51
|
Bousquet-Antonelli C, Vanrobays E, Gélugne JP, Caizergues-Ferrer M, Henry Y. Rrp8p is a yeast nucleolar protein functionally linked to Gar1p and involved in pre-rRNA cleavage at site A2. RNA (NEW YORK, N.Y.) 2000; 6:826-43. [PMID: 10864042 PMCID: PMC1369961 DOI: 10.1017/s1355838200992288] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chemical modifications and processing of the 18S, 5.8S, and 25S ribosomal RNAs from the 35S pre-ribosomal RNA depend on an important set of small nucleolar ribonucleoprotein particles (snoRNPs). Genetic depletion of yeast Gar1p, an essential common component of H/ACA snoRNPs, leads to inhibition of uridine isomerizations to pseudo-uridines on the 35S pre-rRNA and of the early pre-rRNA cleavages at sites A1 and A2, resulting in a loss of mature 18S rRNA synthesis. To identify Gar1p functional partners, we screened for mutations that are synthetically lethal with a gar1 mutant allele encoding a Gar1p mutant protein lacking its two glycine/arginine-rich (GAR) domains. We identified a previously uncharacterized Saccharomyces cerevisiae open reading frame, YDR083W (now designated RRP8), that encodes a highly conserved protein containing motifs found in methyltransferases. Rrp8p localizes to the nucleolus. A yeast strain lacking this protein is viable at 30 degrees C but displays strong growth impairment at lower temperatures. In this strain, cleavage of the pre-rRNA at site A2 is strongly affected whereas cleavages at sites A0 and A1 are only slightly inhibited or delayed.
Collapse
Affiliation(s)
- C Bousquet-Antonelli
- Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | |
Collapse
|
52
|
Newman DR, Kuhn JF, Shanab GM, Maxwell ES. Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription. RNA (NEW YORK, N.Y.) 2000; 6:861-79. [PMID: 10864044 PMCID: PMC1369963 DOI: 10.1017/s1355838200992446] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The eukaryotic nucleolus contains a diverse population of small nucleolar RNAs (snoRNAs) essential for ribosome biogenesis. The box C/D snoRNA family possesses conserved nucleotide boxes C and D that are multifunctional elements required for snoRNA processing, snoRNA transport to the nucleolus, and 2'-O-methylation of ribosomal RNA. We have previously demonstrated that the assembly of an snoRNP complex is essential for processing the intronic box C/D snoRNAs and that specific nuclear proteins associate with the box C/D core motif in vitro. Using a box C/D motif derived from mouse U14 snoRNA, we have now affinity purified and defined four mouse proteins that associate with this minimal RNA substrate. These four proteins consist of two protein pairs: members of each pair are highly related in sequence. One protein pair corresponds to the essential yeast nucleolar proteins Nop56p and Nop58p. Affinity purification of mouse Nop58 confirms observations made in yeast that Nop58 is a core protein of the box C/D snoRNP complex. Isolation of Nop56 using this RNA motif defines an additional snoRNP core protein. The second pair of mouse proteins, designated p50 and p55, are also highly conserved among eukaryotes. Antibody probing of nuclear fractions revealed a predominance of p55 and p50 in the nucleoplasm, suggesting a possible role for the p50/p55 pair in snoRNA production and/or nucleolar transport. The reported interaction of p55 with TATA-binding protein (TBP) and replication A protein as well as the DNA helicase activity of p55 and p50 may suggest the coordination of snoRNA processing and snoRNP assembly with replication and/or transcriptional events in the nucleus. Homologs for both snoRNA-associated protein pairs occur in Archaea, strengthening the hypothesis that the box C/D RNA elements and their interacting proteins are of ancient evolutionary origin.
Collapse
Affiliation(s)
- D R Newman
- Department of Biochemistry, North Carolina State University, Raleigh 27695, USA
| | | | | | | |
Collapse
|
53
|
Abstract
The synthesis of ribosomes is one of the major metabolic pathways in all cells. In addition to around 75 individual ribosomal proteins and 4 ribosomal RNAs, synthesis of a functional eukaryotic ribosome requires a remarkable number of trans-acting factors. Here, we will discuss the recent, and often surprising, advances in our understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae. These will underscore the unexpected complexity of eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
54
|
Narayanan A, Speckmann W, Terns R, Terns MP. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol Biol Cell 1999; 10:2131-47. [PMID: 10397754 PMCID: PMC25425 DOI: 10.1091/mbc.10.7.2131] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C', box D, and the 3' terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs.
Collapse
Affiliation(s)
- A Narayanan
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
55
|
Kufel J, Dichtl B, Tollervey D. Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3' ETS but not the 5' ETS. RNA (NEW YORK, N.Y.) 1999; 5:909-17. [PMID: 10411134 PMCID: PMC1369815 DOI: 10.1017/s135583829999026x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We have reexamined the role of yeast RNase III (Rnt1p) in ribosome synthesis. Analysis of pre-rRNA processing in a strain carrying a complete deletion of the RNT1 gene demonstrated that the absence of Rnt1p does not block cleavage at site A0 in the 5' external transcribed spacers (ETS), although the early pre-rRNA cleavages at sites A0, A1, and A2 are kinetically delayed. In contrast, cleavage in the 3' ETS is completely inhibited in the absence of Rnt1p, leading to the synthesis of a reduced level of a 3' extended form of the 25S rRNA. The 3' extended forms of the pre-rRNAs are consistent with the major termination at site T2 (+210). We conclude that Rnt1p is required for cleavage in the 3' ETS but not for cleavage at site A0. The sites of in vivo cleavage in the 3' ETS were mapped by primer extension. Two sites of Rnt1p-dependent cleavage were identified that lie on opposite sides of a predicted stem loop structure, at +14 and +49. These are in good agreement with the consensus Rnt1p cleavage site. Processing of the 3' end of the mature 25S rRNA sequence in wild-type cells was found to occur concomitantly with processing of the 5' end of the 5.8S rRNA, supporting previous proposals that processing in ITS1 and the 3' ETS is coupled.
Collapse
Affiliation(s)
- J Kufel
- Institute of Cell and Molecular Biology, University of Edinburgh, United Kingdom
| | | | | |
Collapse
|
56
|
Eppens NA, Rensen S, Granneman S, Raué HA, Venema J. The roles of Rrp5p in the synthesis of yeast 18S and 5.8S rRNA can be functionally and physically separated. RNA (NEW YORK, N.Y.) 1999; 5:779-93. [PMID: 10376877 PMCID: PMC1369804 DOI: 10.1017/s1355838299990313] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The yeast nucleolar protein Rrp5p is the only known trans-acting factor that is essential for the synthesis of both 18S rRNA and the major, short form of 5.8S (5.8Ss) rRNA, which were thought to be produced in two independent sets of pre-rRNA processing reactions. To identify domains within Rrp5p required for either processing pathway, we have analyzed a set of eight deletion mutants that together cover the entire RRP5 sequence. Surprisingly, only one of the deletions is lethal, indicating that regions encompassing about 80% of the protein can be removed individually without disrupting its essential biological function. Biochemical analysis clearly demonstrated the presence of two distinct functional domains. Removal of each of three contiguous segments from the N-terminal half specifically inhibits the formation of 5.8Ss rRNA, whereas deleting part of the C-terminal region of the protein only blocks the production of 18S rRNA. The latter phenotype is also caused by a temperature-sensitive mutation within the same C-terminal region. The two functional regions identified by the mutational analysis appear to be correlated with the structural domains detected by computer analysis. They can even be physically separated, as demonstrated by the fact that full Rrp5p activity can be supplied by two contiguous protein fragments expressed in trans.
Collapse
MESH Headings
- Cell Survival/genetics
- Gene Deletion
- Genes/physiology
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Protein Conformation
- RNA Precursors/metabolism
- RNA, Fungal/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/biosynthesis
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5.8S/biosynthesis
- RNA, Ribosomal, 5.8S/metabolism
- RNA-Binding Proteins
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/physiology
- Saccharomyces cerevisiae Proteins
- Tandem Repeat Sequences
- Temperature
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- N A Eppens
- Department of Biochemistry and Molecular Biology, Institute for Molecular-Biological Sciences, Vrije Universiteit, The Netherlands
| | | | | | | | | |
Collapse
|
57
|
Chen MS, Laszlo A. Unique features of Chinese hamster S13 gene relative to its human and Xenopus analogs. DNA Cell Biol 1999; 18:463-70. [PMID: 10390155 DOI: 10.1089/104454999315187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have cloned and sequenced the ribosomal protein S13 gene from the Chinese hamster fibroblast HA-1 cells. The predicted protein encoded by this gene is identical to the human ribosomal protein S13, except for one amino acid substitution at residue 29, which is an alanine in the hamster protein and a threonine in that of humans. The physical organization of the six exons and five introns in the hamster S13 gene is also identical to that found in the human and Xenopus genes with respect to the amino acid codes, even though there are small differences in the lengths of the introns. The striking feature is that unlike its human and Xenopus counterparts, which encode two U14 snoRNAs in two separate introns, the hamster S13 gene encodes no U14 snoRNA. Instead, the hamster gene has a pseudo-U14 coding sequence in its third intron. Our data support the idea that the single copy of the hsc70/U14 gene, which we had previously characterized, is the only source for the production of both U14 snoRNA and hsc70 mRNA species in hamster HA-1 cells.
