51
|
Pulsed Electromagnetic Fields Reduce Interleukin-6 Expression in Intervertebral Disc Cells Via Nuclear Factor-κβ and Mitogen-Activated Protein Kinase p38 Pathways. Spine (Phila Pa 1976) 2019; 44:E1290-E1297. [PMID: 31689248 DOI: 10.1097/brs.0000000000003136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This is an in vitro study of bovine disc cells exposed to pulsed electromagnetic fields. OBJECTIVE The purpose of the present study was to investigate whether pulsed electromagnetic fields (PEMF) effects on the expression of interleukin-6 (IL-6) expression is mediated by two known inflammation regulators, nuclear factor-κB (NF-κβ) and phosphorylated mitogen-activated protein kinase p38 (p38-MAPK) signaling pathways SUMMARY OF BACKGROUND DATA.: Inflammatory cytokines play a dominant role in the pathogenesis of disc degeneration. Increasing evidence showed that PEMF, a noninvasive biophysical stimulation, can have physiologically beneficial effects on inflammation and tissue repair. Our previous research shows that PEMF treatment can reduce IL-6 expression by intervertebral disc cells. However, the underlying mechanisms of PEMF action are yet to be uncovered. METHODS Intervertebral disc nuclear pulposus cells were challenged with interleukin-1α (IL-1α) (for mimicking inflammatory microenvironment) and treated with PEMF simultaneously up to 4 hours. Cells were then collected for NF-κβ and phosphorylated p38-MAPK protein detection with Western blot. Additionally, the RelA (p65) subunit of NF-κβ was examined with immunostaining for assessment of NF-κβ activation. RESULTS As expected, Western blot results showed that both NF-κβ and phosphorylated p38 expression were significantly increased by IL-1α treatment. This induction was significantly inhibited to control condition levels by PEMF treatment. Immunostaining demonstrated similar trends, that PEMF treatment reduced the NF-κβ activation induced by IL-1α exposure. CONCLUSION Our data indicate that the previously-reported inhibitory effect of PEMF treatment on disc inflammation is mediated by NF-κβ and phosphorylated p38-MAPK signaling pathways. These results further establish PEMFs anti-inflammatory activity, and may inform potential future clinical uses for management of inflammation associated with disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
52
|
Ramachandran K, Senagolage MD, Sommars MA, Futtner CR, Omura Y, Allred AL, Barish GD. Dynamic enhancers control skeletal muscle identity and reprogramming. PLoS Biol 2019; 17:e3000467. [PMID: 31589602 PMCID: PMC6799888 DOI: 10.1371/journal.pbio.3000467] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 10/17/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscles consist of fibers of differing metabolic activities and contractility, which become remodeled in response to chronic exercise, but the epigenomic basis for muscle identity and adaptation remains poorly understood. Here, we used chromatin immunoprecipitation sequencing of dimethylated histone 3 lysine 4 and acetylated histone 3 lysine 27 as well as transposase-accessible chromatin profiling to dissect cis-regulatory networks across muscle groups. We demonstrate that in vivo enhancers specify muscles in accordance with myofiber composition, show little resemblance to cultured myotube enhancers, and identify glycolytic and oxidative muscle-specific regulators. Moreover, we find that voluntary wheel running and muscle-specific peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc1a) transgenic (mTg) overexpression, which stimulate endurance performance in mice, result in markedly different changes to the epigenome. Exercise predominantly leads to enhancer hypoacetylation, whereas mTg causes hyperacetylation at different sites. Integrative analysis of regulatory regions and gene expression revealed that exercise and mTg are each associated with myocyte enhancer factor (MEF) 2 and estrogen-related receptor (ERR) signaling and transcription of genes promoting oxidative metabolism. However, exercise was additionally associated with regulation by retinoid X receptor (RXR), jun proto-oncogene (JUN), sine oculis homeobox factor (SIX), and other factors. Overall, our work defines the unique enhancer repertoires of skeletal muscles in vivo and reveals that divergent exercise-induced or PGC1α-driven epigenomic programs direct partially convergent transcriptional networks.
Collapse
Affiliation(s)
- Krithika Ramachandran
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Madhavi D. Senagolage
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Meredith A. Sommars
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Christopher R. Futtner
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yasuhiro Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Amanda L. Allred
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Grant D. Barish
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
53
|
Gureev AP, Shaforostova EA, Popov VN. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front Genet 2019; 10:435. [PMID: 31139208 PMCID: PMC6527603 DOI: 10.3389/fgene.2019.00435] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is a general degenerative process related to deterioration of cell functions in the entire organism. Mitochondria, which play a key role in energy homeostasis and metabolism of reactive oxygen species (ROS), require lifetime control and constant renewal. This explains recently peaked interest in the processes of mitochondrial biogenesis and mitophagy. The principal event of mitochondrial metabolism is regulation of mitochondrial DNA (mtDNA) transcription and translation, which is a complex coordinated process that involves at least two systems of transcription factors. It is commonly believed that its major regulatory proteins are PGC-1α and PGC-1β, which act as key factors connecting several regulator cascades involved in the control of mitochondrial metabolism. In recent years, the number of publications on the essential role of Nrf2/ARE signaling in the regulation of mitochondrial biogenesis has grown exponentially. Nrf2 is induced by various xenobiotics and oxidants that oxidize some Nrf2 negative regulators. Thus, ROS, in particular H2O2, were found to be strong Nrf2 activators. At present, there are two major concepts of mitochondrial biogenesis. Some authors suggest direct involvement of Nrf2 in the regulation of this process. Others believe that Nrf2 regulates expression of the antioxidant genes, while the major and only regulator of mitochondrial biogenesis is PGC-1α. Several studies have demonstrated the existence of the regulatory loop involving both PGC-1α and Nrf2. In this review, we summarized recent data on the Nrf2 role in mitochondrial biogenesis and its interaction with PGC-1α in the context of extending longevity.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
54
|
Bost F, Kaminski L. The metabolic modulator PGC-1α in cancer. Am J Cancer Res 2019; 9:198-211. [PMID: 30906622 PMCID: PMC6405967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023] Open
Abstract
The peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a central modulator of cell metabolism. It regulates mitochondrial biogenesis and oxidative metabolism. Modifications and adaptations in cellular metabolism are hallmarks of cancer cells, thus, it is not surprising that PGC-1α plays a role in cancer. Several recent articles have shown that PGC-1α expression is altered in tumors and metastasis in relation to modifications in cellular metabolism. The potential uses of PGC-1α as a therapeutic target and a biomarker of the advanced form of cancer will be summarized in this review.
Collapse
Affiliation(s)
- Frederic Bost
- Université Nice Côte d'Azur, Inserm, C3M, Centre Méditerranéen de Médecine Moléculaire (INSERM U1065) Nice, France
| | - Lisa Kaminski
- Université Nice Côte d'Azur, Inserm, C3M, Centre Méditerranéen de Médecine Moléculaire (INSERM U1065) Nice, France
| |
Collapse
|
55
|
Wada T, Ichihashi Y, Suzuki E, Kosuge Y, Ishige K, Uchiyama T, Makishima M, Nakao R, Oishi K, Shimba S. Deletion of Bmal1 Prevents Diet-Induced Ectopic Fat Accumulation by Controlling Oxidative Capacity in the Skeletal Muscle. Int J Mol Sci 2018; 19:E2813. [PMID: 30231537 PMCID: PMC6164026 DOI: 10.3390/ijms19092813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/05/2023] Open
Abstract
Brain and muscle arnt-like protein 1 (BMAL1), is a transcription factor known to regulate circadian rhythm. BMAL1 was originally characterized by its high expression in the skeletal muscle. Since the skeletal muscle is the dominant organ system in energy metabolism, the possible functions of BMAL1 in the skeletal muscle include the control of metabolism. Here, we established that its involvement in the regulation of oxidative capacity in the skeletal muscle. Muscle-specific Bmal1 KO mice (MKO mice) displayed several physiological hallmarks for the increase of oxidative capacity. This included increased energy expenditure and oxygen consumption, high running endurance and resistance to obesity with improved metabolic profiles. Also, the phosphorylation status of AMP-activated protein kinase and its downstream signaling substrate acetyl-CoA carboxylase in the MKO mice were substantially higher than those in the Bmal1flox/flox mice. In addition, biochemical and histological studies confirmed the substantial activation of oxidative fibers in the skeletal muscle of the MKO mice. The mechanism includes the regulation of Cacna1s expression, followed by the activation of calcium-nuclear factor of activated T cells (NFAT) axis. We thus conclude that BMAL1 is a critical regulator of the muscular fatty acid level under nutrition overloading and that the mechanism involves the control of oxidative capacity.
