51
|
Specks J, Nieto-Soler M, Lopez-Contreras AJ, Fernandez-Capetillo O. Modeling the study of DNA damage responses in mice. Methods Mol Biol 2015; 1267:413-37. [PMID: 25636482 DOI: 10.1007/978-1-4939-2297-0_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate aging. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses.
Collapse
Affiliation(s)
- Julia Specks
- Genomic Instability Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, E-28029, Madrid, Spain
| | | | | | | |
Collapse
|
52
|
Abstract
The mammalian CtIP protein and its orthologs in other eukaryotes promote the resection of DNA double-strand breaks and are essential for meiotic recombination. Here we review the current literature supporting the role of CtIP in DNA end processing and the importance of CtIP endonuclease activity in DNA repair. We also examine the regulation of CtIP function by post-translational modifications, and its involvement in transcription- and replication-dependent functions through association with other protein complexes. The tumor suppressor function of CtIP likely is dependent on a combination of these roles in many aspects of DNA metabolism.
Collapse
|
53
|
Nastasie MS, Thissen H, Jans DA, Wagstaff KM. Enhanced tumour cell nuclear targeting in a tumour progression model. BMC Cancer 2015; 15:76. [PMID: 25885577 PMCID: PMC4342815 DOI: 10.1186/s12885-015-1045-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/27/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is an urgent need for new approaches to deliver bioactive molecules to cancer cells efficiently and specifically. METHODS Here we fuse the cancer cell nuclear targeting module of the Chicken Anaemia Virus Apoptin protein to the core histones H2B and H3 and utilise them in transfection, protein transduction and DNA binding assays. RESULTS We found subsequent nuclear accumulation of these proteins to be 2-3 fold higher in tumour compared to normal cells in transfected isogenic human osteosarcoma and breast tumour progression models. This represents the first demonstration of enhanced nuclear targeting by Apoptin in a tumour progression model, and its functionality in a heterologous protein context. Excitingly, we found that the innate transduction ability of histones could be exploited in combination with the Apoptin nuclear targeting module to effect an overall 13-fold higher delivery of protein to osteosarcoma cancer cell nuclei compared to their isogenic normal counterparts. CONCLUSIONS This is the first report of cancer-cell specificity by a cell penetrating protein, with important implications for the use of protein transduction as a vehicle for gene/drug delivery in the future, and in particular in the development of highly specific and effective anti-cancer agents.
Collapse
Affiliation(s)
- Michael S Nastasie
- Nuclear Signalling Laboratory, Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| | - Helmut Thissen
- CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton, Victoria, 3168, Australia.
| | - David A Jans
- Nuclear Signalling Laboratory, Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| | - Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
54
|
Davies OR, Forment JV, Sun M, Belotserkovskaya R, Coates J, Galanty Y, Demir M, Morton CR, Rzechorzek NJ, Jackson SP, Pellegrini L. CtIP tetramer assembly is required for DNA-end resection and repair. Nat Struct Mol Biol 2015; 22:150-157. [PMID: 25558984 PMCID: PMC4564947 DOI: 10.1038/nsmb.2937] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
Abstract
Mammalian CtIP protein has major roles in DNA double-strand break (DSB) repair. Although it is well established that CtIP promotes DNA-end resection in preparation for homology-dependent DSB repair, the molecular basis for this function has remained unknown. Here we show by biophysical and X-ray crystallographic analyses that the N-terminal domain of human CtIP exists as a stable homotetramer. Tetramerization results from interlocking interactions between the N-terminal extensions of CtIP's coiled-coil region, which lead to a 'dimer-of-dimers' architecture. Through interrogation of the CtIP structure, we identify a point mutation that abolishes tetramerization of the N-terminal domain while preserving dimerization in vitro. Notably, we establish that this mutation abrogates CtIP oligomer assembly in cells, thus leading to strong defects in DNA-end resection and gene conversion. These findings indicate that the CtIP tetramer architecture described here is essential for effective DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Owen R. Davies
