51
|
Teng Y, Waters R. Excision repair at the level of the nucleotide in the upstream control region, the coding sequence and in the region where transcription terminates of the Saccharomyces cerevisiae MFA2 gene and the role of RAD26. Nucleic Acids Res 2000; 28:1114-9. [PMID: 10666451 PMCID: PMC102608 DOI: 10.1093/nar/28.5.1114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RAD26, the yeast homologue of human CSB, has an essential role in transcription-coupled repair (TCR). We have mapped the requisite of Rad26 for nucleotide excision repair (NER) within the different regions of the yeast Saccharomyces cerevisiae MFA2 gene at nucleotide resolution. Our results show that Rad26 is dispensable for enhanced NER in both the MFA2 upstream promoter, except in the TATA box region, and for enhanced NER in both strands of the active gene at a site close to the transcription termination region. As expected, it is not needed for repair of regions downstream of where transcription terminates. However, it is required for TCR in the transcription initiation and elongation regions. Our data support the hypothesis that Rad26 is required for the interchange between holo-TFIIH and a putative repairosome containing core TFIIH and other NER proteins. Close to the end of transcription, hotspots for the repair of CPDs in both the transcribed strand and the non-transcribed strand occur. This enhanced repair is independent of Rad26. Hence, TFIIH may take a form favourable for forming a repairosome without Rad26 assistance; here the organisation of the DNA during the termination of transcription may facilitate access of a repair complex to enable enhanced repair of both strands.
Collapse
Affiliation(s)
- Y Teng
- School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK
| | | |
Collapse
|
52
|
Reed SH, Akiyama M, Stillman B, Friedberg EC. Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair. Genes Dev 1999; 13:3052-8. [PMID: 10601031 PMCID: PMC317179 DOI: 10.1101/gad.13.23.3052] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1999] [Accepted: 10/14/1999] [Indexed: 11/25/2022]
Abstract
Nucleotide excision repair (NER) in yeast is effected by the concerted action of a large complex of proteins. Recently, we identified a stable subcomplex containing the yeast Rad7 and Rad16 proteins. Here, we report the identification of autonomously replicating sequence binding factor 1 (ABF1) as a component of the Rad7/Rad16 NER subcomplex. Yeast ABF1 protein is encoded by an essential gene required for DNA replication, transcriptional regulation, and gene silencing. We show that ABF1 plays a direct role in NER in vitro. Additionally, consistent with a role of ABF1 protein in NER in vivo, we show that certain temperature-sensitive abf1 mutant strains that are defective in DNA replication are specifically defective in the removal of photoproducts by NER and are sensitive to killing by ultraviolet (UV) radiation. These studies define a novel and unexpected role for ABF1 protein during NER in yeast.
Collapse
Affiliation(s)
- S H Reed
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | |
Collapse
|
53
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63:349-404. [PMID: 10357855 PMCID: PMC98970 DOI: 10.1128/mmbr.63.2.349-404.1999] [Citation(s) in RCA: 1655] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
54
|
Tijsterman M, de Pril R, Tasseron-de Jong JG, Brouwer J. RNA polymerase II transcription suppresses nucleosomal modulation of UV-induced (6-4) photoproduct and cyclobutane pyrimidine dimer repair in yeast. Mol Cell Biol 1999; 19:934-40. [PMID: 9858617 PMCID: PMC83951 DOI: 10.1128/mcb.19.1.934] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide excision repair (NER) pathway is able to remove a wide variety of structurally unrelated lesions from DNA. NER operates throughout the genome, but the efficiencies of lesion removal are not the same for different genomic regions. Even within a single gene or DNA strand repair rates vary, and this intragenic heterogeneity is of considerable interest with respect to the mutagenic potential of carcinogens. In this study, we have analyzed the removal of the two major types of genotoxic DNA adducts induced by UV light, i.e., the pyrimidine (6-4)-pyrimidone photoproduct (6-4PP) and the cyclobutane pyrimidine dimer (CPD), from the Saccharomyces cerevisiae URA3 gene at nucleotide resolution. In contrast to the fast and uniform removal of CPDs from the transcribed strand, removal of lesions from the nontranscribed strand is generally less efficient and is modulated by the chromatin environment of the damage. Removal of 6-4PPs from nontranscribed sequences is also profoundly influenced by positioned nucleosomes, but this type of lesion is repaired at a much higher rate. Still, the transcribed strand is repaired preferentially, indicating that, as in the removal of CPDs, transcription-coupled repair predominates in the removal of 6-4PPs from transcribed DNA. The hypothesis that transcription machinery operates as the rate-determining damage recognition entity in transcription-coupled repair is supported by the observation that this pathway removes both types of UV photoproducts at equal rates without being profoundly influenced by the sequence or chromatin context.