Collapse
Affiliation(s)
- Taira Wada
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Yuya Ichihashi
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Emi Suzuki
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Kumiko Ishige
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Taketo Uchiyama
- Laboratory of Organic Chemistry, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Reiko Nakao
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| | - Shigeki Shimba
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| |
Collapse
|
56
|
Kim JC, Park GD, Kim SH. Inhibition of Oxidative Stress by Antioxidant Supplementation Does Not Limit Muscle Mitochondrial Biogenesis or Endurance Capacity in Rats. J Nutr Sci Vitaminol (Tokyo) 2018; 63:277-283. [PMID: 29225311 DOI: 10.3177/jnsv.63.277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objective of the present study was to analyze the activation and expression patterns of upstream and downstream factors of PGC-1α to determine whether antioxidant (AO) supplementation inhibits mitochondrial biogenesis in skeletal muscles as an adaptation to endurance training, as well as to analyze changes in endurance capacity based on such findings. For this objective, 24 male Sprague-Dawley (SD) rats were allocated into 4 groups (vehicle-sedentary, V-Sed; vehicle-exercise, V-EX; antioxidant-sedentary, AO-Sed; antioxidant-exercise, AO-EX) of 6 rats each. The rats were then treated with vitamin C (500 mgkg-1 body weightd-1) or a placebo for 8 wk, and a swimming program was implemented in some rats during the last 4 wk of this period. Immediately after the last training session, blood was collected from the tail of each rat, and TBARS was measured to test the effect of vitamin C as an AO. As a result, increased oxidative stress from exercise was inhibited by vitamin C supplementation. Analysis of whether reduced oxidative stress by vitamin C supplementation also inhibited mitochondrial biogenesis within skeletal muscles showed that phosphorylation of p38 MAPK and AMPK, along with levels of PGC-1α, NRF-1, mtTFA, and mitochondrial electron transport enzymes, increased after endurance training in spite of vitamin C supplementation. Moreover, running time, distance, and total work increased significantly in the exercise group as compared to those in the sedentary group, regardless of vitamin C supplementation. These results indicate that mitochondrial biogenesis and endurance capacity increase as a result of endurance training, regardless of AO supplementation.
Collapse
Affiliation(s)
- Jae Cheol Kim
- Department of Sports Science, College of Natural Science, Chonbuk National University
| | - Gi Duck Park
- Department of Leisure Sport, Kyungpook National University
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural Science, Chonbuk National University
| |
Collapse
|
57
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 601] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
58
|
Rajendran BK, Deng CX. Characterization of potential driver mutations involved in human breast cancer by computational approaches. Oncotarget 2018; 8:50252-50272. [PMID: 28477017 PMCID: PMC5564847 DOI: 10.18632/oncotarget.17225] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/26/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Barani Kumar Rajendran
- Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
59
|
Brown FC, Still E, Koche RP, Yim CY, Takao S, Cifani P, Reed C, Gunasekera S, Ficarro SB, Romanienko P, Mark W, McCarthy C, de Stanchina E, Gonen M, Seshan V, Bhola P, O'Donnell C, Spitzer B, Stutzke C, Lavallée VP, Hébert J, Krivtsov AV, Melnick A, Paietta EM, Tallman MS, Letai A, Sauvageau G, Pouliot G, Levine R, Marto JA, Armstrong SA, Kentsis A. MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discov 2018; 8:478-497. [PMID: 29431698 PMCID: PMC5882571 DOI: 10.1158/2159-8290.cd-17-1271] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 11/16/2022]
Abstract
In acute myeloid leukemia (AML), chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that Mef2cS222A/S222A knock-in mutant mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9 MEF2C phosphorylation was required for leukemia stem cell maintenance and induced by MARK kinases in cells. Treatment with the selective MARK/SIK inhibitor MRT199665 caused apoptosis and conferred chemosensitivity in MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C phosphorylation. These findings identify kinase-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease.Significance: Functional proteomics identifies phosphorylation of MEF2C in the majority of primary chemotherapy-resistant AML. Kinase-dependent dysregulation of this transcription factor confers susceptibility to MARK/SIK kinase inhibition in preclinical models, substantiating its clinical investigation for improved diagnosis and therapy of AML. Cancer Discov; 8(4); 478-97. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Cell Line
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- MEF2 Transcription Factors/chemistry
- MEF2 Transcription Factors/metabolism
- Mice
- Mice, Transgenic
- Phosphorylation
- Protein Processing, Post-Translational
- Proteomics
Collapse
Affiliation(s)
- Fiona C Brown
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Still
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard P Koche
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina Y Yim
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sumiko Takao
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Casie Reed
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shehana Gunasekera
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott B Ficarro
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter Romanienko
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Willie Mark
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Craig McCarthy
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Conor O'Donnell
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Vincent-Philippe Lavallée
- The Leucegene Project at Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Josée Hébert
- The Leucegene Project at Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Andrei V Krivtsov
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ari Melnick
- Departments of Pediatrics, Pharmacology, and Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, New York
| | - Elisabeth M Paietta
- Montefiore Medical Center-North Division, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Martin S Tallman
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Guy Sauvageau
- The Leucegene Project at Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Gayle Pouliot
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ross Levine
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, New York
| | - Jarrod A Marto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott A Armstrong
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Departments of Pediatrics, Pharmacology, and Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, New York
| |
Collapse
|
60
|
Feng Y, Wang Y, Liu H, Liu Z, Mills C, Owzar K, Xie J, Han Y, Qian DC, Hung Rj RJ, Brhane Y, McLaughlin J, Brennan P, Bickeböller H, Rosenberger A, Houlston RS, Caporaso N, Landi MT, Brüske I, Risch A, Ye Y, Wu X, Christiani DC, Amos CI, Wei Q. Novel genetic variants in the P38MAPK pathway gene ZAK and susceptibility to lung cancer. Mol Carcinog 2018; 57:216-224. [PMID: 29071797 PMCID: PMC6128286 DOI: 10.1002/mc.22748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/21/2017] [Accepted: 09/29/2017] [Indexed: 01/18/2023]
Abstract
The P38MAPK pathway participates in regulating cell cycle, inflammation, development, cell death, cell differentiation, and tumorigenesis. Genetic variants of some genes in the P38MAPK pathway are reportedly associated with lung cancer risk. To substantiate this finding, we used six genome-wide association studies (GWASs) to comprehensively investigate the associations of 14 904 single nucleotide polymorphisms (SNPs) in 108 genes of this pathway with lung cancer risk. We identified six significant lung cancer risk-associated SNPs in two genes (CSNK2B and ZAK) after correction for multiple comparisons by a false discovery rate (FDR) <0.20. After removal of three CSNK2B SNPs that are located in the same locus previously reported by GWAS, we performed the LD analysis and found that rs3769201 and rs7604288 were in high LD. We then chose two independent representative SNPs of rs3769201 and rs722864 in ZAK for further analysis. We also expanded the analysis by including these two SNPs from additional GWAS datasets of Harvard University (984 cases and 970 controls) and deCODE (1319 cases and 26 380 controls). The overall effects of these two SNPs were assessed using all eight GWAS datasets (OR = 0.92, 95%CI = 0.89-0.95, and P = 1.03 × 10-5 for rs3769201; OR = 0.91, 95%CI = 0.88-0.95, and P = 2.03 × 10-6 for rs722864). Finally, we performed an expression quantitative trait loci (eQTL) analysis and found that these two SNPs were significantly associated with ZAK mRNA expression levels in lymphoblastoid cell lines. In conclusion, the ZAK rs3769201 and rs722864 may be functional susceptibility loci for lung cancer risk.
Collapse
Affiliation(s)
- Yun Feng
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Coleman Mills
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Duke Cancer Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Jichun Xie
- Duke Cancer Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Younghun Han
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - David C Qian
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Rayjean J Hung Rj
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Irene Brüske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David C Christiani
- Massachusetts General Hospital, Boston, Massachusetts
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Christopher I Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
61
|
Li L, Rubin LP, Gong X. MEF2 transcription factors in human placenta and involvement in cytotrophoblast invasion and differentiation. Physiol Genomics 2018; 50:10-19. [PMID: 29127222 PMCID: PMC5866412 DOI: 10.1152/physiolgenomics.00076.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Development of the human placenta and its trophoblast cell types is critical for a successful pregnancy. Defects in trophoblast invasion and differentiation are associated with adverse pregnancy outcomes, including preeclampsia. The members of myocyte enhancer factor-2 (MEF2) family of transcription factors are key regulators of cellular proliferation, differentiation, and invasion in various cell types and tissues and might play a similarly important role in regulating trophoblast proliferation, invasion, and differentiation during human placental development. In the present study, using human cytotrophoblast cell lines (HTR8/SVneo and BeWo) and primary human cytotrophoblasts (CTBs), we show that members of the MEF2 family are differentially expressed in human placental CTBs, with MEF2B and MEF2D being highly expressed in first trimester extravillous CTBs. Overexpression of MEF2D results in cytotrophoblast proliferation and enhances the invasion and migration of extravillous-like HTR8/SVneo cells. This invasive property is blocked by overexpression of a dominant negative MEF2 (dnMEF2). In contrast, MEF2A is the principal MEF2 isoform expressed in term CTBs, MEF2C and MEF2D being expressed more weakly, and MEF2B expression being undetected. Overexpression of MEF2A induces cytotrophoblast differentiation and syncytium formation in BeWo cells. During in vitro differentiation of primary CTBs, MEF2A expression is associated with CTB differentiation into syncytiotrophoblast. Additionally, the course of p38 MAPK and ERK5 activities parallels the increase in MEF2A expression. These findings suggest individual members of MEF2 family distinctively regulate cytotrophoblast proliferation, invasion, and differentiation. Dysregulation of expression of MEF2 family or of their upstream signaling pathways may be associated with placenta-related pregnancy disorders.
