51
|
Wu S, Lin L, Zhao W, Li X, Wang Y, Si X, Wang T, Wu H, Zhai X, Zhong X, Gao S, Tong L, Xu Z, Zhong Z. AUF1 is recruited to the stress granules induced by coxsackievirus B3. Virus Res 2014; 192:52-61. [PMID: 25148713 DOI: 10.1016/j.virusres.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
Stress granules (SGs) are cytoplasmic granules that are formed in cells when stress occurs. In this study, we found that SGs formed in cells infected with coxsackievirus B3 (CVB3), evidenced with the co-localization of some accepted SG markers in the viral infection-induced granules. We further discovered that adenosine-uridine (AU)-rich element RNA binding factor 1 (AUF1), which can bind to mRNAs and regulate their translation, was recruited to the SGs in response to high dose of CVB3 by detecting the co-localization of AUF1 with SG markers. Similar results were also observed in the enterovirus 71 (EV71)-infected cells. Finally, we demonstrated that AUF1 was also recruited to arsenite-induced SGs, suggesting that the recruitment of AUF1 to SG is not a specific response to viral infection. In summary, our data indicate that both CVB3 and EV71 infections can induce SG formation, and AUF1 is a novel SG component upon the viral infections. Our findings may shed light on understanding the picornavirus-host interaction.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Heng Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Shuoyang Gao
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Zhikai Xu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
52
|
Wang W. HuR and post-transcriptional regulation in vascular aging. SCIENCE CHINA-LIFE SCIENCES 2014; 57:863-6. [PMID: 25104461 DOI: 10.1007/s11427-014-4706-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Abstract
HuR (ELAV11 (embryonic lethal, abnormal vision)-like 1), a ubiquitously expressed member of the ELAV-like RNA-binding protein family, has been shown to regulate the stability and translation of mRNAs that encode factors regulating cellular senescence, thereby impacting on aging. In this review, we discuss the current knowledge of HuR's role in vascular cell senescence and vascular aging.
Collapse
Affiliation(s)
- WenGong Wang
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China,
| |
Collapse
|
53
|
Hashimoto M, Tsugawa T, Kawagishi H, Asai A, Sugimoto M. Loss of HuR leads to senescence-like cytokine induction in rodent fibroblasts by activating NF-κB. Biochim Biophys Acta Gen Subj 2014; 1840:3079-87. [PMID: 25018007 DOI: 10.1016/j.bbagen.2014.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND HuR (human antigen R) is a ubiquitously expressed member of the Hu/ELAV family of proteins that is involved in diverse biological processes. HuR has also been shown to play an important role in cell cycle arrest during replicative senescence in both human and mouse cells. Senescent cells not only halt their proliferation, but also activate the secretion of proinflammatory cytokines. A persistent DNA damage response is essential for the senescence-associated secretory phenotype (SASP), and increasing evidence has suggested that the SASP is associated with malignancy. METHODS Senescence-associated phenotypes were analyzed in MEFs and other cell line in which HuR expression is inhibited by sh-RNA-mediated knockdown. RESULTS RNAi-mediated HuR inhibition resulted in an increase in SASP-related cytokines. The induction of SASP factors did not depend on ARF-p53 pathway-mediated cell cycle arrest, but required NF-κB activity. In the absence of HuR, cells were defective in the DNA-damage response, and single strand DNA breaks accumulated, which may have caused the activation of NF-κB and subsequent cytokine induction. CONCLUSIONS In the absence of HuR, cells exhibit multiple senescence-associated phenotypes. Our findings suggest that HuR regulates not only the replicative lifespan, but also the expression of SASP-related cytokines in mouse fibroblasts. GENERAL SIGNIFICANCE RNA-binding protein HuR protects cells from undergoing senescence. Senescence-associated phenotypes are accelerated in HuR-deficient cells.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan
| | - Takayuki Tsugawa
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan
| | - Hiroyuki Kawagishi
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan
| | - Azusa Asai
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan
| | - Masataka Sugimoto
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan.
| |
Collapse
|
54
|
Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 2014; 4:2939. [PMID: 24326307 DOI: 10.1038/ncomms3939] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
Although mammalian long non-coding (lnc)RNAs are best known for modulating transcription, their post-transcriptional influence on mRNA splicing, stability and translation is emerging. Here we report a post-translational function for the lncRNA HOTAIR as an inducer of ubiquitin-mediated proteolysis. HOTAIR associates with E3 ubiquitin ligases bearing RNA-binding domains, Dzip3 and Mex3b, as well as with their respective ubiquitination substrates, Ataxin-1 and Snurportin-1. In this manner, HOTAIR facilitates the ubiquitination of Ataxin-1 by Dzip3 and Snurportin-1 by Mex3b in cells and in vitro, and accelerates their degradation. HOTAIR levels are highly upregulated in senescent cells, causing rapid decay of targets Ataxin-1 and Snurportin-1, and preventing premature senescence. These results uncover a role for a lncRNA, HOTAIR, as a platform for protein ubiquitination.
Collapse
|
55
|
Mazan-Mamczarz K, Zhao XF, Dai B, Steinhardt JJ, Peroutka RJ, Berk KL, Landon AL, Sadowska M, Zhang Y, Lehrmann E, Becker KG, Shaknovich R, Liu Z, Gartenhaus RB. Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development. PLoS Genet 2014; 10:e1004105. [PMID: 24497838 PMCID: PMC3907297 DOI: 10.1371/journal.pgen.1004105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/18/2013] [Indexed: 01/07/2023] Open
Abstract
Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity. Control of gene expression on the translational level is critical for proper function of major cellular processes and deregulation of translation can promote cellular transformation. Emerging actors in this post-transcriptional gene regulation are small non-coding RNAs referred to as microRNAs (miRNAs). We established that miR-520c-3p represses tumor growth through the repression of eIF4GII, a major structural component of the translation initiation complex. Since translation of most cellular mRNAs is primarily regulated at the level of initiation, this node is becoming a potential target for therapeutic intervention. Identified in this study, tumor suppressor function of miR-520c-3p is mediated through the inhibition of translational factor eIF4GII, resulting in the repression of global translational machinery and induction of senescence in tumor cells. While aging and senescence has been shown to be associated with reduced translation the linkage between translational deregulation and senescence in malignant cells has not been previously described. Lending further clinical significance to our findings, we were able to demonstrate that primary DLBCL samples had elevated levels of eIF4GII while having reciprocally low miR-520c-3p expression.
Collapse
Affiliation(s)
- Krystyna Mazan-Mamczarz
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - X. Frank Zhao
- Department of Pathology, University of Maryland, Baltimore, Maryland, United States of America
| | - Bojie Dai
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - James J. Steinhardt
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Raymond J. Peroutka
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Kimberly L. Berk
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Ari L. Landon
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Mariola Sadowska
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Rita Shaknovich
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Zhenqiu Liu
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Ronald B. Gartenhaus
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Veterans Administration Medical Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
56
|
Talwar S, House R, Sundaramurthy S, Balasubramanian S, Yu H, Palanisamy V. Inhibition of caspases protects mice from radiation-induced oral mucositis and abolishes the cleavage of RNA-binding protein HuR. J Biol Chem 2013; 289:3487-500. [PMID: 24362034 DOI: 10.1074/jbc.m113.504951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oral mucosal epithelium is typically insulted during chemotherapy and ionizing radiation (IR) therapy and disposed to mucositis, which creates painful inflammation and ulceration in the oral cavity. Oral mucositis alters gene expression patterns, inhibits cellular growth, and initiates cell death in the oral epithelial compartments. Such alterations are governed by several different factors, including transcription factors, RNA-binding proteins, and microRNAs. IR-induced post-transcriptional regulation of RNA-binding proteins exists but is poorly studied in clinically relevant settings. We herein report that the RNA-binding protein human antigen R (HuR) undergoes cleavage modification by caspase-3 following IR-induced oral mucositis and subsequently promotes the expression of the pro-apoptotic factor BAX (Bcl-2-associated X protein), as well as cell death. Further analyses revealed that the HuR cleavage product-1 (HuR-CP1) directly associates and stabilizes the BAX mRNA and concurrently activates the apoptotic pathway. On the other hand, a noncleavable isoform of HuR promotes the clonogenic capacity of primary oral keratinocytes and decreases the effect of IR-induced cell death. Additionally, specific inhibition of caspase-3 by a compound, NSC321205, increases the clonogenic capacity of primary oral keratinocytes and causes increased basal layer cellularity, thickened mucosa, and elevated epithelial cell growth in the tongues of mice with oral mucositis. This protective effect of NSC321205 is mediated by a decrease in caspase-3 activity and the consequent inhibition of HuR cleavage, which reduces the expression of BAX in mice with IR-induced oral mucositis. Thus, we have identified a new molecular mechanism of HuR in the regulation of mRNA turnover and apoptosis in oral mucositis, and our data suggest that blocking the cleavage of HuR enhances cellular growth in the oral epithelial compartment.