Collapse
Affiliation(s)
- M Tijsterman
- Medical Genetic Centre, Department of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
55
|
Stavenhagen JB, Zakian VA. Yeast telomeres exert a position effect on recombination between internal tracts of yeast telomeric DNA. Genes Dev 1998; 12:3044-58. [PMID: 9765206 PMCID: PMC317196 DOI: 10.1101/gad.12.19.3044] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1998] [Accepted: 08/03/1998] [Indexed: 11/24/2022]
Abstract
In Saccharomyces cerevisiae, proximity to a telomere affects both transcription and replication of adjacent DNA. In this study, we show that telomeres also impose a position effect on mitotic recombination. The rate of recombination between directly repeated tracts of telomeric C1-3A/TG1-3 DNA was reduced severely by proximity to a telomere. In contrast, recombination of two control substrates was not affected by telomere proximity. Thus, unlike position effects on transcription or replication, inhibition of recombination was sequence specific. Moreover, the repression of recombination was not under the same control as transcriptional repression (telomere position effect; TPE), as mutations in genes essential for TPE did not alleviate telomeric repression of recombination. The reduction in recombination between C1-3A/TG1-3 tracts near the telomere was caused by an absence of Rad52p-dependent events as well as a reduction in Rad1p-dependent events. The sequence-specific repression of recombination near the telomere was eliminated in cells that overexpressed the telomere-binding protein Rap1p, a condition that also increased recombination between C1-3A/TG1-3 tracts at internal positions on the chromosome. We propose that the specific inhibition between C1-3A/TG1-3 tracts near the telomere occurs through the action of a telomere-specific end-binding protein that binds to the single-strand TG1-3 tail generated during the processing of recombination intermediates. The recombination inhibitor protein may also block recombination between endogenous telomeres.
Collapse
Affiliation(s)
- J B Stavenhagen
- Princeton University, Department of Molecular Biology, Princeton, New Jersey 08544-1014, USA.
| | | |
Collapse
|
56
|
Masutani C, Araki M, Sugasawa K, van der Spek PJ, Yamada A, Uchida A, Maekawa T, Bootsma D, Hoeijmakers JH, Hanaoka F. Identification and characterization of XPC-binding domain of hHR23B. Mol Cell Biol 1997; 17:6915-23. [PMID: 9372923 PMCID: PMC232548 DOI: 10.1128/mcb.17.12.6915] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
hHR23B was originally isolated as a component of a protein complex that specifically complements nucleotide excision repair (NER) defects of xeroderma pigmentosum group C cell extracts in vitro and was identified as one of two human homologs of the Saccharomyces cerevisiae NER gene product Rad23. Recombinant hHR23B has previously been shown to significantly stimulate the NER activity of recombinant human XPC protein (rhXPC). In this study we identify and functionally characterize the XPC-binding domain of hHR23B protein. We prepared various internal as well as terminal deletion products of hHR23B protein in a His-tagged form and examined their binding with rhXPC by using nickel-chelating Sepharose. We demonstrate that a domain covering 56 amino acids of hHR23B is required for binding to rhXPC as well as for stimulation of in vitro NER reactions. Interestingly, a small polypeptide corresponding to the XPC-binding domain is sufficient to exert stimulation of XPC NER activity. Comparison with known crystal structures and analysis with secondary structure programs provided strong indications that the binding domain has a predominantly amphipathic alpha-helical character, consistent with evidence that the affinity with XPC is based on hydrophobic interactions. Our work shows that binding to XPC alone is required and sufficient for the role of hHR23B in in vitro NER but does not rule out the possibility that the protein has additional functions in vivo.