Collapse
Affiliation(s)
- M S Chen
- Section of Cancer Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | |
Collapse
|
58
|
Intine RV, Good L, Nazar RN. Essential structural features in the Schizosaccharomyces pombe pre-rRNA 5' external transcribed spacer. J Mol Biol 1999; 286:695-708. [PMID: 10024444 DOI: 10.1006/jmbi.1998.2502] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The proximal region in the 5' external transcribed spacer (5'ETS) of the genes encoding ribosomal RNAs in Schizosaccharomyces pombe was examined with respect to structural features which underlie rRNA maturation. Computer analyses and partial digestion with nuclease probes indicate a crucifix-like structure composed primarily of three extended hairpins which are more highly ordered than previously proposed in Saccharomyces cerevisiae. A re-evaluation of the same region in S. cerevisiae indicates a conserved core structure, including the U3 snoRNA binding site within this higher-order structure. The sequences encoding the individual hairpins were deleted by PCR-mediated mutagenesis and the mutant rDNAs were expressed in vivo to determine the effect of these features on rRNA maturation. Quantitative hybridization analyses indicate that the first hairpin only has modest effects on 18 S rRNA maturation, but the other two regions are critical and no mature 18 S rRNA was observed. When smaller changes were systematically introduced into the critical regions, strong correlations were observed with known or putative events in rRNA maturation. Changes associated with an intermediate cleavage site in helix II and with the putative U3 snoRNA binding site were again critical to 18 S rRNA production. In each case, the effects were sequence dependent and not simply the result of disrupted structure. Further analyses of the 5.8 S rRNA indicate that the large ribosomal subunit RNA can be properly processed in each case but the efficiency is reduced by as much as 60 %, an observation which provides new evidence of interdependency in the maturation process. The results illustrate that rRNA processing is more critically dependent on the 5'ETS than previously believed.
Collapse
MESH Headings
- Base Sequence
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Plasmids/genetics
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Processing, Post-Transcriptional/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 5S/genetics
- Ribonucleases/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Schizosaccharomyces/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- R V Intine
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
59
|
Chanfreau G, Legrain P, Jacquier A. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J Mol Biol 1998; 284:975-88. [PMID: 9837720 DOI: 10.1006/jmbi.1998.2237] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The variety of biogenesis pathways for small nucleolar RNAs (snoRNAs) reflects the diversity of their genomic organization. We have searched for yeast snoRNAs which are affected by the depletion of the yeast ortholog of bacterial RNase III, Rnt1. In a yeast strain inactivated for RNT1, almost half of the snoRNAs tested are depleted with significant accumulation of monocistronic or polycistronic precursors. snoRNAs from both major families of snoRNAs (C/D and H/ACA) are affected by RNT1 disruption. In vitro, recombinant Rnt1 specifically cleaves pre-snoRNA precursors in the absence of other factors, generating intermediates which require the action of other enzymes for processing to the mature snoRNA. Most Rnt1 cleavage sites fall within potentially double-stranded regions closed by tetraloops with a novel consensus sequence AGNN. These results demonstrate that biogenesis of a large number of snoRNAs from the two major families of snoRNAs requires a common RNA endonuclease and a putative conserved structural motif.
Collapse
Affiliation(s)
- G Chanfreau
- Laboratoire du Métabolisme des ARN, URA1300 CNRS, Institut Pasteur, Département des Biotechnologies, 25 rue du Dr Roux, Paris Cedex 15, F-75724, France.
| | | | | |
Collapse
|
60
|
Torchet C, Jacq C, Hermann-Le Denmat S. Two mutant forms of the S1/TPR-containing protein Rrp5p affect the 18S rRNA synthesis in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 1998; 4:1636-52. [PMID: 9848659 PMCID: PMC1369731 DOI: 10.1017/s1355838298981511] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The genetic depletion of yeast Rrp5p results in a synthesis defect of both 18S and 5.8S ribosomal RNAs (Venema J, Tollervey D. 1996. EMBO J 15:5701-5714). We have isolated the RRP5gene in a genetic approach aimed to select for yeast factors interfering with protein import into mitochondria. We describe here a striking feature of Rrp5p amino acid sequence, namely the presence of twelve putative S1 RNA-binding motifs and seven tetratricopeptide repeats (TPR) motifs. We have constructed two conditional temperature-sensitive alleles of RRP5 gene and analyzed them for associated rRNA-processing defects. First, a functional "bipartite gene" was generated revealing that the S1 and TPR parts of the protein can act independently of each other. We also generated a two amino acid deletion in TPR unit 1 (rrp5delta6 allele). The two mutant forms of Rrp5p were shown to cause a defect in 18S rRNA synthesis with no detectable effects on 5.8S rRNA production. However, the rRNA processing pathway was differently affected in each case. Interestingly, the ROK1 gene which, like RRP5, was previously isolated in a screen for synthetic lethal mutations with snR10 deletion, was here identified as a high copy suppressor of the rrp5delta6 temperature-sensitive allele. ROK1 also acts as a low copy suppressor but cannot bypass the cellular requirement for RRP5. Furthermore, we show that suppression by the Rok1p putative RNA helicase rescues the 18S rRNA synthesis defect caused by the rrp5delta6 mutation.
Collapse
Affiliation(s)
- C Torchet
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, URA C.N.R.S. 1302, Paris, France
| | | | | |
Collapse
|
61
|
Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gélugne JP, Caizergues-Ferrer M. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J 1998; 17:7078-90. [PMID: 9843512 PMCID: PMC1171055 DOI: 10.1093/emboj/17.23.7078] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The small nucleolar ribonucleoprotein particles containing H/ACA-type snoRNAs (H/ACA snoRNPs) are crucial trans-acting factors intervening in eukaryotic ribosome biogenesis. Most of these particles generate the site-specific pseudouridylation of rRNAs while a subset are required for 18S rRNA synthesis. To understand in detail how these particles carry out these functions, all of their protein components have to be characterized. For that purpose, we have affinity-purified complexes containing epitope-tagged Gar1p protein, previously shown to be part of H/ACA snoRNPs. Under the conditions used, three polypeptides of 65, 22 and 10 kDa apparent molecular weight specifically copurify with epitope-tagged Gar1p. The 22 and 10 kDa polypeptides were identified as Nhp2p and a novel protein we termed Nop10p, respectively. Both proteins are conserved, essential and present in the dense fibrillar component of the nucleolus. Nhp2p and Nop10p are specifically associated with all H/ACA snoRNAs and are essential to the function of H/ACA snoRNPs. Cells lacking Nhp2p or Nop10p are impaired in global rRNA pseudouridylation and in the A1 and A2 cleavage steps of the pre-rRNA required for the synthesis of mature 18S rRNA. These phenotypes are probably a direct consequence of the instability of H/ACA snoRNAs and Gar1p observed in cells deprived of Nhp2p or Nop10p. Our results suggest that Nhp2p and Nop10p, together with Cbf5p, constitute the core of H/ACA snoRNPs.
Collapse
Affiliation(s)
- A Henras
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 04, France
| | | | | | | | | | | |
Collapse
|
62
|
Peculis BA, Greer CL. The structure of the ITS2-proximal stem is required for pre-rRNA processing in yeast. RNA (NEW YORK, N.Y.) 1998; 4:1610-22. [PMID: 9848657 PMCID: PMC1369729 DOI: 10.1017/s1355838298981420] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Accurate and efficient processing of pre-rRNA is critical to the accumulation of mature functional ribosomal subunits for maintenance of cell growth. Processing requires numerous factors which act in trans as well as RNA sequence/ structural elements which function in cis. To examine the latter, we have used directed mutagenesis and expression of mutated pre-rRNAs in yeast. Specifically, we tested requirements for formation of an ITS2-proximal stem on processing, a structure formed by an interaction between sequences corresponding to the 3' end of 5.8S rRNA and the 5' end of 25S. Pre-rRNA processing is inhibited in templates encoding mutations that prevent the formation of the ITS2-proximal stem. Compensatory, double mutations, which alter the sequence of this region but restore the structure of the stem, also restore processing, although at lower efficiency. This reduction in efficiency is reflected in decreased levels of mature 5.8S and 25S rRNA and increased levels of 35S pre-rRNA and certain processing intermediates. This phenotype is reminiscent of the biochemical depletion of U8 snoRNA in vertebrates for which the ITS2-proximal stem has been proposed as a potential site for interaction with U8 RNP. Thus, formation of the ITS2-proximal stem may be a requirement common to yeast and vertebrate pre-rRNA processing.