Collapse
Affiliation(s)
- Lucy Li
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso, Texas
| | - Lewis P Rubin
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso, Texas
| | - Xiaoming Gong
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
| |
Collapse
|
62
|
Shen S, Huang D, Feng G, Zhu L, Zhang Y, Cao P, Zheng K, Zhang D, Feng X. MEF2 Transcription Factor Regulates Osteogenic Differentiation of Dental Pulp Stem Cells. Cell Reprogram 2017; 18:237-45. [PMID: 27459583 DOI: 10.1089/cell.2016.0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The myocyte enhancer factor-2 (MEF2) is a member of the MADS-box family. It controls the expression of genes that are critical for biological processes such as proliferation, cell death, and differentiation. Some studies have shown that MEF2 expression is enhanced in osteogenic progenitor cells established from bone marrow stromal cells with other types of mesenchymal progenitor cells. However, the effect of MEF2 on dental pulp stem cells (DPSCs) is unclear. In this study, we investigate the effect of MEF2 on regulating osteogenic differentiation and proliferation of DPSCs. We find that MEF2 is stably expressed in DPSCs, and the expression is increased time-dependently along with cell osteogenic differentiation. MEF2 expression also increases the alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) activity, and enhances mineralization in DPSCs. SB202190, inhibitor of p38, blocks the p38/MEF2 pathway and osteogenic differentiation. In addition, MEF2 overexpression inhibits DPSC proliferation. In summary, our data indicate that MEF2 not only regulates DPSCs as an inhibitor of cell proliferation but is also a promoter of osteogenic differentiation through the p38/MEF2 signaling pathway.
Collapse
Affiliation(s)
- Shuling Shen
- 1 The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China .,2 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Dan Huang
- 2 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Guijuan Feng
- 2 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Linhe Zhu
- 3 School of Science, Nanjing University of Aeronautics and Astronautics , Nanjing, China
| | - Ye Zhang
- 1 The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China .,2 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Peipei Cao
- 1 The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China .,2 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Ke Zheng
- 1 The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China .,2 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Dongmei Zhang
- 4 Department of Pathogen Biology, Medical College, Nantong University , Nantong, China
| | - Xingmei Feng
- 1 The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China .,2 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| |
Collapse
|
63
|
Nakatani T, Partridge NC. MEF2C Interacts With c-FOS in PTH-Stimulated Mmp13 Gene Expression in Osteoblastic Cells. Endocrinology 2017; 158:3778-3791. [PMID: 28973134 PMCID: PMC5695834 DOI: 10.1210/en.2017-00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
Abstract
Parathyroid hormone (PTH) regulates the transcription of many genes in the osteoblast. One of these genes is Mmp13, which is involved in bone remodeling and early stages of endochondral bone formation. Previously, we reported that PTH induces Mmp13 transcription by regulating the dissociation of histone deacetylase 4 (HDAC4) from runt-related transcription factor 2 (Runx2), and the association of the HATs, p300, and p300/CREB binding protein (CBP)-associated factor. It is known that, in addition to Runx2, HDAC4 binds to the transcription factor, myocyte-specific enhancer factor 2c (MEF2C), and represses its activity. In this work, we investigated whether MEF2C participates in PTH-stimulated Mmp13 gene expression in osteoblastic cells and how it does so. Knockdown of Mef2c in UMR 106-01 cells repressed Mmp13 messenger RNA expression and promoter activity with or without PTH treatment. Chromatin immunoprecipitation (ChIP) assays showed that MEF2C associated with the Mmp13 promoter; this increased after 4 hours of PTH treatment. ChIP-reChIP results indicate that endogenous MEF2C associates with HDAC4 on the Mmp13 promoter; after PTH treatment, this association decreased. From gel shift, ChIP, and promoter-reporter assays, MEF2C was found to associate with the activator protein-1 (AP-1) site without directly binding to DNA and had its stimulatory effect through interaction with c-FOS. In conclusion, MEF2C is necessary for Mmp13 gene expression at the transcriptional level and participates in PTH-stimulated Mmp13 gene expression by increased binding to c-FOS at the AP-1 site in the Mmp13 promoter. The observation of MEF2C interacting with a member of the AP-1 transcription factor family provides knowledge of the functions of HDAC4, c-FOS, and MEF2C.
Collapse
Affiliation(s)
- Teruyo Nakatani
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010
| |
Collapse
|
64
|
Aguilar OA, Hadj-Moussa H, Storey KB. Freeze-responsive regulation of MEF2 proteins and downstream gene networks in muscles of the wood frog, Rana sylvatica. J Therm Biol 2017; 67:1-8. [DOI: 10.1016/j.jtherbio.2017.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023]
|
65
|
Sánchez-Gómez MC, García-Mejía KA, Pérez-Díaz Conti M, Díaz-Rosas G, Palma-Lara I, Sánchez-Urbina R, Klünder-Klünder M, Botello-Flores JA, Balderrábano-Saucedo NA, Contreras-Ramos A. MicroRNAs Association in the Cardiac Hypertrophy Secondary to Complex Congenital Heart Disease in Children. Pediatr Cardiol 2017; 38:991-1003. [PMID: 28382463 DOI: 10.1007/s00246-017-1607-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Complex congenital heart disease (CHD) affects cardiac blood flow, generating a pressure overload in the compromised ventricles and provoking hypertrophy that over time will induce myocardial dysfunction and cause a potential risk of imminent death. Therefore, the early diagnosis of complex CHD is paramount during the first year of life, with surgical treatment of patients favoring survival. In the present study, we analyzed cardiac tissue and plasma of children with cardiac hypertrophy (CH) secondary to CHD for the expression of 11 miRNAs specific to CH in adults. The results were compared with the miRNA expression patterns in tissue and blood of healthy children. In this way, we determined that miRNAs 1, 18b, 21, 23b, 133a, 195, and 208b constitute the expression profile of the cardiac tissue of children with CHD. Meanwhile, miRNAs 21, 23a, 23b, and 24 can be considered specific biomarkers for the diagnosis of CH in infants with CHD. These results suggest that CH secondary to CHD in children differs in its mechanism from that described for adult hypertrophy, offering a new perspective to study the development of this pathology and to determine the potential of hypertrophic miRNAs to be biomarkers for early CH.
Collapse
Affiliation(s)
- Ma C Sánchez-Gómez
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico.,School of Medicine, National Polytechnic Institute (IPN), Mexico City, Mexico
| | - K A García-Mejía
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico
| | | | - G Díaz-Rosas
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico
| | - I Palma-Lara
- School of Medicine, National Polytechnic Institute (IPN), Mexico City, Mexico
| | - R Sánchez-Urbina
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico
| | | | - J A Botello-Flores
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico
| | | | - A Contreras-Ramos
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico.
| |
Collapse
|
66
|
Pan Y, Yan C, Hu Y, Fan Y, Pan Q, Wan Q, Torcivia-Rodriguez J, Mazumder R. Distribution bias analysis of germline and somatic single-nucleotide variations that impact protein functional site and neighboring amino acids. Sci Rep 2017; 7:42169. [PMID: 28176830 PMCID: PMC5296879 DOI: 10.1038/srep42169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/05/2017] [Indexed: 01/13/2023] Open
Abstract
Single nucleotide variations (SNVs) can result in loss or gain of protein functional sites. We analyzed the effects of SNVs on enzyme active sites, ligand binding sites, and various types of post translational modification (PTM) sites. We found that, for most types of protein functional sites, the SNV pattern differs between germline and somatic mutations as well as between synonymous and non-synonymous mutations. From a total of 51,138 protein functional site affecting SNVs (pfsSNVs), a pan-cancer analysis revealed 142 somatic pfsSNVs in five or more cancer types. By leveraging patient information for somatic pfsSNVs, we identified 17 loss of functional site SNVs and 60 gain of functional site SNVs which are significantly enriched in patients with specific cancer types. Of the key pfsSNVs identified in our analysis above, we highlight 132 key pfsSNVs within 17 genes that are found in well-established cancer associated gene lists. For illustrating how key pfsSNVs can be prioritized further, we provide a use case where we performed survival analysis showing that a loss of phosphorylation site pfsSNV at position 105 in MEF2A is significantly associated with decreased pancreatic cancer patient survival rate. These 132 pfsSNVs can be used in developing genetic testing pipelines.
Collapse
Affiliation(s)
- Yang Pan
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Cheng Yan
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Yu Hu
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Yu Fan
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Qing Pan
- The Department of Statistics, The George Washington University, Washington, DC 20037, United States of America
| | - Quan Wan
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - John Torcivia-Rodriguez
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Raja Mazumder
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America.,McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC 20037, United States of America
| |
Collapse
|
67
|
Pon JR, Marra MA. MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget 2016; 7:2297-312. [PMID: 26506234 PMCID: PMC4823036 DOI: 10.18632/oncotarget.6223] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
The MEF2 transcription factors have roles in muscle, cardiac, skeletal, vascular, neural, blood and immune system cell development through their effects on cell differentiation, proliferation, apoptosis, migration, shape and metabolism. Altered MEF2 activity plays a role in human diseases and has recently been implicated in the development of several cancer types. In particular, MEF2B, the most divergent and least studied protein of the MEF2 family, has a role unique from its paralogs in non-Hodgkin lymphomas. The use of genome-scale technologies has enabled comprehensive MEF2 target gene sets to be identified, contributing to our understanding of MEF2 proteins as nodes in complex regulatory networks. This review surveys the molecular interactions of MEF2 proteins and their effects on cellular and organismal phenotypes. We include a discussion of the emerging roles of MEF2 proteins as oncogenes and tumor suppressors of cancer. Throughout this article we highlight similarities and differences between the MEF2 family proteins, including a focus on functions of MEF2B.