Collapse
Affiliation(s)
- C Masutani
- Institute for Molecular and Cellular Biology, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Reagan MS, Friedberg EC. Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair. Nucleic Acids Res 1997; 25:4257-63. [PMID: 9336455 PMCID: PMC147034 DOI: 10.1093/nar/25.21.4257] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have measured the kinetics of the recovery of mRNA synthesis in the inducible GAL10 and RNR3 genes after exposure of yeast cells to ultraviolet (UV) radiation. Such recovery is abolished in mutant strains defective in nucleotide excision repair (NER) of DNA, including a rad23 mutant. Mutants defective in the RAD7 or RAD16 genes, which are required for the repair of the non-transcribed strand but not the transcribed strand of transcriptionally active genes, show slightly faster recovery of RNA synthesis than wild-type strains. A strain deleted of the RAD26 gene, which is known to be required for strand-specific NER in yeast, manifested delayed recovery of mRNA synthesis, whereas a rad28 mutant, which does not show defective strand-specific repair, showed normal kinetics of recovery. Measurement of the recovery of expression of selected individual yeast genes by Northern analysis following exposure of cells to UV radiation apparently correlates directly with the capacity of cells for strand-specific NER.
Collapse
Affiliation(s)
- M S Reagan
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
| | | |
Collapse
|
58
|
Lombaerts M, Tijsterman M, Verhage RA, Brouwer J. Saccharomyces cerevisiae mms19 mutants are deficient in transcription-coupled and global nucleotide excision repair. Nucleic Acids Res 1997; 25:3974-9. [PMID: 9321645 PMCID: PMC147023 DOI: 10.1093/nar/25.20.3974] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The recently cloned Saccharomyces cerevisiae MMS19 gene appears to be involved in both nucleotide excision repair (NER) and transcription, which is also the case for components of the NER/transcription complex TFIIH. Unlike TFIIH however, the Mms19 protein does not affect NER in a highly purified in vitro system. In order to investigate the role of Mms19 in NER, we have analysed the repair capacity of the mms19 disruption mutant. We find that a cell-free extract of this mutant is deficient for NER in vitro. Since mms19 mutants are only moderately sensitive to irradiation with ultraviolet (UV) light, it is possible that such mutants are specifically deficient in one of the two modes of NER, i.e. transcription-coupled or global genome repair. To investigate this possibility, we have analysed the removal of cyclobutane-pyrimidine dimers (CPDs) at the nucleotide level in an mms19 mutant. Repair of CPDs was not detectable for both transcribed and non-transcribed sequences in this mutant, demonstrating a requirement for Mms19 in both transcription-coupled and global genome repair. Our data, combined with those obtained by others, suggest that Mms19 is required for NER in yeast, although it seems likely that the protein plays an indirect role in this process.
Collapse
Affiliation(s)
- M Lombaerts
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
59
|
Livingstone-Zatchej M, Meier A, Suter B, Thoma F. RNA polymerase II transcription inhibits DNA repair by photolyase in the transcribed strand of active yeast genes. Nucleic Acids Res 1997; 25:3795-800. [PMID: 9380500 PMCID: PMC146978 DOI: 10.1093/nar/25.19.3795] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Yeast uses nucleotide excision repair (NER) and photolyase (photoreactivation) to repair cyclobutane pyrimidine dimers (CPDs) generated by ultraviolet light. In active genes, NER preferentially repairs the transcribed strand (TS). In contrast, we recently showed that photolyase preferentially repairs the non-transcribed strands (NTS) of the URA3 and HIS3 genes in minichromosomes. To test whether photoreactivation depends on transcription, repair of CPDs was investigated in the transcriptionally regulated GAL10 gene in a yeast strain deficient in NER [AMY3 (rad1Delta)]. In the active gene (cells grown in galactose), photoreactivation was fast in the NTS and slow in the TS demonstrating preferential repair of the NTS. In the inactive gene (cells grown in glucose), both strands were repaired at similar rates. This suggests that RNA polymerases II blocked at CPDs inhibit accessibility of CPDs to photolyase. In a strain in which both pathways are operational [W303-1a (RAD1)], no strand bias was observed either in the active or inactive gene, demonstrating that photoreactivation of the NTS compensates preferential repair of the TS by NER. Moreover, repair of the NTS was more quickly in the active gene than in the repressed gene indicating that transcription dependent disruption of chromatin facilitates repair of an active gene.
