated domains acquire an abnormal structure causing decreased stability and eventually becoming a seed for abnormal aggregation with other proteins. The disease usually presents only after the fourth decade of life possibly as a result of ageing-related impairments in the machinery that is responsible for disposal of damaged proteins. This is confirmed by mutations in components of this machinery that cause a highly similar phenotype. Transfection studies of cultured muscle cells reflect the events observed in patient muscles and, therefore, may provide a helpful model for testing future dedicated therapeutic strategies. More recently, FLNC mutations were also found in families with a distal myopathy phenotype, caused either by mutations in the actin-binding domain of FLNc that result in increased actin-binding and non-specific myopathic abnormalities without myofibrillar myopathy pathology, or a nonsense mutation in the rod domain that leads to RNA instability, haploinsufficiency with decreased expression levels of FLNc in the muscle fibers and myofibrillar abnormalities, but not to the formation of desmin-positive protein aggregates required for the diagnosis of myofibrillar myopathy.
Collapse
Affiliation(s)
- Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
93
|
Kley RA, Serdaroglu-Oflazer P, Leber Y, Odgerel Z, van der Ven PFM, Olivé M, Ferrer I, Onipe A, Mihaylov M, Bilbao JM, Lee HS, Höhfeld J, Djinović-Carugo K, Kong K, Tegenthoff M, Peters SA, Stenzel W, Vorgerd M, Goldfarb LG, Fürst DO. Pathophysiology of protein aggregation and extended phenotyping in filaminopathy. ACTA ACUST UNITED AC 2012; 135:2642-60. [PMID: 22961544 DOI: 10.1093/brain/aws200] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mutations in FLNC cause two distinct types of myopathy. Disease associated with mutations in filamin C rod domain leading to expression of a toxic protein presents with progressive proximal muscle weakness and shows focal destructive lesions of polymorphous aggregates containing desmin, myotilin and other proteins in the affected myofibres; these features correspond to the profile of myofibrillar myopathy. The second variant associated with mutations in the actin-binding domain of filamin C is characterized by weakness of distal muscles and morphologically by non-specific myopathic features. A frameshift mutation in the filamin C rod domain causing haploinsufficiency was also found responsible for distal myopathy with some myofibrillar changes but no protein aggregation typical of myofibrillar myopathies. Controversial data accumulating in the literature require re-evaluation and comparative analysis of phenotypes associated with the position of the FLNC mutation and investigation of the underlying disease mechanisms. This is relevant and necessary for the refinement of diagnostic criteria and developing therapeutic approaches. We identified a p.W2710X mutation in families originating from ethnically diverse populations and re-evaluated a family with a p.V930_T933del mutation. Analysis of the expanded database allows us to refine clinical and myopathological characteristics of myofibrillar myopathy caused by mutations in the rod domain of filamin C. Biophysical and biochemical studies indicate that certain pathogenic mutations in FLNC cause protein misfolding, which triggers aggregation of the mutant filamin C protein and subsequently involves several other proteins. Immunofluorescence analyses using markers for the ubiquitin-proteasome system and autophagy reveal that the affected muscle fibres react to protein aggregate formation with a highly increased expression of chaperones and proteins involved in proteasomal protein degradation and autophagy. However, there is a noticeably diminished efficiency of both the ubiquitin-proteasome system and autophagy that impairs the muscle capacity to prevent the formation or mediate the degradation of aggregates. Transfection studies of cultured muscle cells imitate events observed in the patient's affected muscle and therefore provide a helpful model for testing future therapeutic strategies.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, Neuromuscular Centre Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Pouwels J, Nevo J, Pellinen T, Ylänne J, Ivaska J. Negative regulators of integrin activity. J Cell Sci 2012; 125:3271-80. [PMID: 22822081 DOI: 10.1242/jcs.093641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Integrins are heterodimeric transmembrane adhesion receptors composed of α- and β-subunits. They are ubiquitously expressed and have key roles in a number of important biological processes, such as development, maintenance of tissue homeostasis and immunological responses. The activity of integrins, which indicates their affinity towards their ligands, is tightly regulated such that signals inside the cell cruicially regulate the switching between active and inactive states. An impaired ability to activate integrins is associated with many human diseases, including bleeding disorders and immune deficiencies, whereas inappropriate integrin activation has been linked to inflammatory disorders and cancer. In recent years, the molecular details of integrin 'inside-out' activation have been actively investigated. Binding of cytoplasmic proteins, such as talins and kindlins, to the cytoplasmic tail of β-integrins is widely accepted as being the crucial step in integrin activation. By contrast, much less is known with regard to the counteracting mechanism involved in switching integrins into an inactive conformation. In this Commentary, we aim to discuss the known mechanisms of integrin inactivation and the molecules involved.