Collapse
Affiliation(s)
- Sudha Talwar
- From the Department of Craniofacial Biology and Center for Oral Health Research, College of Dental Medicine, and
| | | | | | | | | | | |
Collapse
|
57
|
Govindaraju S, Lee BS. Adaptive and maladaptive expression of the mRNA regulatory protein HuR. World J Biol Chem 2013; 4:111-118. [PMID: 24340134 PMCID: PMC3856306 DOI: 10.4331/wjbc.v4.i4.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/31/2013] [Accepted: 11/05/2013] [Indexed: 02/05/2023] Open
Abstract
The RNA-binding proteins involved in regulation of mRNA post-transcriptional processing and translation control the fates of thousands of mRNA transcripts and basic cellular processes. The best studied of these, HuR, is well characterized as a mediator of mRNA stability and translation, and more recently, as a factor in nuclear functions such as pre-mRNA splicing. Due to HuR’s role in regulating thousands of mRNA transcripts, including those for other RNA-binding proteins, HuR can act as a master regulator of cell survival and proliferation. HuR itself is subject to multiple post-translational modifications including regulation of its nucleocytoplasmic distribution. However, the mechanisms that govern HuR levels in the cell have only recently begun to be defined. These mechanisms are critical to cell health, as it has become clear in recent years that aberrant expression of HuR can lead alternately to decreased cell viability or to promotion of pathological proliferation and invasiveness. HuR is expressed as alternate mRNAs that vary in their untranslated regions, leading to differences in transcript stability and translatability. Multiple transcription factors and modulators of mRNA stability that regulate HuR mRNA expression have been identified. In addition, translation of HuR is regulated by numerous microRNAs, several of which have been demonstrated to have anti-tumor properties due to their suppression of HuR expression. This review summarizes the current state of knowledge of the factors that regulate HuR expression, along with the circumstances under which these factors contribute to cancer and inflammation.
Collapse
|
58
|
Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, Martindale JL, De S, Wood WH, Becker KG, Gorospe M. Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell 2013; 12:890-900. [PMID: 23758631 DOI: 10.1111/acel.12115] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2013] [Indexed: 11/30/2022] Open
Abstract
Noncoding RNAs include small transcripts, such as microRNAs and piwi-interacting RNAs, and a wide range of long noncoding RNAs (lncRNAs). Although many lncRNAs have been identified, only a small number of lncRNAs have been characterized functionally. Here, we sought to identify lncRNAs differentially expressed during replicative senescence. We compared lncRNAs expressed in proliferating, early-passage, 'young' human diploid WI-38 fibroblasts [population doubling (PDL) 20] with those expressed in senescent, late-passage, 'old' fibroblasts (PDL 52) by RNA sequencing (RNA-Seq). Numerous transcripts in all lncRNA groups (antisense lncRNAs, pseudogene-encoded lncRNAs, previously described lncRNAs and novel lncRNAs) were validated using reverse transcription (RT) and real-time, quantitative (q)PCR. Among the novel senescence-associated lncRNAs (SAL-RNAs) showing lower abundance in senescent cells, SAL-RNA1 (XLOC_023166) was found to delay senescence, because reducing SAL-RNA1 levels enhanced the appearance of phenotypic traits of senescence, including an enlarged morphology, positive β-galactosidase activity, and heightened p53 levels. Our results reveal that the expression of known and novel lncRNAs changes with senescence and suggests that SAL-RNAs play direct regulatory roles in this important cellular process.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - Amaresh Panda
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - Min-Ju Kang
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - Jason Xu
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - Roza Selimyan
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - Je-Hyun Yoon
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - Jennifer L. Martindale
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - Supriyo De
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - William H. Wood
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - Kevin G. Becker
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| | - Myriam Gorospe
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; National Institutes of Health; Baltimore; MD 21224; USA
| |
Collapse
|
59
|
Wei YC, Chou FF, Li CF, Li WM, Chen YY, Lan J, Li SH, Fang FM, Hu TH, Yu SC, Eng HL, Uen YH, Tian YF, Wang JC, Huang HY. HuR cytoplasmic expression is associated with increased cyclin A expression and inferior disease-free survival in patients with gastrointestinal stromal tumours (GISTs). Histopathology 2013; 63:445-54. [PMID: 23889148 DOI: 10.1111/his.12148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/21/2013] [Indexed: 12/27/2022]
Abstract
AIMS HuR is an RNA-binding protein that post-transcriptionally modulates the expression of various target genes involved in carcinogenesis, such as CCNA2, which encodes cyclin A. The aim of this study was to evaluate the significance of HuR expression and subcellular localization in a large cohort of gastrointestinal stromal tumours (GISTs). METHODS AND RESULTS HuR immunostaining was assessable for nuclear and cytoplasmic expression in 341 cases on tissue microarrays of primary GISTs, of which 318, 296 and 193 cases were also characterized for Ki67 labelling, cyclin A immunoexpression, and KIT and PDGFRA receptor tyrosine kinase (RTK) genotypes, respectively. The results of HuR nuclear and cytoplasmic expression were correlated with disease-free survival (DFS) and clinicopathological, immunohistochemical and RTK genotypic variables. HuR cytoplasmic expression was present in 42% of primary GISTs, and was significantly related to epithelioid histology, larger tumour size, NIH risk category, and nuclear expression of Ki67 and cyclin A. Importantly, HuR cytoplasmic expression (P < 0.001) and cyclin A overexpression (P < 0.001) were strongly associated with worse DFS. Both variables remained independently predictive of adverse outcome [P = 0.020 and risk ratio (RR) 2.605 for cytoplasmic HuR; P = 0.026 and RR 2.763 for cyclin A]. CONCLUSIONS HuR cytoplasmic expression not only correlates with adverse prognosticators and cyclin A overexpression, but also independently predicts worse DFS, indicating a causative role in conferring tumour aggressiveness.
Collapse
Affiliation(s)
- Yu-Ching Wei
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Pang L, Tian H, Chang N, Yi J, Xue L, Jiang B, Gorospe M, Zhang X, Wang W. Loss of CARM1 is linked to reduced HuR function in replicative senescence. BMC Mol Biol 2013; 14:15. [PMID: 23837869 PMCID: PMC3718661 DOI: 10.1186/1471-2199-14-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/02/2013] [Indexed: 11/15/2022] Open
Abstract
Background The co-activator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of HuR. However, the functional impact of this modification is not fully understood. Here, we investigated the influence of HuR methylation by CARM1 upon the turnover of HuR target mRNAs encoding senescence-regulatory proteins. Results Changing the methylation status of HuR in HeLa cells by either silencing CARM1 or mutating the major methylation site (R217K) greatly diminished the effect of HuR in regulating the turnover of mRNAs encoding cyclin A, cyclin B1, c-fos, SIRT1, and p16. Although knockdown of CARM1 or HuR individually influenced the expression of cyclin A, cyclin B1, c-fos, SIRT1, and p16, joint knockdown of both CARM1 and HuR did not show further effect. Methylation by CARM1 enhanced the association of HuR with the 3′UTR of p16 mRNA, but not with the 3′UTR of cyclin A, cyclin B1, c-fos, or SIRT1 mRNAs. In senescent human diploid fibroblasts (HDFs), reduced CARM1 was accompanied by reduced HuR methylation. In addition, knockdown of CARM1 or mutation of the major methylation site of HuR in HDF markedly impaired the ability of HuR to regulate the expression of cyclin A, cyclin B1, c-fos, SIRT1, and p16 as well to maintain a proliferative phenotype. Conclusion CARM1 represses replicative senescence by methylating HuR and thereby enhancing HuR’s ability to regulate the turnover of cyclin A, cyclin B1, c-fos, SIRT1, and p16 mRNAs.
Collapse
Affiliation(s)
- Lijun Pang
- Department of Biochemistry and Molecular Biology, Peking University health Science Center, 38 Xueyuan Road, Beijing 100191, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Aparicio LA, Abella V, Valladares M, Figueroa A. Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition. Cell Mol Life Sci 2013; 70:4463-77. [PMID: 23715860 PMCID: PMC3827902 DOI: 10.1007/s00018-013-1379-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), one of the crucial steps for carcinoma cells to acquire invasive capacity, results from the disruption of cell–cell contacts and the acquisition of a motile mesenchymal phenotype. Although the transcriptional events controlling EMT have been extensively studied, in recent years, several posttranscriptional mechanisms have emerged as critical in the regulation of EMT during tumor progression. In this review, we highlight the regulation of posttranscriptional events in EMT by RNA-binding proteins (RBPs). RBPs are responsible for controlling pre-mRNA splicing, capping, and polyadenylation, as well as mRNA export, turnover, localization, and translation. We discuss the most relevant aspects of RBPs controlling the metabolism of EMT-related mRNAs, and describe the implication of novel posttranscriptional mechanisms regulating EMT in response to different signaling pathways. Novel insight into posttranscriptional regulation of EMT by RBPs is uncovering new therapeutic targets in cancer invasion and metastasis.