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Josep V. Forment
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- The Wellcome Trust Sanger Institute, Hinxton, UK
| | - Meidai Sun
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Rimma Belotserkovskaya
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Julia Coates
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Yaron Galanty
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Mukerrem Demir
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | - Stephen P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- The Wellcome Trust Sanger Institute, Hinxton, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
55
|
Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair. Nat Struct Mol Biol 2015; 22:158-66. [PMID: 25580577 PMCID: PMC4318798 DOI: 10.1038/nsmb.2945] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/04/2014] [Indexed: 01/07/2023]
Abstract
Ctp1 (also known as CtIP or Sae2) collaborates with Mre11-Rad50-Nbs1 to initiate repair of DNA double-strand breaks (DSBs), but its functions remain enigmatic. We report that tetrameric Schizosaccharomyces pombe Ctp1 contains multivalent DNA-binding and DNA-bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer, we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal 'RHR' DNA-interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA-bridging activity in vitro, and both the THDD and RHR are required for efficient DSB repair in S. pombe. Our results establish non-nucleolytic roles of Ctp1 in binding and coordination of DSB-repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CtIP-linked Seckel and Jawad syndromes.
Collapse
|
56
|
Paull TT, Deshpande RA. The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes. Exp Cell Res 2014; 329:139-47. [PMID: 25016281 PMCID: PMC4252570 DOI: 10.1016/j.yexcr.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Collapse
Affiliation(s)
- Tanya T Paull
- The Howard Hughes Medical Institute, The Department of Molecular Biosciences, The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Rajashree A Deshpande
- The Howard Hughes Medical Institute, The Department of Molecular Biosciences, The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
57
|
miR-19, a component of the oncogenic miR-17∼92 cluster, targets the DNA-end resection factor CtIP. Oncogene 2014; 34:3977-84. [PMID: 25308476 DOI: 10.1038/onc.2014.329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/31/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022]
Abstract
MicroRNA-19 (miR-19) was recently identified as the key oncogenic component of the polycistronic miR-17∼92 cluster, also known as oncomiR-1, which is frequently upregulated or amplified in multiple tumor types. However, the gene targets and the pathways underlying the tumor-promoting activity of miR-19 still remain largely elusive. CtIP/RBBP8 promotes DNA-end resection, a critical step in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), and is considered to function as a tumor suppressor. In this study, we show that miR-19 downregulates CtIP expression by binding to two highly conserved sequences located in the 3'-untranslated region of CtIP mRNA. We further demonstrate that CtIP expression is repressed by miR-19 during continuous genotoxic stress in a p53-dependent manner. Finally, we report that miR-19 impairs CtIP-mediated DNA-end resection, which results in reduced HR levels and DNA damage hypersensitivity. By downregulating CtIP, miR-19 overexpression suppresses the faithful repair of DSBs that is crucial for genome maintenance. Our findings thus provide new mechanistic insight into the oncogenic role of the miR-17∼92 cluster.
Collapse
|
58
|
Abstract
RecA/Rad51 catalyzed pairing of homologous DNA strands, initiated by polymerization of the recombinase on single-stranded DNA (ssDNA), is a universal feature of homologous recombination (HR). Generation of ssDNA from a double-strand break (DSB) requires nucleolytic degradation of the 5'-terminated strands to generate 3'-ssDNA tails, a process referred to as 5'-3' end resection. The RecBCD helicase-nuclease complex is the main end-processing machine in Gram-negative bacteria. Mre11-Rad50 and Mre11-Rad50-Xrs2/Nbs1 can play a direct role in end resection in archaea and eukaryota, respectively, by removing end-blocking lesions and act indirectly by recruiting the helicases and nucleases responsible for extensive resection. In eukaryotic cells, the initiation of end resection has emerged as a critical regulatory step to differentiate between homology-dependent and end-joining repair of DSBs.