Collapse
Affiliation(s)
- B A Peculis
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Genetics and Biochemistry Branch, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
63
|
Abstract
The vertebrate spliceosomal snRNAs are highly modified by pseudouridylation and 2'-O-methylation. We have identified novel conserved small RNAs that can direct addition of two methyl groups in U6 snRNA, at A47 and C77. These guide RNAs, mgU6-47 (methylation guide for U6 snRNA residue 47) and mgU6-77 contain boxes C, C', D, and D' and associate with fibrillarin. Each RNA can form a duplex with U6 snRNA positioning A47 and C77 for 2'-O-methylation. The antisense element of mgU6-77 can also position C2970 of 28S rRNA for 2'-O-methylation. Depletion of mgU6-77 from Xenopus oocytes prevents 2'-O-methylation of both C77 in U6 and C2970 in 28S; methylation can be restored by injecting in vitro transcribed mgU6-77. Thus, mgU6-77 appears to function in the 2'-O-methylation of two distinct classes of cellular RNA, snRNA, and rRNA.
Collapse
Affiliation(s)
- K T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | |
Collapse
|
64
|
Wiederkehr T, Prétôt RF, Minvielle-Sebastia L. Synthetic lethal interactions with conditional poly(A) polymerase alleles identify LCP5, a gene involved in 18S rRNA maturation. RNA (NEW YORK, N.Y.) 1998; 4:1357-72. [PMID: 9814757 PMCID: PMC1369709 DOI: 10.1017/s1355838298980955] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To identify new genes involved in 3'-end formation of mRNAs in Saccharomyces cerevisiae, we carried out a screen for synthetic lethal mutants with the conditional poly(A) polymerase allele, pap1-7. Five independent temperature-sensitive mutations called Icp1 to Icp5 (for lethal with conditional pap1 allele) were isolated. Here, we describe the characterization of the essential gene LCP5 which codes for a protein with a calculated molecular mass of 40.8 kD. Unexpectedly, we found that mutations in LCP5 caused defects in pre-ribosomal RNA (pre-rRNA) processing, whereas mRNA 3'-end formation in vitro was comparable to wild-type. Early cleavage steps (denoted A0 to A2) that lead to the production of mature 18S rRNA were impaired. In vivo depletion of Lcp5p also inhibited pre-rRNA processing. As a consequence, mutant and depleted cells showed decreased levels of polysomes compared to wild-type cells. Indirect immunofluorescence indicated a predominant localization of Lcp5p in the nucleolus. In addition, antibodies directed against Lcp5p specifically immunoprecipitated the yeast U3 snoRNA snR17, suggesting that the protein is directly involved in pre-rRNA processing.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Basic-Leucine Zipper Transcription Factors
- DNA-Binding Proteins/genetics
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Essential/genetics
- Genes, Fungal/genetics
- Genes, Lethal/genetics
- Molecular Sequence Data
- Mutagenesis
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Pancreatitis-Associated Proteins
- Phenotype
- Polynucleotide Adenylyltransferase/genetics
- Polyribosomes/metabolism
- Protein Biosynthesis/genetics
- RNA Processing, Post-Transcriptional
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nuclear/metabolism
- RNA-Binding Proteins
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Schizosaccharomyces pombe Proteins
Collapse
Affiliation(s)
- T Wiederkehr
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland
| | | | | |
Collapse
|
65
|
Dundr M, Olson MO. Partially processed pre-rRNA is preserved in association with processing components in nucleolus-derived foci during mitosis. Mol Biol Cell 1998; 9:2407-22. [PMID: 9725903 PMCID: PMC25507 DOI: 10.1091/mbc.9.9.2407] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies showed that components implicated in pre-rRNA processing, including U3 small nucleolar (sno)RNA, fibrillarin, nucleolin, and proteins B23 and p52, accumulate in perichromosomal regions and in numerous mitotic cytoplasmic particles, termed nucleolus-derived foci (NDF) between early anaphase and late telophase. The latter structures were analyzed for the presence of pre-rRNA by fluorescence in situ hybridization using probes for segments of pre-rRNA with known half-lives. The NDF did not contain the short-lived 5'-external transcribed spacer (ETS) leader segment upstream from the primary processing site in 47S pre-rRNA. However, the NDF contained sequences from the 5'-ETS core, 18S, internal transcribed spacer 1 (ITS1), and 28S segments and also had detectable, but significantly reduced, levels of the 3'-ETS sequence. Northern analyses showed that in mitotic cells, the latter sequences were present predominantly in 45S-46S pre-rRNAs, indicating that high-molecular weight processing intermediates are preserved during mitosis. Two additional essential processing components were also found in the NDF: U8 snoRNA and hPop1 (a protein component of RNase MRP and RNase P). Thus, the NDF appear to be large complexes containing partially processed pre-rRNA associated with processing components in which processing has been significantly suppressed. The NDF may facilitate coordinated assembly of postmitotic nucleoli.
Collapse
Affiliation(s)
- M Dundr
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | |
Collapse
|
66
|
Lange TS, Borovjagin AV, Gerbi SA. Nucleolar localization elements in U8 snoRNA differ from sequences required for rRNA processing. RNA (NEW YORK, N.Y.) 1998; 4:789-800. [PMID: 9671052 PMCID: PMC1369659 DOI: 10.1017/s1355838298980438] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
U8 small nucleolar RNA (snoRNA) is essential for metazoan ribosomal RNA (rRNA) processing in nucleoli. The sequences and structural features in Xenopus U8 snoRNA that are required for its nucleolar localization were analyzed. Fluorescein-labeled U8 snoRNA was injected into Xenopus oocyte nuclei, and fluorescence microscopy of nucleolar preparations revealed that wild-type Xenopus U8 snoRNA localized to nucleoli, regardless of the presence or nature of the 5' cap on the injected U8 snoRNA. Nucleolar localization was observed when loops or stems in the 5' portion of U8 that are critical for U8 snoRNA function in rRNA processing were mutated. Therefore, sites of interaction in U8 snoRNA that potentially tether it to pre-rRNA are not essential for nucleolar localization of U8. Boxes C and D are known to be nucleolar localization elements (NoLEs) for U8 snoRNA and other snoRNAs of the Box C/D family. However, the spatial relationship of Box C to Box D was not crucial for U8 nucleolar localization, as demonstrated here by deletion of sequences in the two stems that separate them. These U8 mutants can localize to nucleoli and function in rRNA processing as well. The single-stranded Cup region in U8, adjacent to evolutionarily conserved Box C, functions as a NoLE in addition to Boxes C and D. Cup is unique to U8 snoRNA and may help bind putative protein(s) needed for nucleolar localization. Alternatively, Cup may help to retain U8 snoRNA within the nucleolus.
Collapse
Affiliation(s)
- T S Lange
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
67
|
Leader DJ, Clark GP, Brown JW. U14snoRNAs of the fern, Asplenium nidus, contain large sequence insertions compared with those of higher plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:325-30. [PMID: 9582447 DOI: 10.1016/s0167-4781(98)00025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Northern analyses of U14snoRNAs in different plant species showed the expected hybridising band of approximately 120 nt in monocotyledonous and dicotyledonous angiosperms. In the lower plant, Bird's nest fern (Asplenium nidus), U14s were larger and three hybridising RNAs of approximately 190, 210 and 250 nt were observed. RT-PCR cloning of all three size variants using primers to the conserved 5' and 3' ends of higher plant U14snoRNAs showed large insertions in one of the plant-specific regions corresponding in position to the yeast U14-specific Y-domain. The insertions are pyrimidine-rich in their 5' halves and purine-rich in their 3' halves and are likely to be sequestered in stem structures consistent with the proposed model of U14snoRNA secondary structure. The 5' flanking regions of one of the fern U14 variants was generated by PCR and lacked classical plant snRNA promoter elements.
Collapse
Affiliation(s)
- D J Leader
- Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | |
Collapse
|
68
|
Daugeron MC, Linder P. Dbp7p, a putative ATP-dependent RNA helicase from Saccharomyces cerevisiae, is required for 60S ribosomal subunit assembly. RNA (NEW YORK, N.Y.) 1998; 4:566-581. [PMID: 9582098 PMCID: PMC1369640 DOI: 10.1017/s1355838298980190] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Putative ATP-dependent RNA helicases are ubiquitous, highly conserved proteins that are found in most organisms and they are implicated in all aspects of cellular RNA metabolism. Here we present the functional characterization of the Dbp7 protein, a putative ATP-dependent RNA helicase of the DEAD-box protein family from Saccharomyces cerevisiae. The complete deletion of the DBP7 ORF causes a severe slow-growth phenotype. In addition, the absence of Dbp7p results in a reduced amount of 60S ribosomal subunits and an accumulation of halfmer polysomes. Subsequent analysis of pre-rRNA processing indicates that this 60S ribosomal subunit deficit is due to a strong decrease in the production of 27S and 7S precursor rRNAs, which leads to reduced levels of the mature 25S and 5.8S rRNAs. Noticeably, the overall decrease of the 27S pre-rRNA species is neither associated with the accumulation of preceding precursors nor with the emergence of abnormal processing intermediates, suggesting that these 27S pre-rRNA species are degraded rapidly in the absence of Dbp7p. Finally, an HA epitope-tagged Dbp7 protein is localized in the nucleolus. We propose that Dbp7p is involved in the assembly of the pre-ribosomal particle during the biogenesis of the 60S ribosomal subunit.