Collapse
Affiliation(s)
- Luis A Aparicio
- Servizo de Oncología Médica, Complejo Hospitalario Universitario A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | | | | | | |
Collapse
|
62
|
Kawagishi H, Hashimoto M, Nakamura H, Tsugawa T, Watanabe A, Kontoyiannis DL, Sugimoto M. HuR maintains a replicative life span by repressing the ARF tumor suppressor. Mol Cell Biol 2013; 33:1886-900. [PMID: 23508105 PMCID: PMC3647966 DOI: 10.1128/mcb.01277-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/07/2013] [Indexed: 01/08/2023] Open
Abstract
p19(ARF) plays an essential role in the senescence of mouse cells, and its expression is lost by methylation or deletion of the ARF locus; otherwise, p53 is inactivated to bypass senescence. ARF expression is tightly regulated, but little is known about its posttranscriptional regulation. Here, we show that an RNA-binding protein, HuR (human antigen R), represses ARF mRNA translation, thereby maintaining the replicative life span of mouse embryonic fibroblasts (MEFs). Loss of HuR results in premature senescence, with concomitant increases in p19(ARF) but not p16(Ink4a) levels, and this senescence is not observed in ARF-null MEFs that retain an intact Ink4a locus. HuR depletion does not alter ARF transcription or stability but enhances ribosome association with ARF mRNA. Under these conditions, ARF mRNA accumulates in nucleoli, where it associates with nucleolin. Furthermore, adipose-specific deletion of the HuR gene results in increased p19(ARF) expression in aged animals, which is accompanied by decreased insulin sensitivity. Together, our findings demonstrate that p19(ARF) is also regulated at the translational level, and this translational regulation restrains the cellular life span and tissue functions in vivo.
Collapse
Affiliation(s)
- Hiroyuki Kawagishi
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Michihiro Hashimoto
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hideaki Nakamura
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takayuki Tsugawa
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Atsushi Watanabe
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | - Masataka Sugimoto
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
63
|
Abstract
Gene expression patterns change dramatically in aging and age-related events. The DNA microarray is now recognized as a useful device in molecular biology and widely used to identify the molecular mechanisms of aging and the biological effects of drugs for therapeutic purpose in age-related diseases. Recently, numerous technological advantages have led to the evolution of DNA microarrays and microarray-based techniques, revealing the genomic modification and all transcriptional activity. Here, we show the step-by-step methods currently used in our lab to handling the oligonucleotide microarray and miRNA microarray. Moreover, we introduce the protocols of ribonucleoprotein [RNP] immunoprecipitation followed by microarray analysis (RIP-chip) which reveal the target mRNA of age-related RNA-binding proteins.
Collapse
|
64
|
Lai WF. Nucleic acid delivery: roles in biogerontological interventions. Ageing Res Rev 2013; 12:310-5. [PMID: 22982112 DOI: 10.1016/j.arr.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/27/2022]
Abstract
Prolongation of longevity is a history-long desire of humans. Driven by the genetic contribution to longevity and the remarkable plasticity of healthy lifespan as demonstrated in animal models, arduous efforts have been directed to aging and longevity research over the years. Today, our understanding of lifespan determination is much greater than it was in the past, but administrable interventions for longevity enhancement are still virtually absent. The aim of this article is to highlight the technical gap between basic biogerontological research and intervention development, and to explore the importance of nucleic acid (NA) delivery technologies in bridging the gap. It is hoped that this article can engender more awareness of the roles of NA delivery technologies in biogerontological interventions, particularly NA therapy.
Collapse
|
65
|
Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer 2012; 12:500. [PMID: 23110523 PMCID: PMC3571905 DOI: 10.1186/1471-2407-12-500] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/27/2012] [Indexed: 12/25/2022] Open
Abstract
Background We have recently reported that the expression of peptidylarginine deiminase 2 (PADI2) is regulated by EGF in mammary cancer cells and appears to play a role in the proliferation of normal mammary epithelium; however, the role of PADI2 in the pathogenesis of human breast cancer has yet to be investigated. Thus, the goals of this study were to examine whether PADI2 plays a role in mammary tumor progression, and whether the inhibition of PADI activity has anti-tumor effects. Methods RNA-seq data from a collection of 57 breast cancer cell lines was queried for PADI2 levels, and correlations with known subtype and HER2/ERBB2 status were evaluated. To examine PADI2 expression levels during breast cancer progression, the cell lines from the MCF10AT model were used. The efficacy of the PADI inhibitor, Cl-amidine, was tested in vitro using MCF10DCIS cells grown in 2D-monolayers and 3D-spheroids, and in vivo using MCF10DCIS tumor xenografts. Treated MCF10DCIS cells were examined by flow-cytometry to determine the extent of apoptosis and by RT2 Profiler PCR Cell Cycle Array to detect alterations in cell cycle associated genes. Results We show by RNA-seq that PADI2 mRNA expression is highly correlated with HER2/ERBB2 (p = 2.2 × 106) in luminal breast cancer cell lines. Using the MCF10AT model of breast cancer progression, we then demonstrate that PADI2 expression increases during the transition of normal mammary epithelium to fully malignant breast carcinomas, with a strong peak of PADI2 expression and activity being observed in the MCF10DCIS cell line, which models human comedo-DCIS lesions. Next, we show that a PADI inhibitor, Cl-amidine, strongly suppresses the growth of MCF10DCIS monolayers and tumor spheroids in culture. We then carried out preclinical studies in nude (nu/nu) mice and found that Cl-amidine also suppressed the growth of xenografted MCF10DCIS tumors by more than 3-fold. Lastly, we performed cell cycle array analysis of Cl-amidine treated and control MCF10DCIS cells, and found that the PADI inhibitor strongly affects the expression of several cell cycle genes implicated in tumor progression, including p21, GADD45α, and Ki67. Conclusion Together, these results suggest that PADI2 may function as an important new biomarker for HER2/ERBB2+ tumors and that Cl-amidine represents a new candidate for breast cancer therapy.
Collapse
|
66
|
St Laurent G, Shtokalo D, Heydarian M, Palyanov A, Babiy D, Zhou J, Kumar A, Urcuqui-Inchima S. Insights from the HuR-interacting transcriptome: ncRNAs, ubiquitin pathways, and patterns of secondary structure dependent RNA interactions. Mol Genet Genomics 2012; 287:867-79. [PMID: 23052832 DOI: 10.1007/s00438-012-0722-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
The HuR protein regulates the expression of thousands of cellular transcripts by modulating mRNA splicing, trafficking, translation, and stability. Although it serves as a model of RNA-protein interactions, many features of HuR's interactions with RNAs remain unknown. In this report, we deployed the cryogenic RNA immunoprecipitation technique to analyze HuR-interacting RNAs with the Affymetrix all-exon microarray platform. We revealed several thousand novel HuR-interacting RNAs, including hundreds of non-coding RNAs such as natural antisense transcripts from stress responsive loci. To gain insight into the mechanisms of specificity and sensitivity of HuR's interaction with its target RNAs, we searched HuR-interacting RNAs for composite patterns of primary sequence and secondary structure. We provide evidence that secondary structures of 66-75 nucleotides enhance HuR's recognition of its specific RNA targets composed of short primary sequence patterns. We validated thousands of these RNAs by analysis of overlap with recently published findings, including HuR's interaction with RNAs in the pathways of RNA splicing and stability. Finally, we observed a striking enrichment for members of ubiquitin ligase pathways among the HuR-interacting mRNAs, suggesting a new role for HuR in the regulation of protein degradation to mirror its known function in protein translation.
Collapse
Affiliation(s)
- Georges St Laurent
- Grupo de Inmunovirologia, Universidad de Antioquia, Calle 67 Número 53-108, Medellin, Antioquia, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Masuda K, Kuwano Y, Nishida K, Rokutan K. General RBP expression in human tissues as a function of age. Ageing Res Rev 2012; 11:423-31. [PMID: 22326651 DOI: 10.1016/j.arr.2012.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Gene expression patterns vary dramatically in a tissue-specific and age-dependent manner. RNA-binding proteins that regulate mRNA turnover and/or translation (TTR-RBPs) critically affect the subsets of expressed proteins. Although many proteins implicated in age-related processes are encoded by mRNAs that are targets of TTR-RBPs, very little is known regarding the tissue- and age-dependent expression of TTR-RBPs in humans. Recent analysis of TTR-RBPs expression using human tissue microarray has provided us interesting insight into their possibly physiologic roles as a function of age. This analysis has also revealed striking discrepancies between the levels of TTR-RBPs in senescent human diploid fibroblasts (HDFs), widely used as an in vitro model of aging, and the levels of TTR-RBPs in tissues from individuals of advancing age. In this article, we will review our knowledge of human TTR-RBP expression in different tissues as a function of age.
Collapse
|
68
|
Wang W. Regulatory RNA-binding proteins in senescence. Ageing Res Rev 2012; 11:485-90. [PMID: 22414963 DOI: 10.1016/j.arr.2012.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 11/18/2022]
Abstract
The expression of senescence-associated genes, which governs the progression and the maintenance of senescence, is regulated at multiple levels. Apart from the transcriptional mechanisms that control cellular senescence, studies over the past decade have revealed that post-transcriptional gene regulation, especially through changes in mRNA turnover and translation, critically influences protein expression patterns in the senescent cell. Among the post-transcriptional regulatory factors, RNA-binding proteins (RBPs) are particularly influential in the establishment of senescence-associated protein profiles. In this review, I discuss the current knowledge of the role of RBPs in cellular senescence and the molecular mechanisms that regulate their function.