Collapse
|
59
|
Polato F, Callen E, Wong N, Faryabi R, Bunting S, Chen HT, Kozak M, Kruhlak MJ, Reczek CR, Lee WH, Ludwig T, Baer R, Feigenbaum L, Jackson S, Nussenzweig A. CtIP-mediated resection is essential for viability and can operate independently of BRCA1. ACTA ACUST UNITED AC 2014; 211:1027-36. [PMID: 24842372 PMCID: PMC4042650 DOI: 10.1084/jem.20131939] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In contrast to BRCA1, CtIP has indispensable roles in promoting resection and embryonic development. Homologous recombination (HR) is initiated by DNA end resection, a process in which stretches of single-strand DNA (ssDNA) are generated and used for homology search. Factors implicated in resection include nucleases MRE11, EXO1, and DNA2, which process DNA ends into 3′ ssDNA overhangs; helicases such as BLM, which unwind DNA; and other proteins such as BRCA1 and CtIP whose functions remain unclear. CDK-mediated phosphorylation of CtIP on T847 is required to promote resection, whereas CDK-dependent phosphorylation of CtIP-S327 is required for interaction with BRCA1. Here, we provide evidence that CtIP functions independently of BRCA1 in promoting DSB end resection. First, using mouse models expressing S327A or T847A mutant CtIP as a sole species, and B cells deficient in CtIP, we show that loss of the CtIP-BRCA1 interaction does not detectably affect resection, maintenance of genomic stability or viability, whereas T847 is essential for these functions. Second, although loss of 53BP1 rescues the embryonic lethality and HR defects in BRCA1-deficient mice, it does not restore viability or genome integrity in CtIP−/− mice. Third, the increased resection afforded by loss of 53BP1 and the rescue of BRCA1-deficiency depend on CtIP but not EXO1. Finally, the sensitivity of BRCA1-deficient cells to poly ADP ribose polymerase (PARP) inhibition is partially rescued by the phospho-mimicking mutant CtIP (CtIP-T847E). Thus, in contrast to BRCA1, CtIP has indispensable roles in promoting resection and embryonic development.
Collapse
Affiliation(s)
- Federica Polato
- Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Elsa Callen
- Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nancy Wong
- Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Robert Faryabi
- Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Samuel Bunting
- Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hua-Tang Chen
- Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marina Kozak
- Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael J Kruhlak
- Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Colleen R Reczek
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Wen-Hwa Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Thomas Ludwig
- Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Richard Baer
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Lionel Feigenbaum
- Science Applications International Corporation-Frederick National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21704
| | - Stephen Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK The Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - André Nussenzweig
- Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
60
|
Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol Cell 2014; 54:1022-1033. [PMID: 24837676 DOI: 10.1016/j.molcel.2014.04.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/11/2013] [Accepted: 04/04/2014] [Indexed: 12/22/2022]
Abstract
The carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) is known to function in 5' strand resection during homologous recombination, similar to the budding yeast Sae2 protein, but its role in this process is unclear. Here, we characterize recombinant human CtIP and find that it exhibits 5' flap endonuclease activity on branched DNA structures, independent of the MRN complex. Phosphorylation of CtIP at known damage-dependent sites and other sites is essential for its catalytic activity, although the S327 and T847 phosphorylation sites are dispensable. A catalytic mutant of CtIP that is deficient in endonuclease activity exhibits wild-type levels of homologous recombination at restriction enzyme-generated breaks but is deficient in processing topoisomerase adducts and radiation-induced breaks in human cells, suggesting that the nuclease activity of CtIP is specifically required for the removal of DNA adducts at sites of DNA breaks.