Collapse
Affiliation(s)
- M C Daugeron
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, Geneva, Switzerland.
| | | |
Collapse
|
69
|
Bortolin ML, Kiss T. Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. RNA (NEW YORK, N.Y.) 1998; 4:445-454. [PMID: 9630250 PMCID: PMC1369630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
While exons were originally defined as coding regions of split eukaryotic genes, introns have long been considered as mainly noncoding "genetic junk." However, recognition that a large number of small nucleolar RNAs (snoRNAs) are processed from introns of pre-mRNAs demonstrated that introns may also code for functional RNAs. Moreover, recent characterization of the mammalian UHG gene that encodes eight box C/D intronic snoRNAs suggested that some genes generate functional RNA products exclusively from their intron regions. In this study, we show that the human U19 box H/ACA snoRNA, which is encoded within the second intron of the U19H gene, represents the only functional RNA product generated from the long U19H primary transcript. Splicing of the U19H transcript, instead of giving rise to a defined RNA, produces a population of diverse U19H RNA molecules. Although the first three exons of the U19H gene are preserved in each processed U19H RNA, the 3' half of the RNA is generated by a series of apparently random splicing events. Because the U19H RNA possesses limited potential for protein coding and shows a predominant nucleoplasmic localization, we suggest that the sole function of the U19H gene is to express the U19 intronic snoRNA. This suggests that, in marked contrast to our previous dogmatic view, genes generating functionally important RNAs exclusively from their intron regions are probably more frequent than has been anticipated.
Collapse
Affiliation(s)
- M L Bortolin
- Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
70
|
Levitan A, Xu YX, Ben-Dov C, Ben-Shlomo H, Zhang Y, Michaeli S. Characterization of a novel trypanosomatid small nucleolar RNA. Nucleic Acids Res 1998; 26:1775-83. [PMID: 9512552 PMCID: PMC147474 DOI: 10.1093/nar/26.7.1775] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trypanosomes possess unique RNA processing mechanisms including trans- splicing of pre-mRNA and RNA editing of mitochondrial transcripts. The previous finding of a trimethylguanosine (TMG) capped U3 homologue in trypanosomes suggests that rRNA processing may be related to the processing in other eukaryotes. In this study, we describe the first trypanosomatid snoRNA that belongs to the snoRNAs that were shown to guide ribose methylation of rRNA. The RNA, identified in the monogenetic trypanosomatid Leptomonas collosoma, was termed snoRNA-2 and is encoded by a multi-copy gene. SnoRNA-2 is 85 nt long, it lacks a 5' cap and possesses the C and D boxes characteristic to all snoRNAs that bind fibrillarin. Computer analysis indicates a potential for base-pairing between snoRNA-2 and 5.8S rRNA, and 18S rRNA. The putative interaction domains obey the rules suggested for the interaction of guide snoRNA with its rRNA target for directing ribose methylation on the rRNA. However, mapping the methylated sites on the 5.8S rRNA and 18S rRNA indicates that the expected site on the 5.8S is methylated, whereas the site on the 18S is not. The proposed interaction with 5.8S rRNA is further supported by the presence of psoralen cross-link sites on snoRNA-2. GenBank search suggests that snoRNA-2 is not related to any published snoRNAs. Because of the early divergence of the Trypanosomatidae from the eukaryotic lineage, the presence of a methylating snoRNA that is encoded by a multi-copy gene suggests that methylating snoRNAs may have evolved in evolution from self-transcribed genes.
Collapse
MESH Headings
- Animals
- Base Composition
- Base Sequence
- DNA Primers
- DNA, Protozoan/chemistry
- DNA, Protozoan/metabolism
- Genes, Protozoan
- Molecular Sequence Data
- Multigene Family
- RNA Precursors/metabolism
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5.8S/metabolism
- RNA, Small Nuclear/biosynthesis
- RNA, Small Nuclear/chemistry
- Trypanosomatina/genetics
- Trypanosomatina/metabolism
Collapse
Affiliation(s)
- A Levitan
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
71
|
Dunbar DA, Baserga SJ. The U14 snoRNA is required for 2'-O-methylation of the pre-18S rRNA in Xenopus oocytes. RNA (NEW YORK, N.Y.) 1998; 4:195-204. [PMID: 9570319 PMCID: PMC1369608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have studied the role of the U14 small nucleolar RNA (snoRNA) in pre-rRNA methylation and processing in Xenopus oocytes. Depletion of U14 in Xenopus oocytes was achieved by co-injecting two nonoverlapping antisense oligonucleotides. Focusing on the earliest precursor, depletion experiments revealed that the U14 snoRNA is essential for 2'-O-ribose methylation at nt 427 of the 18S rRNA. Injection of U14-depleted oocytes with specific U14 mutant snoRNAs indicated that conserved domain B, but not domain A, of U14 is required for the methylation reaction. When the effect of U14 on pre-rRNA processing is assayed, we find only modest effects on 18S rRNA levels, and no effect on the type or accumulation of 18S precursors, suggesting a role for U14 in a step in ribosome biogenesis other than cleavage of the pre-rRNA. Xenopus U14 is, therefore, a Box C/D fibrillarin-associated snoRNA that is required for site-specific 2'-O-ribose methylation of pre-rRNA.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Biological Transport, Active
- Cell Nucleolus/metabolism
- Cytoplasm/metabolism
- Female
- In Vitro Techniques
- Kinetics
- Methylation
- Molecular Sequence Data
- Mutation
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/genetics
- Oocytes/drug effects
- Oocytes/metabolism
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- D A Dunbar
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
72
|
Hitchen J, Ivakine E, Melekhovets YF, Lalev A, Nazar RN. Structural features in the 3' external transcribed spacer affecting intragenic processing of yeast rRNA. J Mol Biol 1997; 274:481-90. [PMID: 9417929 DOI: 10.1006/jmbi.1997.1376] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A highly conserved extended hairpin structure in the 3' external transcribed spacer (3' ETS) region of nascent eukaryotic rRNA transcripts is essential for the maturation of the large ribosomal subunit RNAs (5.8 S and 25 to 28 S rRNAs). Systematic changes were introduced into this structure by PCR-mediated mutagenesis and the mutant rDNAs were expressed in vivo to determine the structural features that are essential for rRNA maturation. Changes in the lower half of the stem or the large loop at the end had little or no effect on the maturation of either the 5.8 S or 25 S rRNA, but changes that disrupted secondary structure in the upper half of this stem had equal and dramatic effects on both RNAs. When the RNA stem was incubated with a cellular protein extract, gel retardation studies indicated that the stem forms a ribonucleoprotein complex, and a comparison with mutant RNA indicated that protein binding could be compromised by changes that were critical for rRNA maturation. Sequence comparisons with other spacer regions as well as snRNAs reveal some structural analogy, which, when taken together with the mutational studies, raise the possibility that this hairpin functions during RNA processing in a manner that may be analogous with that of free snRNPs.
Collapse
MESH Headings
- Base Sequence
- Deoxyribonucleases, Type II Site-Specific/genetics
- Molecular Sequence Data
- Mutagenesis
- Nucleic Acid Conformation
- Plasmids/genetics
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- Schizosaccharomyces/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- J Hitchen
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
73
|
Abstract
Eukaryotic cells contain an extraordinarily complex population of small nucleolar RNAs (snoRNAs). During its brief lifetime, each human pre-rRNA molecule will transiently associate with approximately 150 different snoRNA species. In the past year our understanding of snoRNAs has been clarified by the recognition that the snoRNA population can be divided into a small number of groups which are structurally and functionally distinct. The two largest groups of snoRNAs direct the site-specific modification of the pre-rRNA at positions of 2'-O-methylation and pseudouridine formatio. Other groups of snoRNAs function in pre-rRNA cleavage and in the formation of the correct structure of the pre-rRNA.
Collapse
Affiliation(s)
- D Tollervey
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | | |
Collapse
|
74
|
Maden BE, Hughes JM. Eukaryotic ribosomal RNA: the recent excitement in the nucleotide modification problem. Chromosoma 1997; 105:391-400. [PMID: 9211966 DOI: 10.1007/bf02510475] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eukaryotic ribosomal RNA (rRNA) contains numerous modified nucleotides: about 115 methyl groups and some 95 pseudouridines in vertebrates; about 65 methyl groups and some 45 pseudouridines in Saccharomyces cerevisiae. All but about ten of the methyl groups are ribose methylations. The remaining ten are on heterocyclic bases. The ribose methylations occur very rapidly upon the primary rRNA transcript in the nucleolus, probably on nascent chains, and they appear to play an important role in ribosome maturation, at least in vertebrates. All of the methyl groups occur in the conserved core of rRNA. However, there is no consensus feature of sequence or secondary structure for the methylation sites; thus the nature of the signal(s) for site-specific methylations had until recently remained a mystery. The situation changed dramatically with the discovery that many of the ribose methylation sites are in regions that are precisely complementary to small nucleolar RNA (snoRNA) species. Experimental evidence indicates that structural motifs within the snoRNA species do indeed pinpoint the precise nucleotides to be methylated by the putative 2'-O-methyl transferase(s). Regarding base methylations, the gene DIM1, responsible for modification of the conserved dimethyladenosines near the 3' end of 18S rRNA, has been shown to be essential for viability in S. cerevisiae and is suggested to play a role in the nucleocytoplasmic transport of the small ribosomal subunit. Recently nearly all of the pseudouridines have also been mapped in the rRNA of several eukaryotic species. As is the case for ribose methylations, most pseudouridine modifications occur rapidly upon precursor rRNA, within core sequences, and in a variety of local primary and secondary structure environments. In contrast to ribose methylation, no potentially unifying process has yet been identified for the enzymic recognition of the many pseudouridine modification sites. However, the new data afford the basis for a search for any potential involvement of snoRNAs in the recognition process.