Collapse
Affiliation(s)
- Wengong Wang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
69
|
Abdelmohsen K, Srikantan S, Kang MJ, Gorospe M. Regulation of senescence by microRNA biogenesis factors. Ageing Res Rev 2012; 11:491-500. [PMID: 22306790 DOI: 10.1016/j.arr.2012.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/07/2012] [Accepted: 01/19/2012] [Indexed: 12/16/2022]
Abstract
Senescence represents a state of indefinite growth arrest in cells that have reached the end of their replicative life span, have become damaged, or express aberrant levels of cancer-related proteins. While senescence is widely considered to represent a tumor-suppressive mechanism, the accumulation of senescent cells in tissues of older organisms is believed to underlie age-associated losses in physiologic function and age-related diseases. With the emergence of microRNAs (miRNAs) as a major class of molecular regulators of senescence, we review the transcriptional and post-transcriptional factors that control senescence-associated microRNA biosynthesis. Focusing on their enhancement or repression of senescence, we describe the transcription factors that govern the synthesis of primary (pri-)miRNAs, the proteins that control the nuclear processing of pri-miRNAs into precursor (pre-)miRNAs, including RNA editing enzymes, RNases, and RNA helicases, and the cytoplasmic proteins that affect the final processing of pre-miRNAs into mature miRNAs. We discuss how miRNA biogenesis proteins promote or inhibit senescence, and thus influence the senescent phenotype that affects normal tissue function and pathology.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
70
|
Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol 2012; 9:563-76. [PMID: 22614827 DOI: 10.4161/rna.20231] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The untranslated regions (UTRs) at the 3'end of mRNA transcripts contain important sequences that influence the fate of mRNA and thus proteosynthesis. In this review, we summarize the information known to date about 3'end processing, sequence characteristics including related binding proteins and the role of 3'UTRs in several selected signaling pathways to delineate their importance in the regulatory processes in mammalian cells. In addition to reviewing recent advances in the more well known aspects, such as cleavage and polyadenylation processes that influence mRNA stability and location, we concentrate on some newly emerging concepts of the role of the 3'UTR, including alternative polyadenylation sites in relation to proliferation and differentiation and the recognition of the multi-functional properties of non-coding RNAs, including miRNAs that commonly target the 3'UTR. The emerging picture is of a highly complex set of regulatory systems that include autoregulation, cooperativity and competition to fine tune proteosynthesis in context-dependent manners.
Collapse
|
71
|
Zhang X, Liu Z, Yi J, Tang H, Xing J, Yu M, Tong T, Shang Y, Gorospe M, Wang W. The tRNA methyltransferase NSun2 stabilizes p16INK⁴ mRNA by methylating the 3'-untranslated region of p16. Nat Commun 2012; 3:712. [PMID: 22395603 DOI: 10.1038/ncomms1692] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/19/2012] [Indexed: 12/24/2022] Open
Abstract
The impact of methylation of the 3'-untranslated region (UTR) of a messenger RNA (mRNA) remains largely unknown. Here we show that NSun2, a transfer RNA methyltransferase, inhibits the turnover of p16(INK4) mRNA. Knockdown of NSun2 reduces p16 expression by shortening the half-life of the p16 mRNA, while overexpression of NSun2 stabilizes the p16 mRNA. In vitro methylation assays show that NSun2 methylates the p16 3'UTR at A988. Knockdown of NSun2 reduces the stability of the EGFP-p16 chimeric reporter transcripts bearing wild-type p16 3'UTR, but not p16 3'UTR with a mutant methylation site. Methylation by NSun2 prevents the association of p16 3'UTR with HuR, AUF1 and Ago2/RISC, and prevents the recruitment of EGFP-p16 3'UTR chimeric transcripts to processing bodies. In response to oxidative stress, NSun2 is essential for elevating p16 expression levels. We conclude that NSun2-mediated methylation of the p16 3'UTR is a novel mechanism to stabilize p16 mRNA.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Cassar PA, Stanford WL. Integrating post-transcriptional regulation into the embryonic stem cell gene regulatory network. J Cell Physiol 2012; 227:439-49. [PMID: 21503874 DOI: 10.1002/jcp.22787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stem cell behavior is orchestrated as a multilayered, concert of gene regulatory mechanisms collectively referred to as the gene regulatory network (GRN). Via cooperative mechanisms, transcriptional, epigenetic, and post-transcriptional regulators activate and repress gene expression to finely regulate stem cell self-renewal and commitment. Due to their tractability, embryonic stem cells (ESCs) serve as the model stem cell to dissect the complexities of the GRN, and discern its relation to stem cell fate. By way of high-throughput genomic analysis, targets of individual gene regulators have been established in ESCs. The compilation of these discrete networks has revealed convergent, multi-dimensional gene regulatory mechanisms involving transcription factors, epigenetic modifiers, non-coding RNA (ncRNA), and RNA-binding proteins. Here we highlight the seminal genomic studies that have shaped our understanding of the ESC GRN and describe alternate post-transcriptional gene regulatory mechanisms that require in depth analyses to draft networks that fully model ESC behavior.
Collapse
Affiliation(s)
- Paul A Cassar
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
73
|
Zheng C, Baum BJ. Including the p53 ELAV-like protein-binding site in vector cassettes enhances transgene expression in rat submandibular gland. Oral Dis 2012; 18:477-84. [PMID: 22251132 DOI: 10.1111/j.1601-0825.2011.01895.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE ELAV-like proteins regulate mRNA stability and/or translation. We evaluated whether inclusion of binding sites for ELAV-like HuR proteins in vector cassettes could improve transgene expression in the salivary gland. METHODS Western blots and immunofluorescence staining were used to determine whether HuR protein was expressed in salivary cells and tissue. HuR binding sites were inserted into the pACEF1α-luc-BGH expression plasmid. Cell lines were transfected with plasmids in vitro and luciferase expression measured. Rat submandibular glands were transfected in vivo with plasmids containing ELAV-like HuR protein-binding sites. An adenoviral vector with p53 ELAV-like HuR protein-binding site was generated and also tested in vivo. Four unique 29mer HuR shRNA constructs were used in A5 cells to evaluate whether there was a specific interaction between HuR protein and the p53 HuR protein-binding site. RESULTS Salivary cells express HuR protein. Inclusion of the p53 ELAV-like HuR protein-binding site resulted in high luciferase activity in salivary cells in vitro, with similar results in vivo. In vitro shRNA data demonstrated that the high luciferase activity was mediated by the interaction between HuR protein and the p53 HuR protein-binding site. The AdEF1α-luc-p53BGH, including this binding site, mediated very high luciferase activity, ~4-fold that seen with the CMV promoter, in rat submandibular glands. CONCLUSIONS Including the p53 ELAV-like protein-binding site in transgene cassettes may enhance therapeutic vectors intended for use with salivary glands.
Collapse
Affiliation(s)
- C Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA.
| | | |
Collapse
|
74
|
Abstract
Lifespan prolongation is a common desire of the human race. With advances in biotechnology, the mechanism of aging has been gradually unraveled, laying the theoretical basis of nucleic acid therapy for lifespan prolongation. Regretfully, clinically applicable interventions do not exist without the efforts of converting theory into action, and it is the latter that has been far from adequately addressed at the moment. This was demonstrated by a database search on PubMed and Web of Science, from which only seven studies published between 2000 and 2010 were found to directly touch on the development of nucleic acid therapy for anti-aging and/or longevity enhancing purposes. In light of this, the objective of this article is to overview the current understanding of the intimate association between genes and longevity, and to bring the prospect of nucleic acid therapy for lifespan prolongation to light.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
75
|
MicroRNAs as a novel cellular senescence regulator. Ageing Res Rev 2012; 11:41-50. [PMID: 21689787 DOI: 10.1016/j.arr.2011.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/09/2011] [Accepted: 06/02/2011] [Indexed: 12/26/2022]
Abstract
Cellular senescence is a program activated in normal cells in response to various types of stresses and is manifested by permanent arrest of cell cycle. Cellular senescence is closely related to tumor suppression, and may contribute to the ageing of organisms. The complex senescence cell phenotype has many different mechanisms. Recent studies have provided important insights regarding the role played by miRNAs during cellular senescence as a novel molecular mechanism. In this article, we will review the latest advances in the identification and validation of senescence-regulatory miRNAs and the possible mechanisms.
Collapse
|
76
|
Abstract
Among the greatest challenges facing organisms is that of detecting and effectively responding to life-threatening environmental changes that are intimately associated with metabolic fluctuations and certain forms of stress. These conditions have been linked to the onset of many human pathologies, including cancer. Over the past decade, members of the Sir2 family, or sirtuins, have been described as major players in sensing and coordinating stress response. Evidence has imputed mammalian sirtuins in carcinogenesis, although the mechanisms involved seem to be more diverse and complex than previously anticipated. Some sirtuins, such as SirT2 and SirT6, seem to work as tumor suppressors, but others, such as SirT1, are apparently bifunctional: operating as both tumor suppressors and oncogenic factors depending on the context and the study conditions. The mechanisms underlying these apparently contradictory activities are not well understood, although recent findings suggest that they might actually be two sides of the same coin. In this review, the authors summarize current knowledge on the functional implications of sirtuins in cancer and discuss possible explanations for their functional duality.