Collapse
Affiliation(s)
- Julia R Pon
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
68
|
Chatterjee B, Wolff DW, Jothi M, Mal M, Mal AK. p38α MAPK disables KMT1A-mediated repression of myogenic differentiation program. Skelet Muscle 2016; 6:28. [PMID: 27551368 PMCID: PMC4993004 DOI: 10.1186/s13395-016-0100-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Master transcription factor MyoD can initiate the entire myogenic gene expression program which differentiates proliferating myoblasts into multinucleated myotubes. We previously demonstrated that histone methyltransferase KMT1A associates with and inhibits MyoD in proliferating myoblasts, and must be removed to allow differentiation to proceed. It is known that pro-myogenic signaling pathways such as PI3K/AKT and p38α MAPK play critical roles in enforcing associations between MyoD and transcriptional activators, while removing repressors. However, the mechanism which displaces KMT1A from MyoD, and the signals responsible, remain unknown. METHODS To investigate the role of p38α on MyoD-mediated differentiation, we utilized C2C12 myoblast cells as an in vitro model. p38α activity was either augmented via overexpression of a constitutively active upstream kinase or blocked via lentiviral delivery of a specific p38α shRNA or treatment with p38α/β inhibitor SB203580. Overexpression of KMT1A in these cells via lentiviral delivery was also used as a system wherein terminal differentiation is impeded by high levels of KMT1A. RESULTS The association of KMT1A and MyoD persisted, and differentiation was blocked in C2C12 myoblasts specifically after pharmacologic or genetic blockade of p38α. Conversely, forced activation of p38α was sufficient to activate MyoD and overcome the differentiation blockade in KMT1A-overexpressing C2C12 cells. Consistent with this finding, KMT1A phosphorylation during C2C12 differentiation correlated strongly with the activation of p38α. This phosphorylation was prevented by the inhibition of p38α. Biochemical studies further revealed that KMT1A can be a direct substrate for p38α. Importantly, chromatin immunoprecipitation (ChIP) studies show that the removal of KMT1A-mediated transcription repressive histone tri-methylation (H3K9me3) from the promoter of the Myogenin gene, a critical regulator of muscle differentiation, is dependent on p38α activity in C2C12 cells. Elevated p38α activity was also sufficient to remove this repressive H3K9me3 mark. Moreover, ChIP studies from C2C12 cells show that p38α activity is necessary and sufficient to establish active H3K9 acetylation on the Myogenin promoter. CONCLUSIONS Activation of p38α displaces KMT1A from MyoD to initiate myogenic gene expression upon induction of myoblasts differentiation.
Collapse
Affiliation(s)
- Biswanath Chatterjee
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA ; Present Address: Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| | - David W Wolff
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| | - Mathivanan Jothi
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA ; Present Address: Department of Biotechnology, Bharathiar University, Coimbatore, 641046 Tamilnadu India
| | - Munmun Mal
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| | - Asoke K Mal
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| |
Collapse
|
69
|
Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells. PLoS One 2016; 11:e0158055. [PMID: 27348124 PMCID: PMC4922563 DOI: 10.1371/journal.pone.0158055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022] Open
Abstract
Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.
Collapse
|
70
|
Melas IN, Sakellaropoulos T, Iorio F, Alexopoulos LG, Loh WY, Lauffenburger DA, Saez-Rodriguez J, Bai JPF. Identification of drug-specific pathways based on gene expression data: application to drug induced lung injury. Integr Biol (Camb) 2016; 7:904-20. [PMID: 25932872 DOI: 10.1039/c4ib00294f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Identification of signaling pathways that are functional in a specific biological context is a major challenge in systems biology, and could be instrumental to the study of complex diseases and various aspects of drug discovery. Recent approaches have attempted to combine gene expression data with prior knowledge of protein connectivity in the form of a PPI network, and employ computational methods to identify subsets of the protein-protein-interaction (PPI) network that are functional, based on the data at hand. However, the use of undirected networks limits the mechanistic insight that can be drawn, since it does not allow for following mechanistically signal transduction from one node to the next. To address this important issue, we used a directed, signaling network as a scaffold to represent protein connectivity, and implemented an Integer Linear Programming (ILP) formulation to model the rules of signal transduction from one node to the next in the network. We then optimized the structure of the network to best fit the gene expression data at hand. We illustrated the utility of ILP modeling with a case study of drug induced lung injury. We identified the modes of action of 200 lung toxic drugs based on their gene expression profiles and, subsequently, merged the drug specific pathways to construct a signaling network that captured the mechanisms underlying Drug Induced Lung Disease (DILD). We further demonstrated the predictive power and biological relevance of the DILD network by applying it to identify drugs with relevant pharmacological mechanisms for treating lung injury.
Collapse
Affiliation(s)
- Ioannis N Melas
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2016; 5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Citation(s) in RCA: 492] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Florian Bentzinger
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
72
|
Segalés J, Islam ABMMK, Kumar R, Liu QC, Sousa-Victor P, Dilworth FJ, Ballestar E, Perdiguero E, Muñoz-Cánoves P. Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation. Skelet Muscle 2016; 6:9. [PMID: 26981231 PMCID: PMC4791895 DOI: 10.1186/s13395-016-0074-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022] Open
Abstract
Background Extracellular stimuli induce gene expression responses through intracellular signaling mediators. The p38 signaling pathway is a paradigm of the mitogen-activated protein kinase (MAPK) family that, although originally identified as stress-response mediator, contributes to establishing stem cell differentiation fates. p38α is central for induction of the differentiation fate of the skeletal muscle stem cells (satellite cells) through not fully characterized mechanisms. Methods To investigate the global gene transcription program regulated by p38α during satellite cell differentiation (myogenesis), and to specifically address whether this regulation occurs through direct action of p38α on gene promoters, we performed a combination of microarray gene expression and genome-wide binding analyses. For experimental robustness, two myogenic cellular systems with genetic and chemical loss of p38α function were used: (1) satellite cells derived from mice with muscle-specific deletion of p38α, and (2) the C2C12 murine myoblast cell line cultured in the absence or presence of the p38α/β inhibitor SB203580. Analyses were performed at cell proliferation and early differentiation stages. Results We show that p38α binds to a large set of active promoters during the transition of myoblasts from proliferation to differentiation stages. p38α-bound promoters are enriched with binding motifs for several transcription factors, with Sp1, Tcf3/E47, Lef1, FoxO4, MyoD, and NFATc standing out in all experimental conditions. p38α association with chromatin correlates very well with high levels of transcription, in agreement with its classical function as an activator of myogenic differentiation. Interestingly, p38α also associates with genes repressed at the onset of differentiation, thus highlighting the relevance of p38-dependent chromatin regulation for transcriptional activation and repression during myogenesis. Conclusions These results uncover p38α association and function on chromatin at novel classes of target genes during skeletal muscle cell differentiation. This is consistent with this MAPK isoform being a transcriptional regulator. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0074-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Segalés
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Roshan Kumar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
| | - Qi-Cai Liu
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Pedro Sousa-Victor
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain ; Present address: Buck Institute for Research on Aging, Novato, CA USA
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
73
|
A novel synthetic compound MCAP suppresses LPS-induced murine microglial activation in vitro via inhibiting NF-kB and p38 MAPK pathways. Acta Pharmacol Sin 2016; 37:334-43. [PMID: 26838070 DOI: 10.1038/aps.2015.138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/17/2015] [Indexed: 12/24/2022]
Abstract
AIM To investigate the anti-neuroinflammatory activity of a novel synthetic compound, 7-methylchroman-2-carboxylic acid N-(2-trifluoromethyl) phenylamide (MCAP) against LPS-induced microglial activation in vitro. METHODS Primary mouse microglia and BV2 microglia cells were exposed to LPS (50 or 100 ng/mL). The expression of iNOS and COX-2, proinflammatory cytokines, NF-κB and p38 MAPK signaling molecules were analyzed by RT-PCR, Western blot and ELISA. The morphological changes of microglia and nuclear translocation of NF-ĸB were visualized using phase contrast and fluorescence microscopy, respectively. RESULTS Pretreatment with MCAP (0.1, 1, 10 μmol/L) dose-dependently inhibited LPS-induced expression of iNOS and COX-2 in BV2 microglia cells. Similar results were obtained in primary microglia pretreated with MCAP (0.1, 0.5 μmol/L). MCAP dose-dependently abated LPS-induced release of TNF-α, IL-6 and IL-1β, and mitigated LPS-induced activation of NF-κB by reducing the phosphorylation of IκBα in BV2 microglia cells. Moreover, MCAP attenuated LPS-induced phosphorylation of p38 MAPK, whereas SB203580, a p38 MAPK inhibitor, significantly potentiated MCAP-caused inhibition on the expression of MEF-2 (a transcription factor downstream of p38 MAPK). CONCLUSION MCAP exerts anti-inflammatory effects in murine microglia in vitro by inhibiting the p38 MAPK and NF-κB signaling pathways and proinflammatory responses. MCAP may be developed as a novel agent for treating diseases involving activated microglial cells.