Collapse
Affiliation(s)
- B E Maden
- School of Biological Sciences, Life Sciences Building, University of Liverpool, Liverpool L69 7ZB, UK
| | | |
Collapse
|
75
|
Morrissey JP, Tollervey D. U14 small nucleolar RNA makes multiple contacts with the pre-ribosomal RNA. Chromosoma 1997; 105:515-22. [PMID: 9211979 DOI: 10.1007/bf02510488] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The small nucleolar RNA (snoRNA) U14 has two regions of extended primary sequence complementarity to the 18S rRNA. The 3' region (domain B) shows the consensus structure for the methylation guide class of snoRNAs, whereas base-pairing between the 5' region (domain A) and the 18S rRNA sequence is required for the formation of functional ribosomes. Between domains A and B lies another essential region (domain Y). Here we report that yeast U14 can be cross-linked in vivo to the pre-rRNA; cross-linking is detected exclusively with the 35S primary transcript. Many nucleotides in U14 that lie outside of domains A and B are cross-linked to the pre-rRNA; in particular the essential domain Y region is cross-linked at several sites. U14 is, therefore, in far more extensive contact with the pre-rRNA than predicted from simple base-pairing models. Moreover, U14 can be cross-linked to other small RNA species. The functional interactions made by U14 during ribosome synthesis are likely to be very complex.
Collapse
MESH Headings
- Base Composition
- Base Sequence
- Binding Sites
- Cell Nucleolus/genetics
- Cross-Linking Reagents
- Molecular Sequence Data
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- J P Morrissey
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
76
|
Rivera-León R, Gerbi SA. Delocalization of some small nucleolar RNPs after actinomycin D treatment to deplete early pre-rRNAs. Chromosoma 1997; 105:506-14. [PMID: 9211978 DOI: 10.1007/bf02510487] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Retention of some components within the nucleolus correlates with the presence of rRNA precursors found early in the rRNA processing pathway. Specifically, after most 40S, 38S and 36S pre-rRNAs have been depleted by incubation of Xenopus kidney cells in 0.05 microg/ml actinomycin D for 4 h, only 69% U3 small nucleolar RNA (snoRNA), 68% U14 snoRNA and 72% fibrillarin are retained in the nucleolus as compared with control cells. These nucleolar components are important for processing steps in the pathway that gives rise to 18S rRNA. In contrast, U8 snoRNA, which is used for 5.8S and 28S rRNA production, is fully retained in the nucleolus after actinomycin D treatment. Therefore, U8 snoRNA is in a different category than U3 and U14 snoRNA and fibrillarin. It is proposed that U3 and U14 snoRNA and fibrillarin, but not U8 snoRNA, bind to the external transcribed spacer or internal transcribed spacer 1, and when these binding sites are lost after actinomycin D treatment some of these components cannot be retained in the nucleolus. Other binding sites may also exist, which would explain why only some and not all of these components are lost from the nucleolus.
Collapse
Affiliation(s)
- R Rivera-León
- Brown University, Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, RI 02912, USA
| | | |
Collapse
|
77
|
van Nues RW, Venema J, Planta RJ, Raué HA. Variable region V1 of Saccharomyces cerevisiae 18S rRNA participates in biogenesis and function of the small ribosomal subunit. Chromosoma 1997; 105:523-31. [PMID: 9211980 DOI: 10.1007/bf02510489] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of helix 6, which forms the major portion of the most 5'-located expansion segment of Saccharomyces cerevisiae 18S rRNA, was studied by in vivo mutational analysis. Mutations that increased the size of the helical part and/or the loop, even to a relatively small extent, abolished 18S rRNA formation almost completely. Concomitantly, 35S pre-rRNA and an abnormal 23S precursor species accumulated. rDNA units containing these mutations did not support cell growth. A deletion removing helix 6 almost completely, on the other hand, had a much less severe effect on the formation of 18S rRNA, and cells expressing only the mutant rRNA remained able to grow, albeit at a much reduced rate. Disruption of the apical A.U base pair by a single point mutation did not cause a noticeable reduction in the level of 18S rRNA but did result in a twofold lower growth rate of the cells. This effect could not be reversed by introduction of a second point mutation that restores base pairing. We conclude that both the primary and the secondary structure of helix 6 play an important role in the formation and the biological function of the 40S subunit.
Collapse
Affiliation(s)
- R W van Nues
- Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
78
|
Ganot P, Bortolin ML, Kiss T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 1997; 89:799-809. [PMID: 9182768 DOI: 10.1016/s0092-8674(00)80263-9] [Citation(s) in RCA: 469] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During the nucleolar maturation of eukaryotic ribosomal RNAs, many selected uridines are converted into pseudouridine by a thus far undefined mechanism. The nucleolus contains a large number of small RNAs (snoRNAs) that share two conserved sequence elements, box H and ACA. In this study, we demonstrate that site-specific pseudouridylation of rRNAs relies on short ribosomal signal sequences that are complementary to sequences in box H/ACA snoRNAs. Genetic depletion and reconstitution studies on yeast snR5 and snR36 snoRNAs demonstrate that box H/ACA snoRNAs function as guide RNAs in rRNA pseudouridylation. These results define a novel function for snoRNAs and further reinforce the idea that base pairing is the most common way to obtain specific substrate-"enzyme" interactions during rRNA maturation.
Collapse
Affiliation(s)
- P Ganot
- Laboratoire de Biologie Moléculaire du CNRS, Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
79
|
Xia L, Watkins NJ, Maxwell ES. Identification of specific nucleotide sequences and structural elements required for intronic U14 snoRNA processing. RNA (NEW YORK, N.Y.) 1997; 3:17-26. [PMID: 8990395 PMCID: PMC1369458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vertebrate U14 snoRNAs are encoded within hsc70 pre-mRNA introns and U14 biosynthesis occurs via an intron-processing pathway. We have shown previously that essential processing signals are located in the termini of the mature U14 molecule and replacement of included boxes C or D with oligo C disrupts snoRNA synthesis. The experiments detailed here now define the specific nucleotide sequences and structures of the U14 termini that are essential for intronic snoRNA processing. Mutagenesis studies demonstrated that a 5', 3'-terminal stem of at least three contiguous base pairs is required. A specific helix sequence is not necessary and this stem may be extended to as many as 15 base pairs without affecting U14 processing. The spatial positioning of boxes C and D with respect to the terminal stem is also important. Detailed analysis of boxes C and D revealed that both consensus sequences possess essential nucleotides. Some, but not all, of these critical nucleotides correspond to those required for the stable accumulation of nonintronic yeast U14 snoRNA. The presence of box C and D consensus sequences flanking a terminal stem in many snoRNA species indicates the importance of this "terminal core motif" for snoRNA processing.
Collapse
Affiliation(s)
- L Xia
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | | | |
Collapse
|
80
|
Venema J, Tollervey D. RRP5 is required for formation of both 18S and 5.8S rRNA in yeast. EMBO J 1996; 15:5701-14. [PMID: 8896463 PMCID: PMC452314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S) are synthesized as a single precursor which is subsequently processed into the mature rRNAs by a complex series of cleavage and modification reactions. In the yeast Saccharomyces cerevisiae, the early pre-rRNA cleavages at sites A0, A1 and A2, required for the synthesis of 18S rRNA, are inhibited in strains lacking RNA or protein components of the U3, U14, snR10 and snR30 small nucleolar ribonucleoproteins (snoRNPs). The subsequent cleavage at site A3, required for formation of the major, short form of 5.8S rRNA, is carried out by another ribonucleoprotein, RNase MRP. A screen for mutations showing synthetic lethality with deletion of the non-essential snoRNA, snR10, identified a novel gene, RRP5, which is essential for viability and encodes a 193 kDa nucleolar protein. Genetic depletion of Rrp5p inhibits the synthesis of 18S rRNA and, unexpectedly, also of the major short form of 5.8S rRNA. Pre-rRNA processing is concomitantly impaired at sites A0, A1, A2 and A3. This distinctive phenotype makes Rrp5p the first cellular component simultaneously required for the snoRNP-dependent cleavage at sites A0, A1 and A2 and the RNase MRP-dependent cleavage at A3 and provides evidence for a close interconnection between these processing events. Putative RRP5 homologues from Caenorhabditis elegans and humans were also identified, suggesting that the critical function of Rrp5p is evolutionarily conserved.