Collapse
Affiliation(s)
- Laia Bosch-Presegué
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | | |
Collapse
|
77
|
Dai W, Zhang G, Makeyev EV. RNA-binding protein HuR autoregulates its expression by promoting alternative polyadenylation site usage. Nucleic Acids Res 2011; 40:787-800. [PMID: 21948791 PMCID: PMC3258158 DOI: 10.1093/nar/gkr783] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNA-binding protein HuR modulates the stability and translational efficiency of messenger RNAs (mRNAs) encoding essential components of the cellular proliferation, growth and survival pathways. Consistent with these functions, HuR levels are often elevated in cancer cells and reduced in senescent and quiescent cells. However, the molecular mechanisms that control HuR expression are poorly understood. Here we show that HuR protein autoregulates its abundance through a negative feedback loop that involves interaction of the nuclear HuR protein with a GU-rich element (GRE) overlapping with the HuR major polyadenylation signal (PAS2). An increase in the cellular HuR protein levels stimulates the expression of long HuR mRNA species containing an AU-rich element (ARE) that destabilizes the mRNAs and thus reduces the protein production output. The PAS2 read-through occurs due to a reduced recruitment of the CstF-64 subunit of the pre-mRNA cleavage stimulation factor in the presence of the GRE-bound HuR. We propose that this mechanism maintains HuR homeostasis in proliferating cells. Since only the nuclear HuR is expected to contribute to the auto-regulation, our model may explain the longstanding observation that the increase in the total HuR expression in cancer cells often correlates with the accumulation of its substantial fraction in the cytoplasm.
Collapse
Affiliation(s)
- Weijun Dai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, SBS-02n-45, Singapore, 637551, Singapore
| | | | | |
Collapse
|
78
|
3'UTR elements inhibit Ras-induced C/EBPβ post-translational activation and senescence in tumour cells. EMBO J 2011; 30:3714-28. [PMID: 21804532 DOI: 10.1038/emboj.2011.250] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/27/2011] [Indexed: 12/21/2022] Open
Abstract
C/EBPβ is an auto-repressed protein that becomes post-translationally activated by Ras-MEK-ERK signalling. C/EBPβ is required for oncogene-induced senescence (OIS) of primary fibroblasts, but also displays pro-oncogenic functions in many tumour cells. Here, we show that C/EBPβ activation by H-Ras(V12) is suppressed in immortalized/transformed cells, but not in primary cells, by its 3' untranslated region (3'UTR). 3'UTR sequences inhibited Ras-induced cytostatic activity of C/EBPβ, DNA binding, transactivation, phosphorylation, and homodimerization, without significantly affecting protein expression. The 3'UTR suppressed induction of senescence-associated C/EBPβ target genes, while promoting expression of genes linked to cancers and TGFβ signalling. An AU-rich element (ARE) and its cognate RNA-binding protein, HuR, were required for 3'UTR inhibition. These components also excluded the Cebpb mRNA from a perinuclear cytoplasmic region that contains activated ERK1/2, indicating that the site of C/EBPβ translation controls de-repression by Ras signalling. Notably, 3'UTR inhibition and Cebpb mRNA compartmentalization were absent in primary fibroblasts, allowing Ras-induced C/EBPβ activation and OIS to proceed. Our findings reveal a novel mechanism whereby non-coding mRNA sequences selectively regulate C/EBPβ activity and suppress its anti-oncogenic functions.
Collapse
|
79
|
Al-Khalaf HH, Colak D, Al-Saif M, Al-Bakheet A, Hendrayani SF, Al-Yousef N, Kaya N, Khabar KS, Aboussekhra A. p16( INK4a) positively regulates cyclin D1 and E2F1 through negative control of AUF1. PLoS One 2011; 6:e21111. [PMID: 21799732 PMCID: PMC3140473 DOI: 10.1371/journal.pone.0021111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/19/2011] [Indexed: 11/23/2022] Open
Abstract
Background The cyclin-D/CDK4,6/p16INK4a/pRB/E2F pathway, a key regulator of the critical G1 to S phase transition of the cell cycle, is universally disrupted in human cancer. However, the precise function of the different members of this pathway and their functional interplay are still not well defined. Methodology/Principal Findings We have shown here that the tumor suppressor p16INK4a protein positively controls the expression of cyclin D1 and E2F1 in both human and mouse cells. p16INK4a stabilizes the mRNAs of the corresponding genes through negative regulation of the mRNA decay-promoting AUF1 protein. Immunoprecipitation of AUF1-associated RNAs followed by RT-PCR indicated that endogenous AUF1 binds to the cyclin D1 and E2F1 mRNAs. Furthermore, AUF1 down-regulation increased the expression levels of these genes, while concurrent silencing of AUF1 and p16INK4a, using specific siRNAs, restored normal expression of both cyclinD1 and E2F1. Besides, we have shown the presence of functional AU-rich elements in the E2F1 3′UTR, which contributed to p16/AUF1-mediated regulation of E2F1 post-transcriptional events in vivo. Importantly, genome-wide gene expression microarray analysis revealed the presence of a large number of genes differentially expressed in a p16INK4a -dependent manner, and several of these genes are also members of the AUF1 and E2F1 regulons. We also present evidence that E2F1 mediates p16-dependent regulation of several pro- and anti-apoptotic proteins, and the consequent induction of spontaneous as well as doxorubicin-induced apoptosis. Conclusion/Significance These findings show that the cyclin-dependent kinase inhibitor p16 INK4a is also a modulator of transcription and apoptosis through controlling the expression of two major transcription regulators, AUF1 and E2F1.
Collapse
Affiliation(s)
- Huda H. Al-Khalaf
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maher Al-Saif
- Program in Biomolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Albandary Al-Bakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Siti-Faujiah Hendrayani
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nujoud Al-Yousef
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid S. Khabar
- Program in Biomolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
80
|
Gorospe M, Tominaga K, Wu X, Fähling M, Ivan M. Post-Transcriptional Control of the Hypoxic Response by RNA-Binding Proteins and MicroRNAs. Front Mol Neurosci 2011; 4:7. [PMID: 21747757 PMCID: PMC3130151 DOI: 10.3389/fnmol.2011.00007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
Mammalian gene expression patterns change profoundly in response to low oxygen levels. These changes in gene expression programs are strongly influenced by post-transcriptional mechanisms mediated by mRNA-binding factors: RNA-binding proteins (RBPs) and microRNAs (miRNAs). Here, we review the RBPs and miRNAs that modulate mRNA turnover and translation in response to hypoxic challenge. RBPs such as HuR (human antigen R), PTB (polypyrimidine tract-binding protein), heterogeneous nuclear ribonucleoproteins (hnRNPs), tristetraprolin, nucleolin, iron-response element-binding proteins (IRPs), and cytoplasmic polyadenylation-element-binding proteins (CPEBs), selectively bind to numerous hypoxia-regulated transcripts and play a major role in establishing hypoxic gene expression patterns. MiRNAs including miR-210, miR-373, and miR-21 associate with hypoxia-regulated transcripts and further modulate the levels of the encoded proteins to implement the hypoxic gene expression profile. We discuss the potent regulation of hypoxic gene expression by RBPs and miRNAs and their integrated actions in the cellular hypoxic response.
Collapse
Affiliation(s)
- Myriam Gorospe
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, National Institutes of HealthBaltimore, MD, USA
| | - Kumiko Tominaga
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, National Institutes of HealthBaltimore, MD, USA
| | - Xue Wu
- Department of Medicine, Indiana University School of MedicineIndianapolis, IN, USA
| | - Michael Fähling
- Institut für Vegetative Physiologie, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlin, Germany
| | - Mircea Ivan
- Department of Medicine, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
81
|
Cooperative role of the RNA-binding proteins Hzf and HuR in p53 activation. Mol Cell Biol 2011; 31:1997-2009. [PMID: 21402775 DOI: 10.1128/mcb.01424-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding protein Hzf (hematopoietic zinc finger) plays important roles in mRNA translation in cerebellar Purkinje cells and adipocytes. We along with others have reported that the expression of the Hzf gene is transcriptionally regulated by the p53 tumor suppressor protein. We show here that Hzf regulates p53 expression in cooperation with HuR. Hzf and HuR independently interact with the 3' untranslated region (UTR) of p53 mRNA, which facilitates the cytoplasmic localization of p53 mRNA in the presence of the ARF tumor suppressor protein. In the absence of Hzf and HuR, p53 induction by p19(ARF) is significantly attenuated, and the cells consequently acquire resistance to p19(ARF). Thus, these findings demonstrate that in addition to Mdm2 inhibition, p19(ARF) increases the concentration of p53 through posttranscriptional control of p53 mRNA and suggest critical roles for the RNA-binding proteins Hzf and HuR in p53 induction.
Collapse
|
82
|
Srikantan S, Marasa BS, Becker KG, Gorospe M, Abdelmohsen K. Paradoxical microRNAs: individual gene repressors, global translation enhancers. Cell Cycle 2011; 10:751-9. [PMID: 21311220 DOI: 10.4161/cc.10.5.14825] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In mammalian cells, microRNAs regulate the expression of target mRNAs generally by reducing their stability and/or translation, and thereby control diverse cellular processes such as senescence. We recently reported the differential abundance of microRNAs in young (early-passage, proliferating) relative to senescent (late-passage, non-proliferating) WI-38 human diploid fibroblasts. Here we report that the levels of the vast majority of mRNAs were unaltered in senescent compared to young WI-38 cells, while overall mRNA translation was potently reduced in senescent cells. Downregulation of Dicer or Drosha, two major enzymes in microRNA biogenesis, lowered microRNA levels, but, unexpectedly, it also reduced global translation. While a reduction in Dicer levels markedly enhanced cellular senescence, reduction of Drosha levels did not, suggesting that the Drosha/Dicer effects on translation may be independent of senescence, and further suggesting that microRNAs may directly or indirectly enhance mRNA translation in WI-38 cells. We discuss possible scenarios through which Dicer/Drosha/microRNAs could enhance translation.