Collapse
|
60
|
Wellinger RE, Thoma F. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. EMBO J 1997; 16:5046-56. [PMID: 9305646 PMCID: PMC1170139 DOI: 10.1093/emboj/16.16.5046] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleotide excision repair (NER) is a major pathway to remove pyrimidine dimers (PDs), a class of DNA lesions generated by ultraviolet light. Since folding of DNA into nucleosomes restricts its accessibility and since transcription and DNA repair require access to DNA, nucleosome structure and positioning as well as the transcriptional state may affect DNA repair. We recently determined the chromatin structure of the yeast URA3 gene at high resolution and found multiple positions of nucleosomes as well as strand- and site-specific variation in DNA accessibility to DNase I (internal protected regions). Here, the same high-resolution primer extension technique was used to investigate NER of PDs in the URA3 gene of a mini-chromosome in vivo. In the non-transcribed strand (NTS), fast repair correlates with PD locations in linker DNA and towards the 5' end of a positioned nucleosome. Slow repair correlates with the internal protected region of the nucleosome. This repair heterogeneity reflects a modulation of NER by positioned nucleosomes in the NTS. NER in the transcribed strand (TS) is fast, less heterogeneous and shows no correlation with chromatin structure. Apparently, transcription-coupled repair overrides chromatin modulation of NER in the TS. Heterogeneity in NER generated by chromatin structure on the NTS may contribute to heterogeneity in mutagenesis.
Collapse
Affiliation(s)
- R E Wellinger
- Institut für Zellbiologie, ETH, Hönggerberg, Zürich, Switzerland
| | | |
Collapse
|
61
|
Tijsterman M, Verhage RA, van de Putte P, Tasseron-de Jong JG, Brouwer J. Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1997; 94:8027-32. [PMID: 9223308 PMCID: PMC21550 DOI: 10.1073/pnas.94.15.8027] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The molecular mechanism of transcription-coupled nucleotide excision repair in eukaryotes is poorly understood. The identification of the dual role of basal transcription factor TFIIH in DNA repair and transcription provided a plausible link between both processes. However, TFIIH is not part of the elongating transcription complex, suggesting that additional components are required to recruit TFIIH when RNA polymerase II (RNAPII) stalls at the site of DNA damage. Previously, we have shown that the yeast Rad26 protein is involved in transcription-coupled DNA repair. This paper describes the differential contribution of the Rad26 protein to efficient removal of UV-induced cyclobutane pyrimidine dimers (CPDs) from transcribed DNA. Two distinct regions within the transcribed strand of RNAPII-transcribed genes are identified that differ in their requirement for the RAD26 gene product. Using high-resolution repair analysis, we determined the in vivo repair kinetics of cyclobutane pyrimidine dimers positioned around the transcription initiation site of RNAPII-transcribed genes RPB2 and URA3. Although transcription-coupled repair is severely reduced in rad26 mutants, lesions positioned in a small region immediately downstream of transcription initiation are efficiently removed in the absence of Rad26. The observed transition in repair characteristics is abrupt and in excellent agreement with the region where TFIIH dissociates from RNAPII in vitro, strongly suggesting an inverse correlation between TFIIH association and Rad26 requirement. These data suggest that a transcription repair coupling factor (Rad26/CSB) is required for efficient repair only during the elongating stages of RNAPII transcription.
Collapse
Affiliation(s)
- M Tijsterman
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
62
|
van Gool AJ, van der Horst GT, Citterio E, Hoeijmakers JH. Cockayne syndrome: defective repair of transcription? EMBO J 1997; 16:4155-62. [PMID: 9250659 PMCID: PMC1170041 DOI: 10.1093/emboj/16.14.4155] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the past years, it has become increasingly evident that basal metabolic processes within the cell are intimately linked and influenced by one another. One such link that recently has attracted much attention is the close interplay between nucleotide excision DNA repair and transcription. This is illustrated both by the preferential repair of the transcribed strand of active genes (a phenomenon known as transcription-coupled repair, TCR) as well as by the distinct dual involvement of proteins in both processes. The mechanism of TCR in eukaryotes is still largely unknown. It was first discovered in mammals by the pioneering studies of Hanawalt and colleagues, and subsequently identified in yeast and Escherichia coli. In the latter case, one protein, the transcription repair-coupling factor, was found to accomplish this function in vitro, and a plausible model for its activity was proposed. While the E. coli model still functions as a paradigm for TCR in eukaryotes, recent observations prompt us to believe that the situation in eukaryotes is much more complex, involving dual functionality of multiple proteins.