Collapse
Affiliation(s)
- Jeroen Pouwels
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
95
|
Ruparelia AA, Zhao M, Currie PD, Bryson-Richardson RJ. Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy. Hum Mol Genet 2012; 21:4073-83. [PMID: 22706277 DOI: 10.1093/hmg/dds231] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myofibrillar myopathies are a group of muscle disorders characterized by the disintegration of skeletal muscle fibers and formation of sarcomeric protein aggregates. All the proteins known to be involved in myofibrillar myopathies localize to a region of the sarcomere known as the Z-disk, the site at which defects are first observed. Given the common cellular phenotype observed in this group of disorders, it is thought that there is a common mechanism of pathology. Mutations in filamin C, which has several proposed roles in the development and function of skeletal muscle, can result in filamin-related myofibrillar myopathy. The lack of a suitable animal model system has limited investigation into the mechanism of pathology in this disease and the role of filamin C in muscle development. Here, we characterize stretched out (sot), a zebrafish filamin Cb mutant, together with targeted knockdown of zebrafish filamin Ca, revealing fiber dissolution and formation of protein aggregates strikingly similar to those seen in filamin-related myofibrillar myopathies. Through knockdown of both zebrafish filamin C homologues, we demonstrate that filamin C is not required for fiber specification and that fiber damage is a consequence of muscle activity. The remarkable similarities in the myopathology between our models and filamin-related myofibrillar myopathy makes them suitable for the study of these diseases and provides unique opportunities for the investigation of the function of filamin C in muscle and development of therapies.
Collapse
Affiliation(s)
- Avnika A Ruparelia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | | | | | | |
Collapse
|
96
|
Abstract
The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells.
Collapse
Affiliation(s)
- Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
97
|
Abstract
Filamins are essential, evolutionarily conserved, modular, multidomain, actin-binding proteins that organize the actin cytoskeleton and maintain extracellular matrix connections by anchoring actin filaments to transmembrane receptors. By cross-linking and anchoring actin filaments, filamins stabilize the plasma membrane, provide cellular cortical rigidity, and contribute to the mechanical stability of the plasma membrane and the cell cortex. In addition to binding actin, filamins interact with more than 90 other binding partners including intracellular signaling molecules, receptors, ion channels, transcription factors, and cytoskeletal and adhesion proteins. Thus, filamins scaffold a wide range of signaling pathways and are implicated in the regulation of a diverse array of cellular functions including motility, maintenance of cell shape, and differentiation. Here, we review emerging structural and functional evidence that filamins are mechanosensors and/or mechanotransducers playing essential roles in helping cells detect and respond to physical forces in their local environment.
Collapse
Affiliation(s)
- Ziba Razinia
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
98
|
Fujita M, Mitsuhashi H, Isogai S, Nakata T, Kawakami A, Nonaka I, Noguchi S, Hayashi YK, Nishino I, Kudo A. Filamin C plays an essential role in the maintenance of the structural integrity of cardiac and skeletal muscles, revealed by the medaka mutant zacro. Dev Biol 2011; 361:79-89. [PMID: 22020047 DOI: 10.1016/j.ydbio.2011.10.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 12/15/2022]
Abstract
Filamin C is an actin-crosslinking protein that is specifically expressed in cardiac and skeletal muscles. Although mutations in the filamin C gene cause human myopathy with cardiac involvement, the function of filamin C in vivo is not yet fully understood. Here we report a medaka mutant, zacro (zac), that displayed an enlarged heart, caused by rupture of the myocardiac wall, and progressive skeletal muscle degeneration in late embryonic stages. We identified zac to be a homozygous nonsense mutation in the filamin C (flnc) gene. The medaka filamin C protein was found to be localized at myotendinous junctions, sarcolemma, and Z-disks in skeletal muscle, and at intercalated disks in the heart. zac embryos showed prominent myofibrillar degeneration at myotendinous junctions, detachment of myofibrils from sarcolemma and intercalated disks, and focal Z-disk destruction. Importantly, the expression of γ-actin, which we observed to have a strong subcellular localization at myotendinous junctions, was specifically reduced in zac mutant myotomes. Inhibition of muscle contraction by anesthesia alleviated muscle degeneration in the zac mutant. These results suggest that filamin C plays an indispensable role in the maintenance of the structural integrity of cardiac and skeletal muscles for support against mechanical stress.