Collapse
|
61
|
Lu LY, Xiong Y, Kuang H, Korakavi G, Yu X. Regulation of the DNA damage response on male meiotic sex chromosomes. Nat Commun 2013; 4:2105. [PMID: 23812044 PMCID: PMC3759350 DOI: 10.1038/ncomms3105] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 06/04/2013] [Indexed: 12/13/2022] Open
Abstract
During meiotic prophase in males, the sex chromosomes partially synapse to form the XY body. This is a unique structure that recruits proteins involved in the DNA damage response, which is believed to be important for silencing of the sex chromosomes. It remains elusive how the DNA damage response in the XY body is regulated. H2AX-MDC1-RNF8 signaling, which is well characterized in somatic cells, is dispensable for the recruitment of proteins to the unsynapsed axes in the XY body. However, the DNA damage response that spreads over the sex chromosomes is largely similar to that in somatic cells. Here we show that accumulation of some components of the DNA damage response pathway on the XY body occurs upstream of H2AX-MDC1-RNF8 signalling, and downstream from this cascade of events for others. This analysis shows that there are important differences between the regulation of the DNA damage response at the XY body and at DNA damage sites in somatic cells.
Collapse
Affiliation(s)
- Lin-Yu Lu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 5560 MSRB II, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
62
|
Matthaios D, Hountis P, Karakitsos P, Bouros D, Kakolyris S. H2AX a Promising Biomarker for Lung Cancer: A Review. Cancer Invest 2013; 31:582-99. [DOI: 10.3109/07357907.2013.849721] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
63
|
Soria-Bretones I, Sáez C, Ruíz-Borrego M, Japón MA, Huertas P. Prognostic value of CtIP/RBBP8 expression in breast cancer. Cancer Med 2013; 2:774-83. [PMID: 24403251 PMCID: PMC3892382 DOI: 10.1002/cam4.141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 12/17/2022] Open
Abstract
CtIP/RBBP8 is a multifunctional protein involved in transcription, DNA replication, DNA repair by homologous recombination and the G1 and G2 checkpoints. Its multiple roles are controlled by its interaction with several specific factors, including the tumor suppressor proteins BRCA1 and retinoblastoma. Both its functions and interactors point to a putative oncogenic potential of CtIP/RBBP8 loss. However, CtIP/RBBP8 relevance in breast tumor appearance, development, and prognosis has yet to be established. We performed a retrospective analysis of CtIP/RBBP8 and RB1 levels by immunohistochemistry using 384 paraffin-embedded breast cancer biopsies obtained during tumor removal surgery. We have observed that low or no expression of CtIP/RBBP8 correlates with high-grade breast cancer and with nodal metastasis. Reduction on CtIP/RBBP8 is most common in hormone receptor (HR)-negative, HER2-positive, and basal-like tumors. We observed lower levels of RB1 on those tumors with reduced CtIP/RBBP8 levels. On luminal tumors, decreased but not absence of CtIP/RBBP8 levels correlate with increased disease-free survival when treated with a combination of hormone, radio, and chemo therapies.
Collapse
Affiliation(s)
- Isabel Soria-Bretones
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Av. Americo Vespucio s/n, Sevilla, 41092, Spain
| | | | | | | | | |
Collapse
|
64
|
Chen X, Zhao Y, Li GM, Guo L. Proteomic analysis of mismatch repair-mediated alkylating agent-induced DNA damage response. Cell Biosci 2013; 3:37. [PMID: 24330662 PMCID: PMC3848634 DOI: 10.1186/2045-3701-3-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/26/2013] [Indexed: 11/13/2022] Open
Abstract
Background Mediating DNA damage-induced apoptosis is an important genome-maintenance function of the mismatch repair (MMR) system. Defects in MMR not only cause carcinogenesis, but also render cancer cells highly resistant to chemotherapeutics, including alkylating agents. To understand the mechanisms of MMR-mediated apoptosis and MMR-deficiency-caused drug resistance, we analyze a model alkylating agent (N-methyl-N’-nitro-N-nitrosoguanidine, MNNG)-induced changes in protein phosphorylation and abundance in two cell lines, the MMR-proficient TK6 and its derivative MMR-deficient MT1. Results Under an experimental condition that MNNG-induced apoptosis was only observed in MutSα-proficient (TK6), but not in MutSα-deficient (MT1) cells, quantitative analysis of the proteomic data revealed differential expression and phosphorylation of numerous individual proteins and clusters of protein kinase substrates, as well differential activation of response pathways/networks in MNNG-treated TK6 and MT1 cells. Many alterations in TK6 cells are in favor of turning on the apoptotic machinery, while many of those in MT1 cells are to promote cell proliferation and anti-apoptosis. Conclusions Our work provides novel molecular insights into the mechanism of MMR-mediated DNA damage-induced apoptosis.