Collapse
Affiliation(s)
- A J van Gool
- MGC Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
63
|
Wang Z, Wei S, Reed SH, Wu X, Svejstrup JQ, Feaver WJ, Kornberg RD, Friedberg EC. The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol Cell Biol 1997; 17:635-43. [PMID: 9001217 PMCID: PMC231789 DOI: 10.1128/mcb.17.2.635] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nucleotide excision repair (NER) is a biochemical process required for the repair of many different types of DNA lesions. In the yeast Saccharomyces cerevisiae, the RAD7, RAD16, and RAD23 genes have been specifically implicated in NER of certain transcriptionally repressed loci and in the nontranscribed strand of transcriptionally active genes. We have used a cell-free system to study the roles of the Rad7, Rad16, and Rad23 proteins in NER. Transcription-independent NER of a plasmid substrate was defective in rad7, rad16, and rad23 mutant extracts. Complementation studies with a previously purified NER protein complex (nucleotide excision repairosome) indicate that Rad23 is a component of the repairosome, whereas Rad7 and Rad16 proteins were not found in this complex. Complementation studies with rad4, rad7, rad16, and rad23 mutant extracts suggest physical interactions among these proteins. This conclusion was confirmed by experiments using the yeast two-hybrid assay, which demonstrated the following pairwise interactions: Rad4 with Rad23, Rad4 with Rad7, and Rad7 with Rad16. Additionally, interaction between the Rad7 and Rad16 proteins was demonstrated in vitro. Our results show that Rad7, Rad16, and Rad23 are required for transcription-independent NER in vitro. This process may involve a unique protein complex which is distinct from the repairosome and which contains at least the Rad4, Rad7, and Rad16 proteins.
Collapse
Affiliation(s)
- Z Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Bhatia PK, Verhage RA, Brouwer J, Friedberg EC. Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human Cockayne syndrome A (CSA) gene. J Bacteriol 1996; 178:5977-88. [PMID: 8830695 PMCID: PMC178455 DOI: 10.1128/jb.178.20.5977-5988.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cockayne syndrome patients exhibit severe developmental and neurological abnormalities. Cells derived from these patients are sensitive to killing by UV radiation and do not support the rapid repair of the transcribed strand of transcriptionally active genes observed in cells from normal individuals. We report the cloning of the Saccharomyces cerevisiae homolog of the Cockayne syndrome A (CSA) gene, which we designate as RAD28. A rad28 null mutant does not manifest increased sensitivity to killing by UV or gamma radiation or to methyl methanesulfonate. Additionally, the rate of repair of the transcribed and nontranscribed strands of the yeast RPB2 gene in the rad28 mutant is identical to that observed in wild-type cells following exposure to UV light. As previously shown for rad7 rad26 and rad16 rad26 double mutants, the rad28 null mutant shows slightly enhanced sensitivity to UV light in the presence of mutations in the RAD7 or RAD16 gene. Both rad28 and rad26 null mutants are hypermutable following exposure to UV light.