Collapse
Affiliation(s)
- Subramanya Srikantan
- Laboratory of Molecular Biology and Immunology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
83
|
Xu F, Zhang X, Lei Y, Liu X, Liu Z, Tong T, Wang W. Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma. J Cell Biochem 2011; 111:727-34. [PMID: 20626035 DOI: 10.1002/jcb.22762] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elevated levels of RNA binding protein HuR were found in various human cancers. However, the mechanisms underlying HuR over-expression in cancers have not been fully elucidated. Here, we show that miR-16 acts as a novel post-transcriptional regulator for HuR. Knockdown of miR-16 increased HuR protein levels in MDA-MB-231 cells, while over-expression of pre-miR16 reduced HuR expression. Neither knockdown nor over-expression of miR-16 could alter the mRNA levels of HuR. Instead, knockdown of miR-16 increased the level of de novo synthesized HuR protein. Importantly, mechanistic studies showed that miR-16 associated with the 3'UTR of HuR, and knockdown of miR-16 markedly increased the luciferase activity of a HuR 3'UTR-containing reporter. We further demonstrate that the level of miR-16 was inversely correlated with HuR protein level in human breast carcinoma. Together, our results suggest an important role of miR-16 in regulating HuR translation and link this regulatory pathway to human breast cancer.
Collapse
Affiliation(s)
- Fang Xu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | | | | | | | | | | | | |
Collapse
|
84
|
Feng S, Chen W, Cao D, Bian J, Gong FY, Cheng W, Cheng S, Xu Q, Hua ZC, Yin W. Involvement of Na(+), K (+)-ATPase and its inhibitors in HuR-mediated cytokine mRNA stabilization in lung epithelial cells. Cell Mol Life Sci 2011; 68:109-24. [PMID: 20614158 PMCID: PMC11115110 DOI: 10.1007/s00018-010-0444-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 02/02/2023]
Abstract
Increasing evidence demonstrates that Na(+), K(+)-ATPase plays an important role in pulmonary inflammation, but the mechanism remains largely unknown. In this study, we used cardiotonic steroids as Na(+), K(+)-ATPase inhibitors to explore the possible involvement of Na(+), K(+)-ATPase in pulmonary epithelial inflammation. The results demonstrated that mice after ouabain inhalation developed cyclooxygenase-2-dependent acute lung inflammation. The in vitro experiments further confirmed that Na(+), K(+)-ATPase inhibitors significantly stimulated cyclooxygenase-2 expression in lung epithelial cells of human or murine origin, the process of which was participated by multiple cis-elements and trans-acting factors. Most importantly, we first described here that Na(+), K(+)-ATPase inhibitors could evoke a significant Hu antigen R nuclear export in lung epithelial cells, which stabilized cyclooxygenase-2 mRNA by binding with a proximal AU-rich element within its 3'-untranslated region. In conclusion, HuR-mediated mRNA stabilization opens new avenues in understanding the importance of Na(+), K(+)-ATPase, as well as its inhibitors in inflammation.
Collapse
Affiliation(s)
- Su Feng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wei Chen
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Dan Cao
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Jinjun Bian
- Department of Anesthesia and Intensive Care Unit, Changhai Hospital, Affiliated Hospital of the Second Military Medical University, Shanghai, 200433 China
| | - Fang-Yuan Gong
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wei Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Shun Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Qiang Xu
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Zi-Chun Hua
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| |
Collapse
|
85
|
Wang Y, Liang Y, Vanhoutte PM. SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model. FEBS Lett 2010; 585:986-94. [PMID: 21130086 DOI: 10.1016/j.febslet.2010.11.047] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 01/14/2023]
Abstract
Ageing in mammals remains an unsolved mystery. Anti-ageing is a recurring topic in the history of scientific research. Lifespan extension evoked by Sir2 protein in lower organisms has attracted a large amount of interests in the last decade. This review summarizes recent evidence supporting the role of a Sir2 mammalian homologue, SIRT1 (Silent information regulator T1), in regulating ageing and cellular senescence. The various signaling networks responsible for the anti-ageing and anti-senescence activity of SIRT1 have been discussed. In particular, a counter-balancing model involving the cross-talks between SIRT1 and AMP-activated protein kinase (AMPK), another stress and energy sensor, is suggested for controlling the senescence program in mammalian cells.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.
| | | | | |
Collapse
|
86
|
Opposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non-hypoxic conditions. Oncogene 2010; 30:1213-28. [PMID: 21057546 DOI: 10.1038/onc.2010.498] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transforming growth factor (TGF)-β1 has biphasic functions in prostate tumorigenesis, having a growth-inhibitory effect in the early stages, but in the late stages promoting tumor angiogenesis and metastasis. We demonstrate here that tumor-producing TGF-β1 induces vascular endothelial growth factor (VEGF) in prostate cancer cells, and hypoxia-inducible factor (HIF)-1α and HIF-2α has opposite functions in TGF-β1 regulation of VEGF expression under non-hypoxic conditions. The promoter response of VEGF to TGF-β1 was upregulated by the transfection of HIF-2α or siHIF-1α but downregulated by HIF-1α and siHIF-2α. Both HIF-1α and HIF-2α were induced by TGF-β1 at mRNA and protein levels, however, their nuclear translocation was differentially regulated by TGF-β1, suggesting its association with their opposite effects. VEGF induction by TGF-β1 occurred in a Smad3-dependent manner, and the Smad-binding element 2 (SBE2, -992 to -986) and hypoxia response element (-975 to -968) in the VEGF promoter were required for the promoter response to TGF-β1. Smad3 cooperated with HIF-2α in TGF-β1 activation of VEGF transcription and Smad3 binding to the SBE2 site was greatly impaired by knockdown of HIF-2α expression. Moreover, the VEGF promoter response to TGF-β1 was synergistically elevated by co-transfection of Smad3 and HIF-2α but attenuated by HIF-1α in a dose-dependent manner. Additionally, TGF-β1 was found to increase the stability of VEGF transcript by facilitating the cytoplasmic translocation of a RNA-stabilizing factor HuR. Collectively, our data show that tumor-producing TGF-β1 induces VEGF at the both transcription and post-transcriptional levels through multiple routes including Smad3, HIF-2α and HuR. This study thus suggests that autocrine TGF-β1 production may contribute to tumor angiogenesis via HIF-2α signaling under non-hypoxic conditions, providing a selective growth advantage for prostate tumor cells.
Collapse
|
87
|
Chen LH, Chiou GY, Chen YW, Li HY, Chiou SH. MicroRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev 2010; 9 Suppl 1:S59-66. [PMID: 20708718 DOI: 10.1016/j.arr.2010.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
Abstract
miRNAs are a group of noncoding small RNA that are capable of modulating the expression of hundreds of genes via a near-perfect or partial complementary to target mRNA. The ability to regulate multiple targets simultaneously makes miRNA a crucial regulator in many physiological conditions, especially in the aging network and process. The tremendous capability of miRNA supports its ability in regulating ageing, which is a complex process involving multiple interconnected signaling pathways. Even though the relationship between miRNA and ageing is not fully understood, studies have provided evidence showing that miRNAs participate in regulating cell cycle progression, proliferation, stemness gene expression, and stress-induced responses. Molecular studies of ageing and miRNAs would provide a more comprehensive understanding of the mechanisms of ageing and, subsequently, help to ameliorate this universal process compromising our quality of life. In this review article, we focus our attention on miRNA targets in conserved pathways involved in organism aging and aging networks, as well as cellular senescence.
Collapse
|
88
|
Budovsky A, Fraifeld VE, Aronov S. Linking cell polarity, aging and rejuvenation. Biogerontology 2010; 12:167-75. [PMID: 20978937 DOI: 10.1007/s10522-010-9305-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/08/2010] [Indexed: 01/01/2023]
Abstract
Cell polarity is a universal biological phenomenon. While much is known about the establishment and maintenance of cell polarity, its role in aging and age-related diseases remains to be fully addressed. Nonetheless, the exciting findings in the budding yeast indicate that the polar processes are intimately linked to both aging of the mother cell and rejuvenation of the daughter cell. This includes polar segregation of damaged proteins and ERCs due to the septin-based diffusion barrier, asymmetric inheritance of MDR proteins and retrograde protein transport. The principal, still unexplored question is whether the same polar mechanisms work during the asymmetric division of germ and stem cells, allowing their rejuvenation across generations. Further strengthening the links between cell polarity and aging is a large number of common genes associated with both polarity and longevity. Given a strong similarity between mechanisms of cell polarity in yeast and higher eukaryotes, the budding yeast Saccharomyces cerevisiae could serve as a convenient model system for studying the links between the cell polarity, aging and rejuvenation. Consequently, exploring the potential mammalian equivalents of yeast-established polarity mechanisms could be the focus for future biogerontological investigations.