Collapse
|
74
|
Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:770-84. [PMID: 26844774 DOI: 10.1016/j.bbamcr.2016.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
Melanoma has markedly increased worldwide during the past several decades in the Caucasian population and is responsible for 80% of skin cancer deaths. Considering that metastatic melanoma is almost completely resistant to most current therapies and is linked with a poor patient prognosis, it is crucial to further investigate potential molecular targets. Major cell-autonomous drivers in the pathogenesis of this disease include the classical MAPK (i.e., RAS-RAF-MEK-ERK), WNT, and PI3K signaling pathways. These pathways play a major role in defining the progression of melanoma, and some have been the subject of recent pharmacological strategies to treat this belligerent disease. This review describes the latest advances in the understanding of melanoma progression and the major molecular pathways involved. In addition, we discuss the roles of emerging molecular players that are involved in melanoma pathogenesis, including the functional role of the melanoma tumor antigen, p97/MFI2 (melanotransferrin).
Collapse
|
75
|
Abstract
For decades, tumor cells have been considered defective in mitochondrial respiration due to their dominant glycolytic metabolism. However, a growing body of evidence is now challenging this assumption, and also implying that tumors are metabolically less homogeneous than previously supposed. A small subpopulation of slow-cycling cells endowed with tumorigenic potential and multidrug resistance has been isolated from different tumors. Deep metabolic characterization of these tumorigenic cells revealed their dependency on mitochondrial respiration versus glycolysis, suggesting the existence of a common metabolic program active in slow-cycling cells across different tumors. These findings change our understanding of tumor metabolism and also highlight new vulnerabilities that can be exploited to eradicate cancer cells responsible for tumor relapse.
Collapse
|
76
|
Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio). PLoS One 2015; 10:e0145801. [PMID: 26713440 PMCID: PMC4700982 DOI: 10.1371/journal.pone.0145801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023] Open
Abstract
Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio) in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5) and to other genes related to memory formation (btg2, npas4b), which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics.
Collapse
|
77
|
Marino S, Di Foggia V. Invited Review: Polycomb group genes in the regeneration of the healthy and pathological skeletal muscle. Neuropathol Appl Neurobiol 2015; 42:407-22. [PMID: 26479276 DOI: 10.1111/nan.12290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022]
Abstract
The polycomb group (PcG) proteins are epigenetic repressors required during key developmental processes, such as maintenance of cell identity and stem cell differentiation. To exert their repressive function, PcG proteins assemble on chromatin into multiprotein complexes, known as polycomb repressive complex 1 and 2. In this review, we will focus on the role and mode of function of PcG proteins in the development and regeneration of the skeletal muscle, both in normal and pathological conditions and we will discuss the emerging concept of modulation of their expression to enhance the muscle-specific regenerative process for patient benefit.
Collapse
Affiliation(s)
- S Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - V Di Foggia
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
78
|
Essential control of early B-cell development by Mef2 transcription factors. Blood 2015; 127:572-81. [PMID: 26660426 DOI: 10.1182/blood-2015-04-643270] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/05/2015] [Indexed: 12/12/2022] Open
Abstract
The sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms involved in initiating downstream programs are incompletely understood. The pre-B-cell receptor (pre-BCR) is an important checkpoint of B-cell development and is essential for a pre-B cell to traverse into an immature B cell. Here, we show that activation of myocyte enhancer factor 2 (Mef2) transcription factors (TFs) by the pre-BCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the pre-B-cell stage in mice deficient for Mef2c and Mef2d TFs and that pre-BCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the Erk5 mitogen-activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development.
Collapse
|
79
|
Diviani D, Reggi E, Arambasic M, Caso S, Maric D. Emerging roles of A-kinase anchoring proteins in cardiovascular pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1926-36. [PMID: 26643253 DOI: 10.1016/j.bbamcr.2015.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions. AKAPs assemble multifunctional signaling complexes that ensure correct targeting of the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to precise subcellular compartments. This allows local regulation of specific effector proteins that control the function of vascular and cardiac cells. This review will focus on recent advances illustrating the role of AKAPs in cardiovascular pathophysiology. The accent will be mainly placed on the molecular events linked to the control of vascular integrity and blood pressure as well as on the cardiac remodeling process associated with heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| |
Collapse
|
80
|
A p38 Mitogen-Activated Protein Kinase-Regulated Myocyte Enhancer Factor 2-β-Catenin Interaction Enhances Canonical Wnt Signaling. Mol Cell Biol 2015; 36:330-46. [PMID: 26552705 DOI: 10.1128/mcb.00832-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Canonical Wnt/β-catenin signaling plays a major role in various biological contexts, such as embryonic development, cell proliferation, and cancer progression. Previously, a connection between p38 mitogen-activated protein kinase (MAPK) signaling and Wnt-mediated activation of β-catenin was implied but poorly understood. In the present study, we investigated potential cross talk between p38 MAPK and Wnt/β-catenin signaling. Here we show that a loss of p38 MAPK α/β function reduces β-catenin nuclear accumulation in Wnt3a-stimulated primary vascular smooth muscle cells (VSMCs). Conversely, active p38 MAPK signaling increases β-catenin nuclear localization and target gene activity in multiple cell types. Furthermore, the effect of p38 MAPK α/β on β-catenin activity is mediated through phosphorylation of a key p38 MAPK target, myocyte enhancer factor 2 (MEF2). Here we report a p38 MAPK-mediated, phosphorylation-dependent interaction between MEF2 and β-catenin in multiple cell types and primary VSMCs that results in (i) increased β-catenin nuclear retention, which is reversed by small interfering RNA (siRNA)-mediated MEF2 gene silencing; (ii) increased activation of MEF2 and Wnt/β-catenin target genes; and (iii) increased Wnt-stimulated cell proliferation. These observations provide mechanistic insight into a fundamental level of cross talk between p38 MAPK/MEF2 signaling and canonical Wnt signaling.
Collapse
|
81
|
Umasuthan N, Bathige SDNK, Noh JK, Lee J. Gene structure, molecular characterization and transcriptional expression of two p38 isoforms (MAPK11 and MAPK14) from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2015; 47:331-343. [PMID: 26363230 DOI: 10.1016/j.fsi.2015.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The p38 kinases are one of the four subgroups of mitogen-activated protein kinase (MAPK) superfamily which are involved in the innate immunity. The p38 subfamily that includes four members namely p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12) and p38δ (MAPK13), regulates the activation of several transcription factors. In this study, a p38β (OfMAPK11) homolog and a p38α (OfMAPK14) homolog of Oplegnathus fasciatus were identified at genomic level. Results clearly showed that both MAPK11 and MAPK14 are well-conserved at both genomic structural- and amino acid (aa)-levels. Genomic sequences of OfMAPK11 (∼ 15.6 kb) and OfMAPK14 (∼ 13.4 kb) had 12 exons. A comparison of exon-intron structural arrangement of these genes from different vertebrate lineages indicated that all the exon lengths are highly conserved, except their terminal exons. Full-length cDNAs of OfMAPK11 (3957 bp) and OfMAPK14 (2504 bp) encoded corresponding proteins of 361 aa and 360 aa, respectively. Both OfMAPK proteins harbored a Ser/Thr protein kinases catalytic domain (S_TKc domain) which includes an activation loop with a dual phosphorylation site (TGY motif) and several specific-binding sites for ATP and substrates. Molecular modeling of the activation loop and substrate binding sites of rock bream MAPKs revealed the conservation of crucial residues and their orientation in 3D space. Transcripts of OfMAPKs were ubiquitously detected in eleven tissues examined, however at different levels. The modulation of OfMAPKs' transcription upon pathogen-associated molecular patterns (PAMPs: flagellin, lipopolysaccharide and poly I:C) and pathogens (Edwardsiella tarda, Streptococcus iniae and rock bream iridovirus) was investigated. Among the seven examined tissues, the flagellin-challenge upregulated the mRNA level of both OfMAPKs in the head kidney. Meanwhile, modulation of OfMAPK mRNA expression in the liver upon other immune-challenges varied in a time-dependent manner. Collectively, these results suggest that OfMAPKs are true members of p38 subfamily, which might be induced by different immune stimuli.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
82
|
Blum R. Activation of muscle enhancers by MyoD and epigenetic modifiers. J Cell Biochem 2015; 115:1855-67. [PMID: 24905980 DOI: 10.1002/jcb.24854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 05/30/2014] [Indexed: 12/11/2022]
Abstract
The early 1980s revelation of cis-acting genomic elements, known as transcriptional enhancers, is still regarded as one of the fundamental discoveries in the genomic field. However, only with the emergence of genome-wide techniques has the genuine biological scope of enhancers begun to be fully uncovered. Massive scientific efforts of multiple laboratories rapidly advanced the overall perception that enhancers are typified by common epigenetic characteristics that distinguish their activating potential. Broadly, chromatin modifiers and transcriptional regulators lay down the essential foundations necessary for constituting enhancers in their activated form. Basing on genome-wide ChIP-sequencing of enhancer-related marks we identified myogenic enhancers before and after muscle differentiation and discovered that MyoD was bound to nearly a third of condition-specific enhancers. Experimental studies that tested the deposition patterns of enhancer-related epigenetic marks in MyoD-null myoblasts revealed the high dependency that a specific set of muscle enhancers have towards this transcriptional regulator. Re-expression of MyoD restored the deposition of enhancer-related marks at myotube-specific enhancers and partially at myoblasts-specific enhancers. Our proposed mechanistic model suggests that MyoD is involved in recruitment of methyltransferase Set7, acetyltransferase p300 and deposition of H3K4me1 and H3K27ac at myogenic enhancers. In addition, MyoD binding at enhancers is associated with PolII occupancy and with local noncoding transcription. Modulation of muscle enhancers is suggested to be coordinated via transcription factors docking, including c-Jun and Jdp2 that bind to muscle enhancers in a MyoD-dependent manner. We hypothesize that distinct transcription factors may act as placeholders and mediate the assembly of newly formed myogenic enhancers.