Collapse
Affiliation(s)
- J Venema
- EMBL, Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|
81
|
Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 1996; 85:1077-88. [PMID: 8674114 DOI: 10.1016/s0092-8674(00)81308-2] [Citation(s) in RCA: 622] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eukaryotic cells contain many fibrillarin-associated small nucleolar RNAs (snoRNAs) that possess long complementarities to mature rRNAs. Characterization of 21 novel antisense snoRNAs from human cells followed by genetic depletion and reconstitution studies on yeast U24 snoRNA provides evidence that this class of snoRNAs is required for site-specific 2'-O-methylation of preribosomal RNA (pre-rRNA). Antisense sno-RNAs function through direct base-pairing interactions with pre-rRNA. The antisense element, together with the D or D' box of the snoRNA, provide the information necessary to select the target nucleotide for the methyltransfer reaction. The conclusion that sno-RNAs function in covalent modification of the sugar moieties of ribonucleotides demonstrates that eukaryotic small nuclear RNAs have a more versatile cellular function than earlier anticipated.
Collapse
Affiliation(s)
- Z Kiss-László
- Laboratorie de Biologie Moléculaire Eucaryote du CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
82
|
Beven AF, Lee R, Razaz M, Leader DJ, Brown JW, Shaw PJ. The organization of ribosomal RNA processing correlates with the distribution of nucleolar snRNAs. J Cell Sci 1996; 109 ( Pt 6):1241-51. [PMID: 8799814 DOI: 10.1242/jcs.109.6.1241] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the organization of pre-rRNA processing by confocal microscopy in pea root cell nucleoli using a variety of probes for fluorescence in situ hybridization and immunofluorescence. Our results show that transcript processing within the nucleolus is spatially highly organized. Probes to the 5' external transcribed spacer (ETS) and first internal transcribed spacer (ITS1) showed that the excision of the ETS occurred in a sub-region of the dense fibrillar component (DFC), whereas the excision of ITS1 occurred in the surrounding region, broadly corresponding to the granular component. In situ labelling with probes to the snoRNAs U3 and U14, and immunofluorescence labelling with antibodies to fibrillarin and SSB1 showed a high degree of coincidence with the ETS pattern, confirming that ETS cleavage and 18 S rRNA production occur in the DFC. ETS, U14, fibrillarin and SSB1 showed a fine substructure within the DFC comprising closely packed small foci, whereas U3 appeared more diffuse throughout the DFC. A third snoRNA, 7-2/MRP, was localised to the region surrounding the ETS, in agreement with its suggested role in ITS1 cleavage. All three snoRNAs were also frequently observed in numerous small foci in the nucleolar vacuoles, but none was detectable in coiled bodies. Antibodies to fibrillarin and SSB1 labelled coiled bodies strongly, though neither protein was detected in the nucleolar vacuoles. During mitosis, all the components analyzed, including pre-rRNA, were dispersed through the cell at metaphase, then became concentrated around the periphery of all the chromosomes at anaphase, before being localized to the developing nucleoli at late telophase. Pre-rRNA (ETS and ITS1 probes), U3 and U14 were also concentrated into small bodies, presumed to be pre-nucleolar bodies at anaphase.
Collapse
Affiliation(s)
- A F Beven
- Department of Cell Biology, John Innes Centre, Colney, Norwich, UK
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
A yeast gene homologous to bacterial RNase III (RNT1) encodes a double-strand-specific endoribonuclease essential for ribosome synthesis. Two rRNA processing events are blocked in cells temperature sensitive for RNT1: cleavage at the snoRNA-dependent AO site in the 5' ETS and cleavage in the 3' ETS. Recombinant RNT1 protein accurately cleaves a synthetic 5' ETS RNA at AO site in vitro, in the absence of snoRNA or other factors. A synthetic 3' ETS substrate is specifically cleaved at a site 21 nt downstream of the 3' end 28S rRNA. These observations show that a protein endonuclease collaborates with snoRNAs in eukaryotic rRNA processing and exclude a catalytic role for snoRNAs at certain pre-rRNA cleavage.
Collapse
Affiliation(s)
- S A Elela
- Biology Department, University of California, Santa Cruz 95064 ,USA
| | | | | |
Collapse
|
84
|
Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J 1996; 15:1121-31. [PMID: 8605882 PMCID: PMC450010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel class of small nucleolar RNAs (snoRNAs), encoded in introns of protein coding genes and originating from processing of their precursor molecules, has recently been described. The L1 ribosomal protein (r-protein) gene of Xenopus laevis and its human homologue contain two snoRNAs, U16 and U18. It has been shown that these snoRNAs are excised from their intron precursors by endonucleolytic cleavage and that their processing is alternative to splicing. Two sequences, internal to the snoRNA coding region, have been identified as indispensable for processing the conserved boxes C and D. Competition experiments have shown that these sequences interact with diffusible factors which can bind both the pre-mRNA and the mature U16 snoRNA. Fibrillarin, which is known to associate with complexes formed on C and D boxes of other snoRNAs, is found in association with mature U16 RNA, as well as with its precursor molecules. This fact suggests that the complex formed on the pre-mRNA remains bound to U16 throughout all the processing steps. We also show that the complex formed on the C and D boxes is necessary to stabilize mature snoRNA.
Collapse
Affiliation(s)
- E Caffarelli
- Centro Acidi Nucleici, CNR, Universita La Sapienza, Roma, Italy
| | | | | | | | | | | |
Collapse
|
85
|
Watkins NJ, Leverette RD, Xia L, Andrews MT, Maxwell ES. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA (NEW YORK, N.Y.) 1996; 2:118-133. [PMID: 8601279 PMCID: PMC1369357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Essential elements for intronic U14 processing have been analyzed by microinjecting various mutant hsc70/Ul4 pre-mRNA precursors into Xenopus oocyte nuclei. Initial truncation experiments revealed that elements sufficient for U14 processing are located within the mature snoRNA sequence itself. Subsequent deletions within the U14 coding region demonstrated that only the terminal regions of the folded U14 molecule containing con- served nucleotide boxes C and D are required for processing. Mutagenesis of either box C or box D completely blocked U14 processing. The importance of boxes C and D was confirmed with the excision of appropriately sized U3 and U8 fragments containing boxes C and D from an hsc7O pre-mRNA intron. Competition studies indicate that a trans-acting factor (protein?) is binding this terminal motif and is essential for U14 processing. Competition studies also revealed that this factor is common to both intronic and non-intronic snoRNAs possessing nucleotide boxes C and D. Immunoprecipitation of full-length and internally deleted U14 snoRNA molecules demonstrated that the terminal region containing boxes C and D does not bind fibrillarin. Collectively, our results indicate that a trans-acting factor (different from fibrillarin) binds to the box C- and D-containing terminal motif of U14 snoRNA, thereby stabilizing the intronic snoRNA sequence in an RNP complex during processing.
Collapse
Affiliation(s)
- N J Watkins
- Department of Biochemistry, North Carolina State University, Raleigh, 27695-7622, USA
| | | | | | | | | |
Collapse
|
86
|
Brulé F, Venema J, Ségault V, Tollervey D, Branlant C. The yeast Hansenula wingei U3 snoRNA gene contains an intron and its coding sequence co-evolved with the 5' ETS region of the pre-ribosomal RNA. RNA (NEW YORK, N.Y.) 1996; 2:183-197. [PMID: 8601284 PMCID: PMC1369362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 5' external transcribed spacer (ETS) region of the pre-rRNA in Saccharomyces cerevisiae contains a sequence with 10 bp of perfect complementarity to the U3 snoRNA. Base pairing between these sequences has been shown to be required for 18S rRNA synthesis, although interaction over the full 10 bp of complementarity is not required. We have identified the homologous sequence in the 5' ETS from the evolutionarily distant yeast Hansenula wingei; unexpectedly, this shows two sequence changes in the region predicted to base pair to U3. By PCR amplification and direct RNA sequencing, a single type of U3 snoRNA coding sequence was identified in H. wingei. As in the S. cerevisiae U3 snoRNA genes, it is interrupted by an intron with features characteristic of introns spliced in a spliceosome. Consequently, this unusual property is not restricted to the yeast genus Saccharomyces. The introns of the H. wingei and S. cerevisiae U3 genes show strong differences in length and sequence, but are located at the same position in the U3 sequence, immediately upstream of the phylogenetically conserved Box A region. The 3' domains of the H. wingei and S. cerevisiae U3 snoRNAs diverge strongly in primary sequence, but have very similar predicted secondary structures. The 5' domains, expected to play a direct role in pre-ribosomal RNA maturation, are more conserved. The sequence predicted to base pair to the pre-rRNA contains two nucleotide substitutions in H. wingei that restore 10 bp of perfect complementarity to the 5' ETS. This is a strong phylogenetic evidence for the importance of the U3/pre-rRNA interaction.