Collapse
|
65
|
Reczek CR, Szabolcs M, Stark JM, Ludwig T, Baer R. The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression. ACTA ACUST UNITED AC 2013; 201:693-707. [PMID: 23712259 PMCID: PMC3664708 DOI: 10.1083/jcb.201302145] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In mammalian cells, the phospho-dependent interaction between BRCA1 and CtIP is not required for homology-directed DNA repair or tumor suppression. The CtIP protein facilitates homology-directed repair (HDR) of double-strand DNA breaks (DSBs) by initiating DNA resection, a process in which DSB ends are converted into 3′-ssDNA overhangs. The BRCA1 tumor suppressor, which interacts with CtIP in a phospho-dependent manner, has also been implicated in DSB repair through the HDR pathway. It was recently reported that the BRCA1–CtIP interaction is essential for HDR in chicken DT40 cells. To examine the role of this interaction in mammalian cells, we generated cells and mice that express Ctip polypeptides (Ctip-S326A) that fail to bind BRCA1. Surprisingly, isogenic lines of Ctip-S326A mutant and wild-type cells displayed comparable levels of HDR function and chromosomal stability. Although Ctip-S326A mutant cells were modestly sensitive to topoisomerase inhibitors, mice expressing Ctip-S326A polypeptides developed normally and did not exhibit a predisposition to cancer. Thus, in mammals, the phospho-dependent BRCA1–CtIP interaction is not essential for HDR-mediated DSB repair or for tumor suppression.
Collapse
Affiliation(s)
- Colleen R Reczek
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
66
|
Lemmens BBLG, Johnson NM, Tijsterman M. COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing Ku-mediated non-homologous end joining. PLoS Genet 2013; 9:e1003276. [PMID: 23408909 PMCID: PMC3567172 DOI: 10.1371/journal.pgen.1003276] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Successful completion of meiosis requires the induction and faithful repair of DNA double-strand breaks (DSBs). DSBs can be repaired via homologous recombination (HR) or non-homologous end joining (NHEJ), yet only repair via HR can generate the interhomolog crossovers (COs) needed for meiotic chromosome segregation. Here we identify COM-1, the homolog of CtIP/Sae2/Ctp1, as a crucial regulator of DSB repair pathway choice during Caenorhabditis elegans gametogenesis. COM-1-deficient germ cells repair meiotic DSBs via the error-prone pathway NHEJ, resulting in a lack of COs, extensive chromosomal aggregation, and near-complete embryonic lethality. In contrast to its yeast counterparts, COM-1 is not required for Spo11 removal and initiation of meiotic DSB repair, but instead promotes meiotic recombination by counteracting the NHEJ complex Ku. In fact, animals defective for both COM-1 and Ku are viable and proficient in CO formation. Further genetic dissection revealed that COM-1 acts parallel to the nuclease EXO-1 to promote interhomolog HR at early pachytene stage of meiotic prophase and thereby safeguards timely CO formation. Both of these nucleases, however, are dispensable for RAD-51 recruitment at late pachytene stage, when homolog-independent repair pathways predominate, suggesting further redundancy and/or temporal regulation of DNA end resection during meiotic prophase. Collectively, our results uncover the potentially lethal properties of NHEJ during meiosis and identify a critical role for COM-1 in NHEJ inhibition and CO assurance in germ cells.