Collapse
Affiliation(s)
- Roy Blum
- Laura and Isaac Perlmutter Cancer Center, Department of Pathology, New York University School of Medicine, 522 1st Avenue, New York, New York, 10016
| |
Collapse
|
83
|
Drake JC, Wilson RJ, Yan Z. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J 2015; 30:13-22. [PMID: 26370848 DOI: 10.1096/fj.15-276337] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
Exercise training enhances physical performance and confers health benefits, largely through adaptations in skeletal muscle. Mitochondrial adaptation, encompassing coordinated improvements in quantity (content) and quality (structure and function), is increasingly recognized as a key factor in the beneficial outcomes of exercise training. Exercise training has long been known to promote mitochondrial biogenesis, but recent work has demonstrated that it has a profound impact on mitochondrial dynamics (fusion and fission) and clearance (mitophagy), as well. In this review, we discuss the various mechanisms through which exercise training promotes mitochondrial quantity and quality in skeletal muscle.
Collapse
Affiliation(s)
- Joshua C Drake
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, Department of Medicine, Department of Pharmacology, and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Rebecca J Wilson
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, Department of Medicine, Department of Pharmacology, and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Zhen Yan
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, Department of Medicine, Department of Pharmacology, and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
84
|
Jurek B, Slattery DA, Hiraoka Y, Liu Y, Nishimori K, Aguilera G, Neumann ID, van den Burg EH. Oxytocin Regulates Stress-Induced Crf Gene Transcription through CREB-Regulated Transcription Coactivator 3. J Neurosci 2015; 35:12248-60. [PMID: 26338335 PMCID: PMC4556790 DOI: 10.1523/jneurosci.1345-14.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022] Open
Abstract
The major regulator of the neuroendocrine stress response in the brain is corticotropin releasing factor (CRF), whose transcription is controlled by CREB and its cofactors CRTC2/3 (TORC2/3). Phosphorylated CRTCs are sequestered in the cytoplasm, but rapidly dephosphorylated and translocated into the nucleus following a stressful stimulus. As the stress response is attenuated by oxytocin (OT), we tested whether OT interferes with CRTC translocation and, thereby, Crf expression. OT (1 nmol, i.c.v.) delayed the stress-induced increase of nuclear CRTC3 and Crf hnRNA levels in the paraventricular nucleus of male rats and mice, but did not affect either parameter in the absence of the stressor. The increase in Crf hnRNA levels at later time points was parallel to elevated nuclear CRTC2/3 levels. A direct effect of Thr(4) Gly(7)-OT (TGOT) on CRTC3 translocation and Crf expression was found in rat primary hypothalamic neurons, amygdaloid (Ar-5), hypothalamic (H32), and human neuroblastoma (Be(2)M17) cell lines. CRTC3, but not CRCT2, knockdown using siRNA in Be(2)M17 cells prevented the effect of TGOT on Crf hnRNA levels. Chromatin-immunoprecipitation demonstrated that TGOT reduced CRTC3, but not CRTC2, binding to the Crf promoter after 10 min of forskolin stimulation. Together, the results indicate that OT modulates CRTC3 translocation, the binding of CRTC3 to the Crf promoter and, ultimately, transcription of the Crf gene. SIGNIFICANCE STATEMENT The neuropeptide oxytocin has been proposed to reduce hypothalamic-pituitary-adrenal (HPA) axis activation during stress. The underlying mechanisms are, however, elusive. In this study we show that activation of the oxytocin receptor in the paraventricular nucleus delays transcription of the gene encoding corticotropin releasing factor (Crf), the main regulator of the stress response. It does so by sequestering the coactivator of the transcription factor CREB, CRTC3, in the cytosol, resulting in reduced binding of CRTC3 to the Crf gene promoter and subsequent Crf gene expression. This novel oxytocin receptor-mediated intracellular mechanism might provide a basis for the treatment of exaggerated stress responses in the future.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg 93040, Germany
| | - David A Slattery
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg 93040, Germany
| | - Yuichi Hiraoka
- Laboratory of Molecular Biology, Tohoku University Graduate School of Agricultural Science, Aoba-ku, Sendai-city 981-8555, Miyagi-pref, Japan, and
| | - Ying Liu
- Section on Endocrine Physiology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Tohoku University Graduate School of Agricultural Science, Aoba-ku, Sendai-city 981-8555, Miyagi-pref, Japan, and
| | - Greti Aguilera
- Section on Endocrine Physiology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg 93040, Germany,
| | - Erwin H van den Burg
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg 93040, Germany
| |
Collapse
|
85
|
Gardner S, Gross SM, David LL, Klimek JE, Rotwein P. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190. Am J Physiol Cell Physiol 2015; 309:C491-500. [PMID: 26246429 DOI: 10.1152/ajpcell.00184.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 11/22/2022]
Abstract
The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis.
Collapse
Affiliation(s)
- Samantha Gardner
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - John E Klimek
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| |
Collapse
|
86
|
Crisafulli C, Drago A, Calabrò M, Spina E, Serretti A. A molecular pathway analysis informs the genetic background at risk for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:21-30. [PMID: 25554435 DOI: 10.1016/j.pnpbp.2014.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder marked by severely impaired thinking, delusional thoughts, hallucinations and poor emotional responsiveness. The biological mechanisms that lead to schizophrenia may be related to the genetic background of patients. Thus, a genetic perspective may help to unravel the molecular pathways disrupted in schizophrenia. METHODS In the present work, we used a molecular pathway analysis to identify the molecular pathways associated with schizophrenia. We collected data of genetic loci previously associated with schizophrenia, identified the genes located in those positions and created the metabolic pathways that are related to those genes' products. These pathways were tested for enrichment (a number of SNPs associated with the phenotype significantly higher than expected by chance) in a sample of schizophrenic patients and controls (4486 and 4477, respectively). RESULTS The molecular pathway that resulted from the identification of all the genes located in the loci previously found to be associated with schizophrenia was found to be enriched, as expected (permutated p(10(6))=9.9999e-06).We found 60 SNPs amongst 30 different genes with a strong association with schizophrenia. The genes are related to the pathways related to neurodevelopment, apoptosis, vesicle traffic, immune response and MAPK cascade. CONCLUSIONS The pathway related to the toll-like receptor family seemed to play a central role in the modulation/connection of various pathways whose disruption leads to schizophrenia. This pathway is related to the innate immune system, further stressing the role of immunological-related events in increasing the risk to schizophrenia.
Collapse
Affiliation(s)
- Concetta Crisafulli
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Antonio Drago
- Department of Biomedical and Neuromotor Sciences - DIBINEM, University of Bologna, Bologna, Italy; I.R.C.C.S. "San Giovanni di Dio", Fatebenefratelli, Brescia, Italy.
| | - Marco Calabrò
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences - DIBINEM, University of Bologna, Bologna, Italy
| |
Collapse
|
87
|
Wu Q, Fukuda K, Weinstein M, Graff JM, Saga Y. SMAD2 and p38 signaling pathways act in concert to determine XY primordial germ cell fate in mice. Development 2015; 142:575-86. [PMID: 25605784 DOI: 10.1242/dev.119446] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sex of primordial germ cells (PGCs) is determined in developing gonads on the basis of cues from somatic cells. In XY gonads, sex-determining region Y (SRY) triggers fibroblast growth factor 9 (FGF9) expression in somatic cells. FGF signaling, together with downstream nodal/activin signaling, promotes male differentiation in XY germ cells by suppressing retinoic acid (RA)-dependent meiotic entry and inducing male-specific genes. However, the mechanism by which nodal/activin signaling regulates XY PGC fate is unknown. We uncovered the roles of SMAD2/3 and p38 MAPK, the putative downstream factors of nodal/activin signaling, in PGC sexual fate decision. We found that conditional deletion of Smad2, but not Smad3, from XY PGCs led to a loss of male-specific gene expression. Moreover, suppression of RA signaling did not rescue male-specific gene expression in Smad2-mutant testes, indicating that SMAD2 signaling promotes male differentiation in a RA-independent manner. By contrast, we found that p38 signaling has an important role in the suppression of RA signaling. The Smad2 deletion did not disrupt the p38 signaling pathway even though Nodal expression was significantly reduced, suggesting that p38 was not regulated by nodal signaling in XY PGCs. Additionally, the inhibition of p38 signaling in the Smad2-mutant testes severely impeded XY PGC differentiation and induced meiosis. In conclusion, we propose a model in which p38 and SMAD2 signaling coordinate to determine the sexual fate of XY PGCs.