Collapse
Affiliation(s)
- P K Bhatia
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
65
|
Tijsterman M, Tasseron-de Jong JG, van de Putte P, Brouwer J. Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution. Nucleic Acids Res 1996; 24:3499-506. [PMID: 8836174 PMCID: PMC146149 DOI: 10.1093/nar/24.18.3499] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was examined at single nucleotide resolution in the yeast Saccharomyces cerevisiae, using an improved protocol for genomic end-labelling. To obtain the sensitivity required for adduct detection in yeast, an oligonucleotide-directed enrichment step was introduced into the current methodology developed for adduct detection in Escherichia coli. With this method, heterogeneous repair of CPDs within the RPB2 locus is observed. Individual CPDs positioned in the transcribed strand are removed very efficiently with identical kinetics. This fast repair starts within 23 bases downstream of the transcription initiation site. The non-transcribed strand of the active gene exhibits slow repair without detectable repair variations between individual lesions. In contrast, CPDs positioned in the promoter region show profound repair heterogeneity. Here, CPDs at specific sites are removed very quickly, with comparable rates to CPDs positioned in the transcribed strand, while at other positions lesions are not repaired at all during the period studied. Interestingly, the fast repair in the promoter region is dependent on the RAD7 and RAD16 genes, as are the slowly repaired CPDs in this region and in the non-transcribed strand. This indicates that the global genome repair pathway is not intrinsically slow and at specific positions can be as efficient as the transcription-coupled repair pathway.
Collapse
Affiliation(s)
- M Tijsterman
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
66
|
Sugasawa K, Masutani C, Uchida A, Maekawa T, van der Spek PJ, Bootsma D, Hoeijmakers JH, Hanaoka F. HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol Cell Biol 1996; 16:4852-61. [PMID: 8756644 PMCID: PMC231487 DOI: 10.1128/mcb.16.9.4852] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A protein complex which specifically complements defects of XP-C cell extracts in vitro was previously purified to near homogeneity from HeLa cells. The complex consists of two tightly associated proteins: the XPC gene product and HHR23B, one of two human homologs of the Saccharomyces cerevisiae repair gene product Rad23 (Masutani et al., EMBO J. 13:1831-1843, 1994). To elucidate the roles of these proteins in "genome-overall" repair, we expressed the XPC protein in a baculovirus system and purified it to near homogeneity. The recombinant human XPC (rhXPC) protein exhibited a high level of affinity for single-stranded DNA and corrected the repair defect in XP-C whole-cell extracts without extra addition of recombinant HHR23B (rHHR23B) protein. However, Western blot (immunoblot) experiments revealed that XP-C cell extracts contained excess endogenous HHR23B protein, which might be able to form a complex upon addition of the rhXPC protein. To investigate the role of HHR23B, we fractionated the XP-C cell extracts and constructed a reconstituted system in which neither endogenous XPC nor HHR23B proteins were present. In this assay system, rhXPC alone weakly corrected the repair defect, while significant enhancement of the correcting activity was observed upon coaddition of rHHR23B protein. Stimulation of XPC by HHR23B was found with simian virus 40 minichromosomes as well as with naked plasmid DNA and with UV- as well as N-acetoxy-2- acetylfluorene-induced DNA lesions, indicating a general role of HHR23B in XPC functioning in the genome-overall nucleotide excision repair subpathway.
Collapse
Affiliation(s)
- K Sugasawa
- The Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
The budding yeast Saccharomyces cerevisiae plays a central role in contributing to the understanding of one of the most important biological process, DNA repair, that maintains genuine copies of the cellular chromosomes. DNA lesions produce either spontaneously or by DNA damaging agents are efficiently repaired by one or more DNA repair proteins. While some DNA repair proteins function independently as in the case of base excision repair, others belong into three separate DNA repair pathways, nucleotide excision, mismatch, and recombinational. Of these pathways, nucleotide excision and mismatch repair show the greatest functional conservation between yeast and human cells. Because of this high degree of conservation, yeast has been regarded as one of the best model system to study DNA repair. This report therefore updates current knowledge of the major yeast DNA repair processes.
Collapse
Affiliation(s)
- D Ramotar
- CHUL, Health and Environment, Ste-Foy, Quebec, Canada
| | | |
Collapse
|
68
|
Mueller JP, Smerdon MJ. Rad23 is required for transcription-coupled repair and efficient overrall repair in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:2361-8. [PMID: 8628303 PMCID: PMC231224 DOI: 10.1128/mcb.16.5.2361] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The repair of UV-induced photoproducts (cyclobutane pyrimidine dimers) in a well-characterized minichromosome, genomic DNA, and a transcribed genomic gene (RPB2) of a rad23delta mutant of Saccharomyces care was examined. Isogenic wild-type cells show a strong bias for the repair of the transcribed strands in both the plasmid and genomic genes and efficient overall repair of both DNAs (>80% of the dimers were removed in 6 h). However, the rad23delta mutant shows (i) no strand bias for repair in these genes and decreased repair of both strands, (ii) partial repair of genomic DNA (approximately 45% in 6 h), and (iii) very poor repair of the plasmid overall approximately 15% in 6 h). These features, coupled with the decreased UV survival of rad23delta cells, indicate that Rad23 is required for both transcription-coupled repair and efficient overall repair in S. cerevisiae.