Collapse
Affiliation(s)
- F Brulé
- Laboratoire d'Enzymologie et de Génie Génétique, URA CNRS 457, Université de Nancy l, France
| | | | | | | | | |
Collapse
|
87
|
Abstract
RNase MRP cleaves the yeast pre-rRNA at a site in internal transcribed spacer 1 (ITS1) and this cleavage can be reproduced in vitro by the highly purified enzyme. Two protein components (Pop1p and Pop2p) have been identified which are common to yeast RNase MRP and RNase P. Moreover, purified RNase P can also cleave the pre-rRNA substrate in vitro, underlining the similarities between these particles. Genetic evidence suggests that RNase MRP functionally interacts with the snoRNPs which are required for other pre-RNA processing reactions.
Collapse
Affiliation(s)
- D Tollervey
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
88
|
Abstract
RNase MRP is a ribonucleoprotein enzyme with a structure similar to RNase P. It is required for normal processing of precursor rRNA, cleaving it in the Internal Transcribed Spacer 1.
Collapse
Affiliation(s)
- L Lindahl
- Department of Biological Sciences, UMBC-University of Maryland Baltimore County 21228, USA
| | | |
Collapse
|
89
|
Abstract
Post-transcriptional processing of precursor-ribosomal RNA comprises a complex pathway of endonucleolytic cleavages, exonucleolytic digestion and covalent modifications. The general order of the various processing steps is well conserved in eukaryotic cells, but the underlying mechanisms are largely unknown. Recent analysis of pre-rRNA processing, mainly in the yeast Saccharomyces cerevisiae, has significantly improved our understanding of this important cellular activity. Here we will review the data that have led to our current picture of yeast pre-rRNA processing.
Collapse
Affiliation(s)
- J Venema
- European Molecular Biology Laboratory (EMBL), Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|
90
|
Bachellerie JP, Nicoloso M, Qu LH, Michot B, Caizergues-Ferrer M, Cavaille J, Renalier MH. Novel intron-encoded small nucleolar RNAs with long sequence complementarities to mature rRNAs involved in ribosome biogenesis. Biochem Cell Biol 1995; 73:835-43. [PMID: 8721999 DOI: 10.1139/o95-091] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently, several new snoRNAs encoded in introns of genes coding for ribosomal, ribosome-associated, or nucleolar proteins have been discovered. We are presently studying four of these intronic snoRNAs. Three of them, U20, U21, and U24, are closely related to each other on a structural basis. They are included in genes encoding nucleolin and ribosomal proteins L5 and L7a, respectively, in warm-blooded vertebrates. These three metabolically stable snoRNAs interact with nucleolar protein fibrillarin. In addition, they display common features that make them strikingly related to snoRNA U14. U14 contains two tracts of complementarity to 18S rRNA, which are required for the production of 18S rRNA. U20 displays a 21 nucleotide (nt) long complementarity to 18S rRNA. U21 contains a 13 nt complementarity to an invariant sequence in eukaryotic 28S rRNA. U24 has two separate 12 nt long complementarities to a highly conserved tract of 28S rRNA. Phylogenetic evidences support the fundamental importance of the pairings of these three snoRNAs to pre-rRNA, which could be involved in a control of pre-rRNA folding during preribosome assembly. By transfection of mouse cells, we have also analyzed the processing of U20 and found that the -cis acting signals for its processing from intronic RNA are restricted to the mature snoRNA sequence. Finally, we have documented changes of host genes for these three intronic snoRNAs during the evolution of eukaryotes.
Collapse
Affiliation(s)
- J P Bachellerie
- Laboratoire de Biologic Moléculaire Eucaryote du C.N.R.S., Université Paul-Sahatier, France
| | | | | | | | | | | | | |
Collapse
|
91
|
Lafontaine D, Tollervey D. Trans-acting factors in yeast pre-rRNA and pre-snoRNA processing. Biochem Cell Biol 1995; 73:803-12. [PMID: 8721996 DOI: 10.1139/o95-088] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major intermediates in the pathway of pre-rRNA processing in yeast and other eukaryotes were originally identified by biochemical analyses. However, as a result of the analysis of the effects of mutations in trans-acting factors, the yeast pre-rRNA processing pathway is now characterized in far more detail than that of other eukaryotes. These analyses have led to the identification of processing sites and intermediates that were either too close in size or too short lived to detected by biochemical analyses alone. In addition, it was generally unclear whether pre-rRNA processing steps were endonucleolytic or exonucleolytic; analyses of trans-acting factors is now revealing a complex mixture of endonucleolytic and exonucleolytic processing steps. Many of the small nucleolar RNAs (snoRNAs) are excised from larger precursors. Analyses of trans-acting factors are also revealing details of pre-snoRNA processing in yeast. Interestingly, factors involved in pre-snoRNA processing turn out to be components that also function in pre-rRNA processing, suggesting a potential mechanism for the coregulation of rRNA and snoRNA synthesis. In general, very little is known about the regulation of pre-rRNA processing steps. The best candidate for a system regulating specific pre-rRNA processing reactions has recently been revealed by the analysis of a yeast pre-RNA methylase. Here we will review recent data on the trans-acting factors involved in yeast ribosome synthesis and discuss how these analyses have contributed to our current view of this complex process.
Collapse
Affiliation(s)
- D Lafontaine
- European Molecular Biology Laboratory (EMBL), Postfach 10 22 09, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
92
|
Abstract
A growing list of small nucleolar RNAs (snoRNAs) has been characterized in eukaryotes. They are transcribed by RNA polymerase II or III; some snoRNAs are encoded in the introns of other genes. The nonintronic polymerase II transcribed snoRNAs receive a trimethylguanosine cap, probably in the nucleus, and move to the nucleolus. snoRNAs are complexed with proteins, sometimes including fibrillarin. Localization and maintenance in the nucleolus of some snoRNAs requires the presence of initial precursor rRNA (pre-rRNA). Many snoRNAs have conserved sequence boxes C and D and a 3' terminal stem; the role of these features are discussed. Functional assays done for a few snoRNAs indicate their roles in rRNA processing for cleavage of the external and internal transcribed spacers (ETS and ITS). U3 is the most abundant snoRNA and is needed for cleavage of ETS1 and ITS1; experimental results on U3 binding sites in pre-rRNA are reviewed. 18S rRNA production also needs U14, U22, and snR30 snoRNAs, whereas U8 snoRNA is needed for 5.8S and 28S rRNA production. Other snoRNAs that are complementary to 18S or 28S rRNA might act as chaperones to mediate RNA folding. Whether snoRNAs join together in a large rRNA processing complex (the "processome") is not yet clear. It has been hypothesized that such complexes could anchor the ends of loops in pre-rRNA containing 18S or 28S rRNA, thereby replacing base-paired stems found in pre-rRNA of prokaryotes.
Collapse
|
93
|
Bachellerie JP, Michot B, Nicoloso M, Balakin A, Ni J, Fournier MJ. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem Sci 1995; 20:261-4. [PMID: 7667877 DOI: 10.1016/s0968-0004(00)89039-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A growing subset of small nucleolar RNAs (snoRNAs) contains long stretches of sequence complementarity to conserved sequences in mature ribosomal RNA (rRNA). This article reviews current knowledge about these complementarities and proposes that these antisense snoRNAs might function in pre-rRNA folding, base modification and ribosomal ribonucleoprotein assembly, in some cases acting as RNA chaperones.
Collapse
Affiliation(s)
- J P Bachellerie
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | | | | | | | | | | |
Collapse
|
94
|
Lübben B, Fabrizio P, Kastner B, Lührmann R. Isolation and characterization of the small nucleolar ribonucleoprotein particle snR30 from Saccharomyces cerevisiae. J Biol Chem 1995; 270:11549-54. [PMID: 7744794 DOI: 10.1074/jbc.270.19.11549] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nucleolus of the yeast Saccharomyces cerevisiae contains the small nucleolar RNA snR30 (snoRNA), that is found associated with at least two proteins, NOP1 and GAR1. All three of these molecules are essential for the cell's viability and have been implicated in pre-rRNA maturation. NOP1 and GAR1 are believed to be general rRNA-processing factors or, alternatively, integral protein components of the small nucleolar ribonucleoprotein particle snR30 (snoRNP). In this paper, we describe procedures for the biochemical isolation of snR30 RNP, and we identify seven snR30 RNP proteins of molecular masses of 10, 23, 25, 38, 46, 48, and 65 kDa, including the previously reported GAR1 protein. Additional proteins, including NOP1, may also be components of snR30 RNP but are lost during our stringent isolation procedure. The 10-, 23-, and 25-kDa (GAR1) and 65-kDa proteins remain tightly associated with the snR30 RNA even after isopycnic sedimentation in cesium sulfate gradients. Electron microscopy of Mono Q-purified snR30 RNPs show a slightly elongated two-domain structure approximately 20 nm long and 14 nm wide.