Collapse
Affiliation(s)
- Misato Fujita
- Department of Biological Information, Tokyo Institute of Technology, 4259-B-33 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Duff R, Tay V, Hackman P, Ravenscroft G, McLean C, Kennedy P, Steinbach A, Schöffler W, van der Ven P, Fürst D, Song J, Djinović-Carugo K, Penttilä S, Raheem O, Reardon K, Malandrini A, Gambelli S, Villanova M, Nowak K, Williams D, Landers J, Brown R, Udd B, Laing N. Mutations in the N-terminal actin-binding domain of filamin C cause a distal myopathy. Am J Hum Genet 2011; 88:729-740. [PMID: 21620354 DOI: 10.1016/j.ajhg.2011.04.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/24/2011] [Accepted: 04/29/2011] [Indexed: 12/12/2022] Open
Abstract
Linkage analysis of the dominant distal myopathy we previously identified in a large Australian family demonstrated one significant linkage region located on chromosome 7 and encompassing 18.6 Mbp and 151 genes. The strongest candidate gene was FLNC because filamin C, the encoded protein, is muscle-specific and associated with myofibrillar myopathy. Sequencing of FLNC cDNA identified a c.752T>C (p.Met251Thr) mutation in the N-terminal actin-binding domain (ABD); this mutation segregated with the disease and was absent in 200 controls. We identified an Italian family with the same phenotype and found a c.577G>A (p.Ala193Thr) filamin C ABD mutation that segregated with the disease. Filamin C ABD mutations have not been described, although filamin A and filamin B ABD mutations cause multiple musculoskeletal disorders. The distal myopathy phenotype and muscle pathology in the two families differ from myofibrillar myopathies caused by filamin C rod and dimerization domain mutations because of the distinct involvement of hand muscles and lack of pathological protein aggregation. Thus, like the position of FLNA and B mutations, the position of the FLNC mutation determines disease phenotype. The two filamin C ABD mutations increase actin-binding affinity in a manner similar to filamin A and filamin B ABD mutations. Cell-culture expression of the c.752T>C (p.Met251)Thr mutant filamin C ABD demonstrated reduced nuclear localization as did mutant filamin A and filamin B ABDs. Expression of both filamin C ABD mutants as full-length proteins induced increased aggregation of filamin. We conclude filamin C ABD mutations cause a recognizable distal myopathy, most likely through increased actin affinity, similar to the pathological mechanism of filamin A and filamin B ABD mutations.
Collapse
|
100
|
Abstract
Costameres are sub-membranous, Z-line associated structures found in striated muscle. They have been shown to have important roles in transmission of force from the sarcomere to the sarcolemma and extracellular matrix, maintaining mechanical integrity of the sarcolemma, and orchestrating mechanically related signaling. The costamere is akin to the more well-known focal adhesion complex present in most cells. The Z-line is a critical structural anchor for the sarcomere, but it is also a hot-spot for muscle cell signaling. Therefore functionally, the costamere represents a two-way signaling highway tethered between the Z-line and the extracellular matrix, relaying mechanical stress signals from outside the cell to intracellular signaling networks. In this role it can modulate myofibril growth and contraction. The major force generated by sarcomeres is transduced in the lateral direction from the sarcomere to the extracellular matrix through the costamere. Two major protein complexes have been described at the costamere: the dystrophin-glycoprotein complex and the integrin-vinculin-talin complex. The importance of these two protein complexes in striated muscle function has between demonstrated both in human disease and mouse models. Members of the dystrophin glycoprotein complex and integrins have both been reported to interact directly with filamin-C, thus linking costameric complexes with those present at the Z-line. Moreover, studies from our labs and others have shown that the Z-line proteins belonging to the PDZ-LIM domain protein family, enigma homolog (ENH) and cypher, may directly or indirectly be involved in this linkage. The following review will focus on the protein components of this linkage, their function in force transmission, and how the dysfunction or loss of proteins within these complexes contributes to muscular disease.
Collapse
|