Collapse
Affiliation(s)
- Arie Budovsky
- The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
89
|
Abstract
Cellular senescence is a specialized form of growth arrest, confined to mitotic cells, induced by various stressful stimuli and characterized by a permanent growth arrest, resistance to apoptosis, an altered pattern of gene expression and the expression of some markers that are characteristic, although not exclusive, to the senescent state. Senescent cells profoundly modify neighboring and remote cells through the production of an altered secretome, eventually leading to inflammation, fibrosis and possibly growth of neoplastic cells. Mammalian aging has been defined as a reduction in the capacity to adequately maintain tissue homeostasis or to repair tissues after injury. Tissue homeostasis and regenerative capacity are nowadays considered to be related to the stem cell pool present in every tissue. For this reason, pathological and patho-physiological conditions characterized by altered tissue homeostasis and impaired regenerative capacity can be viewed as a consequence of the reduction in stem cell number and/or function. Last, cellular senescence is a double-edged sword, since it may inhibit the growth of transformed cells, preventing the occurrence of cancer, while it may facilitate growth of preneoplastic lesions in a paracrine fashion; therefore, interventions targeting this cell response to stress may have a profound impact on many age-related pathologies, ranging from cardiovascular disease to oncology. Aim of this review is to discuss both molecular mechanisms associated with stem cell senescence and interventions that may attenuate or reverse this process.
Collapse
|
90
|
MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging (Albany NY) 2010; 2:333-43. [PMID: 20606251 PMCID: PMC2919253 DOI: 10.18632/aging.100159] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs
(miRNAs) are short non-coding RNAs that regulate diverse biological
processes by controlling the pattern of expressed proteins. In mammalian
cells, miRNAs partially complement their target sequences leading to mRNA
degradation and/or decreased mRNA translation. Here, we have analyzed
transcriptome-wide changes in miRNAs in senescent relative to early-passage
WI-38 human diploid fibroblasts (HDFs). Among the miRNAs downregulated
with senescence were members of the let-7 family, while upregulated miRNAs
included miR-1204, miR-663 and miR-519. miR-519 was recently found to
reduce tumor growth at least in part by lowering the abundance of the
RNA-binding protein HuR. Overexpression of miR-519a in either WI-38 or human
cervical carcinoma HeLa cells triggered senescence, as measured by
monitoring β-galactosidase
activity and other senescence markers. These data suggest that miR-519 can
suppress tumor growth by triggering senescence and that miR-519 elicits
these actions by repressing HuR expression.
Collapse
|
91
|
Abdelmohsen K, Gorospe M. Posttranscriptional regulation of cancer traits by HuR. WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:214-29. [PMID: 21935886 PMCID: PMC3808850 DOI: 10.1002/wrna.4] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many cancers. Numerous HuR-regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy.
Collapse
|
92
|
Abstract
In this study, we show that HuR destabilizes p16(INK4) mRNA. Although the knockdown of HuR or AUF1 increased p16 expression, concomitant AUF1 and HuR knockdown had a much weaker effect. The knockdown of Ago2, a component of the RNA-induced silencing complex (RISC), stabilized p16 mRNA. The knockdown of HuR diminished the association of the p16 3' untranslated region (3'UTR) with AUF1 and vice versa. While the knockdown of HuR or AUF1 reduced the association of Ago2 with the p16 3'UTR, Ago2 knockdown had no influence on HuR or AUF1 binding to the p16 3'UTR. The use of EGFP-p16 chimeric reporter transcripts revealed that p16 mRNA decay depended on a stem-loop structure present in the p16 3'UTR, as HuR and AUF1 destabilized EGFP-derived chimeric transcripts bearing wild-type sequences but not transcripts with mutations in the stem-loop structure. In senescent and HuR-silenced IDH4 human diploid fibroblasts, the EGFP-p16 3'UTR transcript was more stable. Our results suggest that HuR destabilizes p16 mRNA by recruiting the RISC, an effect that depends on the secondary structure of the p16 3'UTR and requires AUF1 as a cofactor.
Collapse
|
93
|
Vázquez-Chantada M, Fernández-Ramos D, Embade N, Martínez-Lopez N, Varela-Rey M, Woodhoo A, Luka Z, Wagner C, Anglim PP, Finnell RH, Caballería J, Laird-Offringa IA, Gorospe M, Lu SC, Mato JM, Martínez-Chantar ML. HuR/methyl-HuR and AUF1 regulate the MAT expressed during liver proliferation, differentiation, and carcinogenesis. Gastroenterology 2010; 138:1943-53. [PMID: 20102719 PMCID: PMC2860011 DOI: 10.1053/j.gastro.2010.01.032] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/18/2009] [Accepted: 01/14/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Hepatic de-differentiation, liver development, and malignant transformation are processes in which the levels of hepatic S-adenosylmethionine are tightly regulated by 2 genes: methionine adenosyltransferase 1A (MAT1A) and methionine adenosyltransferase 2A (MAT2A). MAT1A is expressed in the adult liver, whereas MAT2A expression primarily is extrahepatic and is associated strongly with liver proliferation. The mechanisms that regulate these expression patterns are not completely understood. METHODS In silico analysis of the 3' untranslated region of MAT1A and MAT2A revealed putative binding sites for the RNA-binding proteins AU-rich RNA binding factor 1 (AUF1) and HuR, respectively. We investigated the posttranscriptional regulation of MAT1A and MAT2A by AUF1, HuR, and methyl-HuR in the aforementioned biological processes. RESULTS During hepatic de-differentiation, the switch between MAT1A and MAT2A coincided with an increase in HuR and AUF1 expression. S-adenosylmethionine treatment altered this homeostasis by shifting the balance of AUF1 and methyl-HuR/HuR, which was identified as an inhibitor of MAT2A messenger RNA (mRNA) stability. We also observed a similar temporal distribution and a functional link between HuR, methyl-HuR, AUF1, and MAT1A and MAT2A during fetal liver development. Immunofluorescent analysis revealed increased levels of HuR and AUF1, and a decrease in methyl-HuR levels in human livers with hepatocellular carcinoma (HCC). CONCLUSIONS Our data strongly support a role for AUF1 and HuR/methyl-HuR in liver de-differentiation, development, and human HCC progression through the posttranslational regulation of MAT1A and MAT2A mRNAs.
Collapse
Affiliation(s)
- Mercedes Vázquez-Chantada
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Nieves Embade
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Nuria Martínez-Lopez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Ashwin Woodhoo
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA, Tennessee Valley Department of Medical Affairs Medical Center, Nashville, TN, USA
| | - Paul P. Anglim
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9176, USA
| | - Richard H. Finnell
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, USA
| | | | - Ite A. Laird-Offringa
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9176, USA
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shelly C Lu
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University Southern California, Los Angeles, CA 90033, USA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - M Luz Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| |
Collapse
|
94
|
Calaluce R, Gubin MM, Davis JW, Magee JD, Chen J, Kuwano Y, Gorospe M, Atasoy U. The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer 2010; 10:126. [PMID: 20370918 PMCID: PMC2856550 DOI: 10.1186/1471-2407-10-126] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/06/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The discordance between steady-state levels of mRNAs and protein has been attributed to posttranscriptional control mechanisms affecting mRNA stability and translation. Traditional methods of genome wide microarray analysis, profiling steady-state levels of mRNA, may miss important mRNA targets owing to significant posttranscriptional gene regulation by RNA binding proteins (RBPs). METHODS The ribonomic approach, utilizing RNA immunoprecipitation hybridized to microarray (RIP-Chip), provides global identification of putative endogenous mRNA targets of different RBPs. HuR is an RBP that binds to the AU-rich elements (ARE) of labile mRNAs, such as proto-oncogenes, facilitating their translation into protein. HuR has been shown to play a role in cancer progression and elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR has been described to control genes in several of the acquired capabilities of cancer and has been hypothesized to be a tumor-maintenance gene, allowing for cancers to proliferate once they are established. RESULTS We used HuR RIP-Chip as a comprehensive and systematic method to survey breast cancer target genes in both MCF-7 (estrogen receptor positive, ER+) and MDA-MB-231 (estrogen receptor negative, ER-) breast cancer cell lines. We identified unique subsets of HuR-associated mRNAs found individually or in both cell types. Two novel HuR targets, CD9 and CALM2 mRNAs, were identified and validated by quantitative RT-PCR and biotin pull-down analysis. CONCLUSION This is the first report of a side-by-side genome-wide comparison of HuR-associated targets in wild type ER+ and ER- breast cancer. We found distinct, differentially expressed subsets of cancer related genes in ER+ and ER- breast cancer cell lines, and noted that the differential regulation of two cancer-related genes by HuR was contingent upon the cellular environment.