Collapse
Affiliation(s)
- Quan Wu
- Department of Genetics, SOKENDAI, Yata 1111, Mishima 411-8540, Japan Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| | - Kurumi Fukuda
- Department of Genetics, SOKENDAI, Yata 1111, Mishima 411-8540, Japan Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| | - Michael Weinstein
- Department of Molecular Genetics and Division of Human Cancer Genetics, Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA
| | - Jonathan M Graff
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NB5.118, Dallas, TX 75390, USA
| | - Yumiko Saga
- Department of Genetics, SOKENDAI, Yata 1111, Mishima 411-8540, Japan Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| |
Collapse
|
88
|
Jain P, Lavorgna A, Sehgal M, Gao L, Ginwala R, Sagar D, Harhaj EW, Khan ZK. Myocyte enhancer factor (MEF)-2 plays essential roles in T-cell transformation associated with HTLV-1 infection by stabilizing complex between Tax and CREB. Retrovirology 2015; 12:23. [PMID: 25809782 PMCID: PMC4374383 DOI: 10.1186/s12977-015-0140-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/15/2015] [Indexed: 12/17/2022] Open
Abstract
Background The exact molecular mechanisms regarding HTLV-1 Tax-mediated viral gene expression and CD4 T-cell transformation have yet to be fully delineated. Herein, utilizing virus-infected primary CD4+ T cells and the virus-producing cell line, MT-2, we describe the involvement and regulation of Myocyte enhancer factor-2 (specifically MEF-2A) during the course of HTLV-1 infection and associated disease syndrome. Results Inhibition of MEF-2 expression by shRNA and its activity by HDAC9 led to reduced viral replication and T-cell transformation in correlation with a heightened expression of MEF-2 in ATL patients. Mechanistically, MEF-2 was recruited to the viral promoter (LTR, long terminal repeat) in the context of chromatin, and constituted Tax/CREB transcriptional complex via direct binding to the HTLV-1 LTR. Furthermore, an increase in MEF-2 expression was observed upon infection in an extent similar to CREB (known Tax-interacting transcription factor), and HATs (p300, CBP, and p/CAF). Confocal imaging confirmed MEF-2 co-localization with Tax and these proteins were also shown to interact by co-immunoprecipitation. MEF-2 stabilization of Tax/CREB complex was confirmed by a novel promoter-binding assay that highlighted the involvement of NFAT (nuclear factor of activated T cells) in this process via Tax-mediated activation of calcineurin (a calcium-dependent serine-threonine phosphatase). MEF-2-integrated signaling pathways (PI3K/Akt, NF-κB, MAPK, JAK/STAT, and TGF-β) were also activated during HTLV-1 infection of primary CD4+ T cells, possibly regulating MEF-2 activity. Conclusions We demonstrate the involvement of MEF-2 in Tax-mediated LTR activation, viral replication, and T-cell transformation in correlation with its heightened expression in ATL patients through direct binding to DNA within the HTLV-1 LTR. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0140-1) contains supplementary material, which is available to authorized users.
Collapse
|
89
|
Brusco J, Haas K. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity. J Physiol 2015; 593:3471-81. [PMID: 25581818 DOI: 10.1113/jphysiol.2014.282459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions.
Collapse
Affiliation(s)
- Janaina Brusco
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| | - Kurt Haas
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| |
Collapse
|
90
|
Mitochondrial quality control: Easy come, easy go. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2802-11. [PMID: 25596427 DOI: 10.1016/j.bbamcr.2014.12.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 02/03/2023]
Abstract
"Friends come and go but enemies accumulate." - Arthur Bloch Mitochondrial networks in eukaryotic cells are maintained via regular cycles of degradation and biogenesis. These complex processes function in concert with one another to eliminate dysfunctional mitochondria in a specific and targeted manner and coordinate the biogenesis of new organelles. This review covers the two aspects of mitochondrial turnover, focusing on the main pathways and mechanisms involved. The review also summarizes the current methods and techniques for analyzing mitochondrial turnover in vivo and in vitro, from the whole animal proteome level to the level of single organelle.
Collapse
|
91
|
Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, Hj Lajis N, Ahmad Israf D. The synthetic curcuminoid BHMC restores endotoxin-stimulated HUVEC dysfunction:Specific disruption on enzymatic activity of p38 MAPK. Eur J Pharmacol 2015; 749:1-11. [PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/08/2023]
Abstract
2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Yi Joong Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nordin Hj Lajis
- Scientific Chairs Unit, Taibah University, PO Box 30001, 41311 Madinah al Munawarah, Saudi Arabia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
92
|
Zhu J, Cai L, Zhang T, Chen L, Jin P, Ma F. Identification and characterization of a p38-like gene from amphioxus (Branchiostoma belcheri): an insight into amphioxus innate immunity and evolution. FISH & SHELLFISH IMMUNOLOGY 2014; 41:421-427. [PMID: 25281579 DOI: 10.1016/j.fsi.2014.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/10/2014] [Accepted: 09/20/2014] [Indexed: 06/03/2023]
Abstract
p38 MAP kinases, members of mitogen-activated protein kinases (MAPKs) activated by environmental stresses and cytokines, play important roles in transcription regulation and inflammatory responses. However, the p38 MAP kinase gene has not been identified in amphioxus to date. Here, we identified and characterized a p38 MAP kinase gene from Branchiostoma belcheri (designed as Amphip38). First, we cloned the full length of Amphip38 gene and found that the deduced amino acid sequence of Amphip38 has 80.5-84% similarity and 67.2-72.5% identity to those from other species. Second, we found that Amphip38 contained the conserved TGY motif, ATP binding site (GXGXXG), substrate binding site (ATRW) and ED site in known p38 MAP kinases. The predicted 3D structure of Amphip38 was found to be similar to human p38 MAP kinases. These results indicate that Amphip38 belongs to p38 MAP kinase gene family. Third, we found that the Amphip38 was ubiquitously and differentially expressed in five investigated tissues (intestine, gills, notochord, muscles, and hepatic cecum). Finally, we found that LPS stimulation induced the expression of Amphip38 gene, and lead to increase of phosphorylation-p38 MAP kinase. These results indicate that Amphip38 is involved in innate immunity response in amphioxus. In addition, we found that Amphip38 gene might be an ancestor of vertebrate p38 MAP kinase gene via evolutionary analysis. In conclusion, our results provided an insight into the innate immunity response and the evolution of the vertebrate p38 MAP kinase gene family.
Collapse
Affiliation(s)
- Jiu Zhu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Lu Cai
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Tianhai Zhang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing 210009, PR China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China.
| |
Collapse
|
93
|
Andres AM, Stotland A, Queliconi BB, Gottlieb RA. A time to reap, a time to sow: mitophagy and biogenesis in cardiac pathophysiology. J Mol Cell Cardiol 2014; 78:62-72. [PMID: 25444712 DOI: 10.1016/j.yjmcc.2014.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Balancing mitophagy and mitochondrial biogenesis is essential for maintaining a healthy population of mitochondria and cellular homeostasis. Coordinated interplay between these two forces that govern mitochondrial turnover plays an important role as an adaptive response against various cellular stresses that can compromise cell survival. Failure to maintain the critical balance between mitophagy and mitochondrial biogenesis or homeostatic turnover of mitochondria results in a population of dysfunctional mitochondria that contribute to various disease processes. In this review we outline the mechanics and relationships between mitophagy and mitochondrial biogenesis, and discuss the implications of a disrupted balance between these two forces, with an emphasis on cardiac physiology. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Allen M Andres
- Cedars-Sinai Heart Institute and Barbra Streisand Women's Heart Center
| | | | - Bruno B Queliconi
- Cedars-Sinai Heart Institute and Barbra Streisand Women's Heart Center
| | | |
Collapse
|
94
|
Dusik V, Senthilan PR, Mentzel B, Hartlieb H, Wülbeck C, Yoshii T, Raabe T, Helfrich-Förster C. The MAP kinase p38 is part of Drosophila melanogaster's circadian clock. PLoS Genet 2014; 10:e1004565. [PMID: 25144774 PMCID: PMC4140665 DOI: 10.1371/journal.pgen.1004565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 06/30/2014] [Indexed: 11/18/2022] Open
Abstract
All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes. Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of animals to the environment, but the molecular and cellular mechanisms remained largely unknown. Here, we demonstrate by immunocytochemical means that p38 is expressed in Drosophila melanogaster's clock neurons and that it is activated in a clock-dependent manner. Surprisingly, we found that p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type timing of evening activity and for maintaining ∼ 24 h behavioral rhythms under constant darkness: flies with reduced p38 activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore, nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of p38b in Drosophila's most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed our Western Blot results and point to p38 as a potential "clock kinase" phosphorylating Period. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways.