Collapse
Affiliation(s)
- J P Mueller
- Department of Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164-4660, USA
| | | |
Collapse
|
69
|
Sweder KS, Chun R, Mori T, Hanawalt PC. DNA repair deficiencies associated with mutations in genes encoding subunits of transcription initiation factor TFIIH in yeast. Nucleic Acids Res 1996; 24:1540-6. [PMID: 8628689 PMCID: PMC145819 DOI: 10.1093/nar/24.8.1540] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several proteins, including Rad3 and Rad25(Ssl2), are essential for nucleotide excision repair (NER) and function in the RNA polymerase II transcription initiation complex TFIIH. Mutations in genes encoding two other subunits of TFIIH, TFB1 and SSL1, result in UV sensitivity and have been shown to take part in NER in an in vitro system. However, a deficiency in global NER does not exclude the possibility that such repair-deficient mutants can perform transcription-coupled repair (TCR), as shown for xeroderma pigmentosum group C. To date, temperature-sensitive C-terminal truncations of Tfbl are the only TFIIH mutations that result in intermediate UV sensitivity, which might indicate a deficiency in either the global NER or TCR pathways. We have directly analyzed both TCR and global NER in these mutants. We found that ssl1, rad3 and tfb1 mutants, like rad25(ssl2-xp) mutants, are deficient in both the global NER and TCR pathways. Our results support the view that the mutations in any one of the genes encoding subunits of TFIIH result in deficiencies in both global and TCR pathways of NER. We suggest that when subunits of TFIIH are in limiting amounts, TCR may preclude global NER.
Collapse
Affiliation(s)
- K S Sweder
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| | | | | | | |
Collapse
|
70
|
Verhage RA, Van de Putte P, Brouwer J. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes. Nucleic Acids Res 1996; 24:1020-5. [PMID: 8604332 PMCID: PMC145761 DOI: 10.1093/nar/24.6.1020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed in rad1,2,3 and 14 mutants, demonstrating that dimer removal from this highly repetitive DNA is accomplished by nucleotide excision repair (NER). In rad7 and rad16 mutants, which are specifically deficient in repair of non-transcribed DNA, there is a clear preferential repair of the transcribed strand of rDNA, indicating that strand-specific and therefore probably transcription-coupled repair of RNA pol I transcribed genes does exist in yeast. Unexpectedly, the transcribed but not the non-transcribed strand of rDNA can be repaired in rad4 mutants, which seem otherwise completely NER-deficient.
Collapse
Affiliation(s)
- R A Verhage
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
71
|
Mellon I, Champe GN. Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc Natl Acad Sci U S A 1996; 93:1292-7. [PMID: 8577757 PMCID: PMC40073 DOI: 10.1073/pnas.93.3.1292] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To improve our understanding of the mechanism that couples nucleotide-excision repair to transcription in expressed genes, we have examined the effects of mutations in several different DNA repair genes on the removal of cyclobutane pyrimidine dimers from the individual strands of the induced lactose operon in UV-irradiated Escherichia coli. As expected, we found little repair in either strand of the lactose operon in strains with mutations in established nucleotide excision-repair genes (uvrA, uvrB, uvrC, or uvrD). In contrast, we found that mutations in either of two genes required for DNA-mismatch correction (mutS and mutL) selectively abolish rapid repair in the transcribed strand and render the cells moderately sensitive to UV irradiation. Similar results were found in a strain with a mutation in the mfd gene, the product of which has been previously shown to be required for transcription-coupled repair in vitro. Our results demonstrate an association between mismatch-correction and nucleotide-excision repair and implicate components of DNA-mismatch repair in transcription-coupled repair. In addition, they may have important consequences for human disease and may enhance our understanding of the etiology of certain cancers which have been associated with defects in mismatch correction.