Collapse
Affiliation(s)
- B Lübben
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
95
|
Barbhaiya H, Leverette RD, Liu J, Maxwell ES. Processing of U14 small nucleolar RNA from three different introns of the mouse 70-kDa-cognate-heat-shock-protein pre-messenger RNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:765-71. [PMID: 7813466 DOI: 10.1111/j.1432-1033.1994.t01-1-00765.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
U14 is a small nucleolar RNA required for the processing of eukaryotic rRNA precursors. The U14 genes of mouse as well as rat, hamster, human, Xenopus and trout are encoded within introns of the constitutively expressed 70-kDa-cognate-heat-shock protein gene (hsc70). We demonstrate here that U14.6 and U14.8 snRNAs, in addition to the previously characterized U14.5, are processed from their respective introns when hsc70 pre-mRNA transcripts containing these intronic snRNAs are injected into Xenopus oocyte nuclei. Identical intermediates are observed in the processing of all three mouse U14 snRNAs indicating similar processing pathways. The production of U14 snRNA processing intermediates possessing either mature 5' or 3' termini demonstrated that processing can occur at either end independent of maturation at the other terminus. Processing of U14.6 from hsc70 intron 6 is not dependent upon the base pairing of intron sequences flanking the 5' and 3' termini of the encoded U14 snRNA molecule. Therefore, excision of an intronic snRNA does not require extending the 5',3' terminal helix of U14 snRNA secondary structure into flanking intron regions as originally suggested. Microinjection of the plasmid vector containing the mouse hsc70/U14.5 snRNA coding region revealed that undetermined plasmid sequences can serve as non-specific promoters to generate spurious RNA transcripts. The processing of these transcripts and examination of the plasmid-initiated transcriptional-start sites indicated that a U14-specific promoter is not present in or around the intron-encoded U14.5 gene. These results strongly suggest that biosynthesis of mouse U14 snRNA results from an intron-processing pathway.
Collapse
Affiliation(s)
- H Barbhaiya
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622
| | | | | | | |
Collapse
|
96
|
Durovic P, Dennis PP. Separate pathways for excision and processing of 16S and 23S rRNA from the primary rRNA operon transcript from the hyperthermophilic archaebacterium Sulfolobus acidocaldarius: similarities to eukaryotic rRNA processing. Mol Microbiol 1994; 13:229-42. [PMID: 7527119 DOI: 10.1111/j.1365-2958.1994.tb00418.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the hyperthermophilic archaebacterium Sulfolobus acidocaldarius, the mature 16S and 23S rRNA are generated by processing of a 5000-nucleotide transcript. Analysis of intermediates that accumulate in vivo indicates that the transcript contains 11 separate processing sites. The processing and maturation of 23S rRNA appears to follow the typical archaebacterial pathway, utilizing a bulge-helix-bulge motif within the 23S processing helix as the substrate for an excision endonuclease. The precursor 23S rRNA that is released is trimmed at its 5' and 3' ends to generate the mature 23S rRNA found in 50S ribosomal subunits. The pathway for processing and maturation of 16S rRNA is distinctive and does not use the bulge-helix-bulge motif in the 16S processing stem. Instead, the transcript is cleaved at several novel positions in the 5' leader and in the 3' intercistronic sequence. The excised precursor 16S is trimmed at the 5' end but an extra 60 nucleotides of what is normally spacer sequence is retained at the 3' end. The elongated 16S rRNA is present in active 30S subunits. An in vitro processing system for the 16S rRNA has been established. The RNA substrate containing the entire 144-nucleotide 5' leader and the first 72 nucleotides of 16S sequence is cleaved at the same positions observed in vivo by an endonuclease activity present in cell extract. These results demonstrate (i) that the 16S processing helix is neither utilized nor required for leader processing, and (ii) that complete maturation to the 5' end of 16S rRNA can occur in the absence of concomitant ribosome assembly and in the absence of all but the first 72 nucleotides of the 16S rRNA sequence. The endonuclease activity responsible for cleavage of the 5' leader substrate is sensitive to nuclease digestion, suggesting that it contains an essential RNA component. The cleavage sites appear to be located within regions of irregular secondary structure and have a consensus sequence of GAUUCC.
Collapse
MESH Headings
- Bacterial Proteins/metabolism
- Base Sequence
- Consensus Sequence
- Endoribonucleases/metabolism
- Eukaryotic Cells/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Operon
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Sulfolobus/genetics
- Sulfolobus/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- P Durovic
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
97
|
Niu XH, Hartshorne T, He XY, Agabian N. Characterization of putative small nuclear RNAs from Giardia lamblia. Mol Biochem Parasitol 1994; 66:49-57. [PMID: 7527125 DOI: 10.1016/0166-6851(94)90035-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Small nuclear RNAs (snRNAs), which have roles in RNA metabolism, have been found in all eukaryotic cells. Candidate snRNAs were identified in the primitive protozoan parasite, Giardia lamblia, by either immunoprecipitation of total RNA with antiserum directed against the 2,2,7-trimethylguanosine cap structure characteristic of snRNAs or by Northern hybridization with oligonucleotide probes complementary to snRNA consensus sequences. Isolated putative snRNAs include eight 2,2,7-trimethylguanosine-capped species: RNAs A through H, and one non-2,2,7-trimethylguanosine-capped species: RNA J. Single copy genes encoding RNA D, RNA H and RNA J were cloned and sequenced, and the 5' end of each RNA was determined by primer extension analysis. Certain characteristics suggest tentative identification of these Giardia RNAs as nucleolar RNAs with possible roles in rRNA processing.
Collapse
Affiliation(s)
- X H Niu
- Intercampus Program in Molecular Parasitology, School of Pharmacy, University of California, San Francisco 94143-1204
| | | | | | | |
Collapse
|
98
|
Vera A, Sugiura M. A novel RNA gene in the tobacco plastid genome: its possible role in the maturation of 16S rRNA. EMBO J 1994; 13:2211-7. [PMID: 7514532 PMCID: PMC395076 DOI: 10.1002/j.1460-2075.1994.tb06498.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A small plastid-encoded RNA (spRNA, 218 nt) has been detected in tobacco. The corresponding locus (sprA) does not contain any open reading frame and is actively transcribed from its own promoter, as shown by ribonuclease protection assays using in vitro capped RNAs. Gel-shift and UV-crosslinking experiments showed the formation of a specific complex between spRNA and chloroplast polypeptides. The mobility of the complex was further shifted when a transcript bearing part of the 16S rRNA leader sequence was added to the incubation mixture. Glycerol gradient fractionation of a chloroplast lysate indicated a preferential sedimentation of spRNA at 15-20S and 70S. These observations, and the potential base-pairing with the leader sequence of pre-16S rRNA, suggest a role for spRNA in chloroplast ribosome biogenesis, i.e. 16S rRNA maturation. By sequencing of tomato plastid DNA and heterologous northern hybridizations, the presence of sprA homologs and their expression in a number of dicot plants have also been shown.
Collapse
Affiliation(s)
- A Vera
- Center for Gene Research, Nagoya University, Japan
| | | |
Collapse
|
99
|
Eichler DC, Craig N. Processing of eukaryotic ribosomal RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 49:197-239. [PMID: 7863007 DOI: 10.1016/s0079-6603(08)60051-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In summary, it can be argued that the understanding of eukaryotic rRNA processing is no less important than the understanding of mRNA maturation, since the capacity of a cell to carry out protein synthesis is controlled, in part, by the abundance of ribosomes. Processing of pre-rRNA is highly regulated, involving many cellular components acting either alone or as part of a complex. Some of these components are directly involved in the modification and cleavage of the precursor rRNA, while others direct the packaging of the rRNA into ribosome subunits. As is the case for pre-mRNA processing, snoRNPs are clearly involved in eukaryotic rRNA processing, and have been proposed to assemble with other proteins into at least one complex called a "processosome" (17), which carries out the ordered processing of the pre-rRNA and its assembly into ribosomes. The formation of a processing complex clearly makes possible the regulation required to coordinate the abundance of ribosomes with the physiological and developmental changes of a cell. It may be that eukaryotic rRNA processing is even more complex than pre-mRNA maturation, since pre-rRNA undergoes extensive nucleotide modification and is assembled into a complex structure called the ribosome. Undoubtedly, features of the eukaryotic rRNA-processing pathway have been conserved evolutionarily, and the genetic approach available in yeast research (6) should provide considerable knowledge that will be useful for other investigators working with higher eukaryotic systems. Interestingly, it was originally hoped that the extensive work and understanding of bacterial ribosome formation would provide a useful paradigm for the process in eukaryotes. However, although general features of ribosome structure and function are highly conserved between bacterial and eukaryotic systems, the basic strategy in ribosome biogenesis seems to be, for the most part, distinctly different. Thus, the detailed molecular mechanisms for rRNA processing in each kingdom will have to be independently deciphered in order to elucidate the features and regulation of this important process for cell survival.
Collapse
Affiliation(s)
- D C Eichler
- Department of Biochemistry & Molecular Biology, University of South Florida College of Medicine, Tampa 33612
| | | |
Collapse
|
100
|
Affiliation(s)
- A P Waters
- Department voor Parasitologie, Rijksuniversiteit te Leiden, The Netherlands
| |
Collapse
|