Collapse
Affiliation(s)
- Verena Dusik
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Benjamin Mentzel
- Institute of Medical Radiation and Cell Research, University of Würzburg, Würzburg, Germany
| | - Heiko Hartlieb
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Corinna Wülbeck
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Thomas Raabe
- Institute of Medical Radiation and Cell Research, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
95
|
Bremer K, Kocha K, Snider T, Moyes C. Energy metabolism and cytochrome oxidase activity: linking metabolism to gene expression. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modification of mitochondrial content demands the synthesis of hundreds of proteins encoded by nuclear and mitochondrial genomes. The responsibility for coordination of this process falls to nuclear-encoded master regulators of transcription. DNA-binding proteins and coactivators integrate information from energy-sensing pathways and hormones to alter mitochondrial gene expression. In mammals, the signaling cascade for mitochondrial biogenesis can be described as follows: hormonal signals and energetic information are sensed by protein-modifying enzymes that in turn regulate the post-translational modification of transcription factors. Once activated, transcription-factor complexes form on promoter elements of many of the nuclear-encoded mitochondrial genes, recruiting proteins that remodel chromatin and initiate transcription. One master regulator in mammals, PGC-1α, is well studied because of its role in determining the metabolic phenotype of muscles, but also due to its importance in mitochondria-related metabolic diseases. However, relatively little is known about the role of this pathway in other vertebrates. These uncertainties raise broader questions about the evolutionary origins of the pathway and its role in generating the diversity in muscle metabolic phenotypes seen in nature.
Collapse
Affiliation(s)
- K. Bremer
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - K.M. Kocha
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - T. Snider
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - C.D. Moyes
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
96
|
Abstract
Mitogen-activated protein kinases (MAPKs) mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the main subgroups, the p38 MAP kinases, has been implicated in a wide range of complex biologic processes, such as cell proliferation, cell differentiation, cell death, cell migration, and invasion. Dysregulation of p38 MAPK levels in patients are associated with advanced stages and short survival in cancer patients (e.g., prostate, breast, bladder, liver, and lung cancer). p38 MAPK plays a dual role as a regulator of cell death, and it can either mediate cell survival or cell death depending not only on the type of stimulus but also in a cell type specific manner. In addition to modulating cell survival, an essential role of p38 MAPK in modulation of cell migration and invasion offers a distinct opportunity to target this pathway with respect to tumor metastasis. The specific function of p38 MAPK appears to depend not only on the cell type but also on the stimuli and/or the isoform that is activated. p38 MAPK signaling pathway is activated in response to diverse stimuli and mediates its function by components downstream of p38. Extrapolation of the knowledge gained from laboratory findings is essential to address the clinical significance of p38 MAPK signaling pathways. The goal of this review is to provide an overview on recent progress made in defining the functions of p38 MAPK pathways with respect to solid tumor biology and generate testable hypothesis with respect to the role of p38 MAPK as an attractive target for intervention of solid tumors.
Collapse
Affiliation(s)
- Hari K Koul
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center, Shreveport, LA, USA ; Feist-Weiller Cancer Center, Shreveport, LA, USA ; Veterans Administration Medical Center, Shreveport, LA, USA
| | - Mantu Pal
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center, Shreveport, LA, USA ; Veterans Administration Medical Center, Shreveport, LA, USA
| | - Sweaty Koul
- Feist-Weiller Cancer Center, Shreveport, LA, USA ; Department of Urology, LSU Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
97
|
Brien P, Pugazhendhi D, Woodhouse S, Oxley D, Pell JM. p38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair. Stem Cells 2014; 31:1597-610. [PMID: 23592450 DOI: 10.1002/stem.1399] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 11/05/2022]
Abstract
Stem cell function is essential for the maintenance of adult tissue homeostasis. Controlling the balance between self-renewal and differentiation is crucial to maintain a receptive satellite cell pool capable of responding to growth and regeneration cues. The mitogen-activated protein kinase p38α has been implicated in the regulation of these processes but its influence in adult muscle remains unknown. Using conditional satellite cell p38α knockout mice we have demonstrated that p38α restricts excess proliferation in the postnatal growth phase while promoting timely myoblast differentiation. Differentiation was still able to occur in the p38α-null satellite cells, however, but was delayed. An absence of p38α resulted in a postnatal growth defect along with the persistence of an increased reservoir of satellite cells into adulthood. This population was still capable of responding to cardiotoxin-induced injury, resulting in complete, albeit delayed, regeneration, with further enhancement of the satellite cell population. Increased p38γ phosphorylation accompanied the absence of p38α, and inhibition of p38γ ex vivo substantially decreased the myogenic defect. We have used genome-wide transcriptome analysis to characterize the changes in expression that occur between resting and regenerating muscle, and the influence p38α has on these expression profiles. This study provides novel evidence for the fundamental role of p38α in adult muscle homeostasis in vivo.
Collapse
|
98
|
Lee HY, Gattu AK, Camporez JPG, Kanda S, Guigni B, Kahn M, Zhang D, Galbo T, Birkenfeld AL, Jornayvaz FR, Jurczak MJ, Choi CS, Yan Z, Williams RS, Shulman GI, Samuel VT. Muscle-specific activation of Ca(2+)/calmodulin-dependent protein kinase IV increases whole-body insulin action in mice. Diabetologia 2014; 57:1232-41. [PMID: 24718953 PMCID: PMC5634138 DOI: 10.1007/s00125-014-3212-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Aerobic exercise increases muscle glucose and improves insulin action through numerous pathways, including activation of Ca(2+)/calmodulin-dependent protein kinases (CAMKs) and peroxisome proliferator γ coactivator 1α (PGC-1α). While overexpression of PGC-1α increases muscle mitochondrial content and oxidative type I fibres, it does not improve insulin action. Activation of CAMK4 also increases the content of type I muscle fibres, PGC-1α level and mitochondrial content. However, it remains unknown whether CAMK4 activation improves insulin action on glucose metabolism in vivo. METHODS The effects of CAMK4 activation on skeletal muscle insulin action were quantified using transgenic mice with a truncated and constitutively active form of CAMK4 (CAMK4([Symbol: see text])) in skeletal muscle. Tissue-specific insulin sensitivity was assessed in vivo using a hyperinsulinaemic-euglycaemic clamp and isotopic measurements of glucose metabolism. RESULTS The rate of insulin-stimulated whole-body glucose uptake was increased by ∼25% in CAMK4([Symbol: see text]) mice. This was largely attributed to an increase of ∼60% in insulin-stimulated glucose uptake in the quadriceps, the largest hindlimb muscle. These changes were associated with improvements in insulin signalling, as reflected by increased phosphorylation of Akt and its substrates and an increase in the level of GLUT4 protein. In addition, there were extramuscular effects: CAMK4([Symbol: see text]) mice had improved hepatic and adipose insulin action. These pleiotropic effects were associated with increased levels of PGC-1α-related myokines in CAMK4([Symbol: see text]) skeletal muscle. CONCLUSIONS/INTERPRETATION Activation of CAMK4 enhances mitochondrial biogenesis in skeletal muscle while also coordinating improvements in whole-body insulin-mediated glucose.
Collapse
Affiliation(s)
- Hui-Young Lee
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Arijeet K. Gattu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Veteran’s Affairs Medical Center, West Haven, CT, USA
| | - João-Paulo G. Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shoichi Kanda
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Blas Guigni
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Thomas Galbo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Endocrinology, Charite – University School of Medicine, Berlin, Germany
| | - Francois R. Jornayvaz
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michael J. Jurczak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cheol Soo Choi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Zhen Yan
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Gerald I. Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Varman T. Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Veteran’s Affairs Medical Center, West Haven, CT, USA
| |
Collapse
|
99
|
Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:352371. [PMID: 24771982 PMCID: PMC3977509 DOI: 10.1155/2014/352371] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.
Collapse
|
100
|
Four-and-a-half LIM domains proteins are novel regulators of the protein kinase D pathway in cardiac myocytes. Biochem J 2014; 457:451-61. [PMID: 24219103 PMCID: PMC3927927 DOI: 10.1042/bj20131026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PKD (protein kinase D) is a serine/threonine kinase implicated in multiple cardiac roles, including the phosphorylation of the class II HDAC5 (histone deacetylase isoform 5) and thereby de-repression of MEF2 (myocyte enhancer factor 2) transcription factor activity. In the present study we identify FHL1 (four-and-a-half LIM domains protein 1) and FHL2 as novel binding partners for PKD in cardiac myocytes. This was confirmed by pull-down assays using recombinant GST-fused proteins and heterologously or endogenously expressed PKD in adult rat ventricular myocytes or NRVMs (neonatal rat ventricular myocytes) respectively, and by co-immunoprecipitation of FHL1 and FHL2 with GFP–PKD1 fusion protein expressed in NRVMs. In vitro kinase assays showed that neither FHL1 nor FHL2 is a PKD1 substrate. Selective knockdown of FHL1 expression in NRVMs significantly inhibited PKD activation and HDAC5 phosphorylation in response to endothelin 1, but not to the α1-adrenoceptor agonist phenylephrine. In contrast, selective knockdown of FHL2 expression caused a significant reduction in PKD activation and HDAC5 phosphorylation in response to both stimuli. Interestingly, neither intervention affected MEF2 activation by endothelin 1 or phenylephrine. We conclude that FHL1 and FHL2 are novel cardiac PKD partners, which differentially facilitate PKD activation and HDAC5 phosphorylation by distinct neurohormonal stimuli, but are unlikely to regulate MEF2-driven transcriptional reprogramming. Protein kinase D has multiple roles in cardiac myocytes, where its regulatory mechanisms remain incompletely defined. In the present study we identify four-and-a-half LIM domains proteins 1 and 2 as novel binding partners and regulators of protein kinase D in this cell type.
Collapse
|