Collapse
Affiliation(s)
- I Mellon
- Department of Pathology, Markey Cancer Center, University of Kentucky, Lexington 40536-0093, USA
| | | |
Collapse
|
72
|
Verhage RA, van Gool AJ, de Groot N, Hoeijmakers JH, van de Putte P, Brouwer J. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair. Mol Cell Biol 1996; 16:496-502. [PMID: 8552076 PMCID: PMC231027 DOI: 10.1128/mcb.16.2.496] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nucleotide excision repair (NER) pathway is thought to consist of two subpathways: transcription-coupled repair, limited to the transcribed strand of active genes, and global genome repair for nontranscribed DNA strands. Recently we cloned the RAD26 gene, the Saccharomyces cerevisiae homolog of human CSB/ERCC6, a gene involved in transcription-coupled repair and the disorder Cockayne syndrome. This paper describes the analysis of yeast double mutants selectively affected in each NER subpathway. Although rad26 disruption mutants are defective in transcription-coupled repair, they are not UV sensitive. However, double mutants of RAD26 with the global genome repair determinants RAD7 and RAD16 appeared more UV sensitive than the single rad7 or rad16 mutants but not as sensitive as completely NER-deficient mutants. These findings unmask a role of RAD26 and transcription-coupled repair in UV survival, indicate that transcription-coupled repair and global genome repair are partially overlapping, and provide evidence for a residual NER modality in the double mutants. Analysis of dimer removal from the active RPB2 gene in the rad7/16 rad26 double mutants revealed (i) a contribution of the global genome repair factors Rad7p and Rad16p to repair of the transcribed strand, confirming the partial overlap between both NER subpathways, and (ii) residual repair specifically of the transcribed strand. To investigate the transcription dependence of this repair activity, strand-specific repair of the inducible GAL7 gene was investigated. The template strand of this gene was repaired only under induced conditions, pointing to a role for transcription in the residual repair in the double mutants and suggesting that transcription-coupled repair can to some extent operate independently from Rad26p. Our findings also indicate locus heterogeneity for the dependence of transcription-coupled repair on RAD26.
Collapse
Affiliation(s)
- R A Verhage
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
73
|
Mueller JP, Smerdon MJ. Repair of plasmid and genomic DNA in a rad7 delta mutant of yeast. Nucleic Acids Res 1995; 23:3457-64. [PMID: 7567456 PMCID: PMC307224 DOI: 10.1093/nar/23.17.3457] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was examined in a yeast plasmid of known chromatin structure and in genomic DNA in a radiation-sensitive deletion mutant of yeast, rad7 delta, and its isogenic wild-type strain. A whole plasmid repair assay revealed that only approximately 50% of the CPDs in plasmid DNA are repaired after 6 h in this mutant, compared with almost 90% repaired in wild-type. Using a site-specific repair assay on 44 individual CPD sites within the plasmid we found that repair in the rad7 delta mutant occurred primarily in the transcribed regions of each strand of the plasmid, however, the rate of repair at nearly all sites measured was less than in the wild-type. There was no apparent correlation between repair rate and nucleosome position. In addition, approximately 55% of the CPDs in genomic DNA of the mutant are repaired during the 6 h period, compared with > 80% in the wild-type.
Collapse
Affiliation(s)
- J P Mueller
- Department of Biochemistry and Biophysics, Washington State University, Pullman 99164-4660, USA
| | | |
Collapse
|
74
|
Bang DD, Timmermans V, Verhage R, Zeeman AM, van de Putte P, Brouwer J. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16. Nucleic Acids Res 1995; 23:1679-85. [PMID: 7784171 PMCID: PMC306921 DOI: 10.1093/nar/23.10.1679] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle.
Collapse
Affiliation(s)
- D D Bang
- Department of Biochemistry, Leiden Institute for Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
75
|
Ivanov EL, Haber JE. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:2245-51. [PMID: 7891718 PMCID: PMC230452 DOI: 10.1128/mcb.15.4.2245] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.
Collapse
Affiliation(s)
- E L Ivanov
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110
| | | |
Collapse
|