Collapse
Affiliation(s)
- Robert Calaluce
- Department of Surgery, University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Kakuguchi W, Kitamura T, Kuroshima T, Ishikawa M, Kitagawa Y, Totsuka Y, Shindoh M, Higashino F. HuR knockdown changes the oncogenic potential of oral cancer cells. Mol Cancer Res 2010; 8:520-8. [PMID: 20332213 DOI: 10.1158/1541-7786.mcr-09-0367] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HuR binds to AU-rich element-containing mRNA to protect them from rapid degradation. Here, we show that knockdown of HuR changes the oncogenic properties of oral cancer cells. Oral squamous cell carcinoma cell lines, HSC-3 and Ca9.22, which express HuR protein and cytoplasmic AU-rich element mRNA more abundantly than normal cells, were subjected to HuR knockdown. In the HuR-knockdown cancer cells, the cytoplasmic expression of c-fos, c-myc, and COX-2 mRNAs was inhibited compared with those in cells that had been transfected with a control small interfering RNA, and the half-lives of these mRNAs were shorter than those of their counterparts in the control cells. HuR-knockdown cells failed to make colonies in soft agar, suggesting that the cells had lost their ability for anchorage-independent cell growth. Additionally, the motile and invasive activities of the cells decreased remarkably by HuR knockdown. Furthermore, the expression of cell cycle-related proteins, such as cyclin A, cyclin B1, cyclin D1, and cyclin-dependent kinase 1, was reduced in HuR-knockdown cancer cells, and HuR bound to cdk1 mRNA to stabilize it. These findings suggest that HuR knockdown changes the features of oral cancer cells, at least in part, by affecting their cell cycle and shows potential as an effective therapeutic approach.
Collapse
Affiliation(s)
- Wataru Kakuguchi
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Cao JN, Gollapudi S, Sharman EH, Jia Z, Gupta S. Age-related alterations of gene expression patterns in human CD8+ T cells. Aging Cell 2010; 9:19-31. [PMID: 19878143 DOI: 10.1111/j.1474-9726.2009.00534.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aging is associated with progressive T-cell deficiency and increased incidence of infections, cancer and autoimmunity. In this comprehensive study, we have compared the gene expression profiles in CD8+ T cells from aged and young healthy subjects using Affymetrix microarray Human Genome U133A-2 GeneChips. A total of 5.2% (754) of the genes analyzed had known functions and displayed statistically significant age-associated expression changes. These genes were involved in a broad array of complex biological processes, mainly in nucleic acid and protein metabolism. Functional groups, in which downregulated genes were overrepresented, were the following: RNA transcription regulation, RNA and DNA metabolism, intracellular (Golgi, endoplasmic reticulum and nuclear) transportation, signaling transduction pathways (T-cell receptor, Ras/MAPK, JNK/Stat, PI3/AKT, Wnt, TGFbeta, insulin-like growth factor and insulin), and the ubiquitin cycle. In contrast, the following functional groups contained more up-regulated genes than expected: response to oxidative stress and cytokines, apoptosis, and the MAPKK signaling cascade. These age-associated gene expression changes may be responsible for impaired DNA replication, RNA transcription, and signal transduction, possibly resulting in instability of cellular and genomic integrity, and alterations of growth, differentiation, apoptosis and anergy in human aged CD8+ T cells.
Collapse
Affiliation(s)
- Jia-Ning Cao
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Medical Sciences I, C-240 Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
97
|
Akt2-mediated phosphorylation of Pitx2 controls Ccnd1 mRNA decay during muscle cell differentiation. Cell Death Differ 2009; 17:975-83. [PMID: 20019746 DOI: 10.1038/cdd.2009.194] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Paired-like homeodomain 2 (Pitx2), first identified as the gene responsible for the Axenfeld-Rieger syndrome, encodes a protein factor that, controlling cell proliferation in a tissue-specific manner, has a crucial role in morphogenesis. During embryonic development, Pitx2 exerts a role in the expansion of muscle progenitors and is expressed at all stages of myogenic progression. In this study, we show that Pitx2 is phosphorylated by the protein kinase Akt2 and is necessary to ensure proper C2C12 myoblast proliferation and differentiation. Pitx2 associates with a ribonucleoprotein complex that includes the mRNA stabilizing factor HuR and sustains Ccnd1 (also known as Cyclin D1) expression, thereby prolonging its mRNA half-life. When the differentiation program is initiated, phosphorylation by Akt2 impairs the ability of Pitx2 to associate with the Ccnd1 mRNA-stabilizing complex that includes HuR and, as a consequence, Ccnd1 mRNA half-life is shortened. We propose that unphosphorylated Pitx2 is required to favor HuR-mediated Ccnd1 mRNA stabilization, thus sustaining myoblast proliferation. Upon Akt2-phosphorylation, the complex Pitx2/HuR/Ccnd1 mRNA dissociates and Ccnd1 mRNA is destabilized. These events contribute to the switch of C2C12 cells from a proliferating to a differentiating phenotype.
Collapse
|
98
|
Yi J, Chang N, Liu X, Guo G, Xue L, Tong T, Gorospe M, Wang W. Reduced nuclear export of HuR mRNA by HuR is linked to the loss of HuR in replicative senescence. Nucleic Acids Res 2009; 38:1547-58. [PMID: 20007147 PMCID: PMC2836555 DOI: 10.1093/nar/gkp1114] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The RNA-binding protein, HuR, associates with the HuR mRNA, but the consequences of this interaction are unknown. Here, we use human diploid fibroblasts (HDFs) and cervical carcinoma cells to study this regulatory paradigm. Ectopic overexpression of HuR potently enhanced the translation and cytoplasmic levels of endogenous HuR, but did not affect HuR mRNA levels. Inhibition of CRM1 function by Lemptomycin B or by knockdown of CRM1 greatly diminished the cytoplasmic levels of endogenous HuR mRNA and hence blocked the induction of endogenous HuR by exogenous HuR. Further studies showed that HuR interacted with the 3'-untranslated region (UTR) of HuR and that overexpression of HuR increased the cytoplasmic levels of a chimeric luciferase-HuR 3'-UTR reporter transcript, as well as luciferase activity; conversely, HuR knockdown reduced both parameters. Moreover, the loss of HuR in senescent, late-passage HDFs was accompanied by a reduced cytoplasmic presence of endogenous HuR mRNA, ectopic Luc-HuR-3'UTR reporter transcript, and luciferase activity relative to what was observed in young, early-passage cells. Our results reveal a positive feedback mechanism for the regulation of HuR, which may play an important role in the regulation of HuR during replicative senescence.
Collapse
Affiliation(s)
- Jie Yi
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100083, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Sanduja S, Kaza V, Dixon DA. The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging (Albany NY) 2009; 1:803-17. [PMID: 20157568 PMCID: PMC2815738 DOI: 10.18632/aging.100086] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 09/08/2009] [Indexed: 12/31/2022]
Abstract
The RNA-binding
protein tristetraprolin (TTP) regulates expression of many
cancer-associated and proinflammatory factors through binding AU-rich
elements (ARE) in the 3'-untranslated region (3'UTR) and facilitating rapid
mRNA decay. Here we report on the ability of TTP to act in an
anti-proliferative capacity in HPV18-positive HeLa cells by inducing
senescence. HeLa cells maintain a dormant p53 pathway and elevated
telomerase activity resulting from HPV-mediated transformation, whereas TTP
expression counteracted this effect by stabilizing p53 protein and
inhibiting hTERT expression. Presence of TTP did not alter E6 and E7 viral
mRNA levels indicating that these are not TTP targets. It was found that
TTP promoted rapid mRNA decay of the cellular
ubiquitin ligase E6-associated protein (E6-AP). RNA-binding studies
demonstrated TTP and E6-AP mRNA interaction and deletion of the E6-AP mRNA
ARE-containing 3'UTR imparts resistance to TTP-mediated downregulation.
Similar results were obtained with high-risk HPV16-positive cells that
employ the E6-AP pathway to control p53 and hTERT levels. Furthermore, loss
of TTP expression was consistently observed in cervical cancer tissue
compared to normal tissue. These findings demonstrate the ability of TTP to
act as a tumor suppressor by inhibiting the E6-AP pathway
and indicate TTP loss to be a critical event during HPV-mediated
carcinogenesis.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203, USA
| | | | | |
Collapse
|
100
|
Mukherjee N, Lager PJ, Friedersdorf MB, Thompson MA, Keene JD. Coordinated posttranscriptional mRNA population dynamics during T-cell activation. Mol Syst Biol 2009; 5:288. [PMID: 19638969 PMCID: PMC2724974 DOI: 10.1038/msb.2009.44] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 06/03/2009] [Indexed: 11/25/2022] Open
Abstract
Although RNA-binding proteins (RBPs) coordinate many key decisions during cell growth and differentiation, the dynamics of RNA–RBP interactions have not been extensively studied on a global basis. We immunoprecipitated endogenous ribonucleoprotein complexes containing HuR and PABP throughout a T-cell activation time course and identified the associated mRNA populations using microarrays. We used Gaussian mixture modeling as a discriminative model, treating RBP association as a discrete variable (target or not target), and as a generative model, treating RBP-association as a continuous variable (probability of association). We report that HuR interacts with different populations of mRNAs during T-cell activation. These populations encode functionally related proteins that are members of the Wnt pathway and proteins mediating T-cell receptor signaling pathways. Moreover, the mRNA targets of HuR were found to overlap with the targets of other posttranscriptional regulatory factors, indicating combinatorial interdependence of posttranscriptional regulatory networks and modules after activation. Applying HuR mRNA dynamics as a quantitative phenotype in the drug-gene-phenotype Connectivity Map, we identified candidate small molecule effectors of HuR and T-cell activation. We show that one of these candidates, resveratrol, exerts T-cell activation-dependent posttranscriptional effects that are rescued by HuR. Thus, we describe a strategy to systematically link an RBP and condition-specific posttranscriptional effects to small molecule drugs.
Collapse
Affiliation(s)
- Neelanjan Mukherjee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|