Collapse
Affiliation(s)
- Bennie B. L. G. Lemmens
- Department of Toxicogenetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Nicholas M. Johnson
- Department of Toxicogenetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
67
|
Abstract
LIM-domain proteins are a large family of proteins that are emerging as key molecules in a wide variety of human cancers. In particular, all members of the human LIM-domain-only (LMO) proteins, LMO1-4, which are required for many developmental processes, are implicated in the onset or the progression of several cancers, including T cell leukaemia, breast cancer and neuroblastoma. These small proteins contain two protein-interacting LIM domains but little additional sequence, and they seem to function by nucleating the formation of new transcriptional complexes and/or by disrupting existing transcriptional complexes to modulate gene expression programmes. Through these activities, the LMO proteins have important cellular roles in processes that are relevant to cancer such as self-renewal, cell cycle regulation and metastasis. These functions highlight the therapeutic potential of targeting these proteins in cancer.
Collapse
Affiliation(s)
- Jacqueline M Matthews
- School of Molecular Bioscience, The University of Sydney, New South Wales 2006, Australia. jacqui.matthews@ sydney.edu.au
| | | | | | | |
Collapse
|
68
|
Gaymes TJ, Mohamedali AM, Patterson M, Matto N, Smith A, Kulasekararaj A, Chelliah R, Curtin N, Farzaneh F, Shall S, Mufti GJ. Microsatellite instability induced mutations in DNA repair genes CtIP and MRE11 confer hypersensitivity to poly (ADP-ribose) polymerase inhibitors in myeloid malignancies. Haematologica 2013; 98:1397-406. [PMID: 23349304 DOI: 10.3324/haematol.2012.079251] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Inactivation of the DNA mismatch repair pathway manifests as microsatellite instability, an accumulation of mutations that drives carcinogenesis. Here, we determined whether microsatellite instability in acute myeloid leukemia and myelodysplastic syndrome correlated with chromosomal instability and poly (ADP-ribose) polymerase (PARP) inhibitor sensitivity through disruption of DNA repair function. Acute myeloid leukemia cell lines (n=12) and primary cell samples (n=18), and bone marrow mononuclear cells from high-risk myelodysplastic syndrome patients (n=63) were profiled for microsatellite instability using fluorescent fragment polymerase chain reaction. PARP inhibitor sensitivity was performed using cell survival, annexin V staining and cell cycle analysis. Homologous recombination was studied using immunocytochemical analysis. SNP karyotyping was used to study chromosomal instability. RNA silencing, Western blotting and gene expression analysis was used to study the functional consequences of mutations. Acute myeloid leukemia cell lines (4 of 12, 33%) and primary samples (2 of 18, 11%) exhibited microsatellite instability with mono-allelic mutations in CtIP and MRE11. These changes were associated with reduced expression of mismatch repair pathway components, MSH2, MSH6 and MLH1. Both microsatellite instability positive primary acute myeloid leukemia samples and cell lines demonstrated a downregulation of homologous recombination DNA repair conferring marked sensitivity to PARP inhibitors. Similarly, bone marrow mononuclear cells from 11 of 56 (20%) patients with de novo high-risk myelodysplastic syndrome exhibited microsatellite instability. Significantly, all 11 patients with microsatellite instability had cytogenetic abnormalities with 4 of them (36%) possessing a mono-allelic microsatellite mutation in CtIP. Furthermore, 50% reduction in CtIP expression by RNA silencing also down-regulated homologous recombination DNA repair responses conferring PARP inhibitor sensitivity, whilst CtIP differentially regulated the expression of homologous recombination modulating RecQ helicases, WRN and BLM. In conclusion, microsatellite instability dependent mutations in DNA repair genes, CtIP and MRE11 are detected in myeloid malignancies conferring hypersensitivity to PARP inhibitors. Microsatellite instability is significantly correlated with chromosomal instability in myeloid malignancies.
Collapse
Affiliation(s)
- Terry J Gaymes
- Department of Haematological Medicine, King’s College London, Leukaemia Sciences Laboratories, The Rayne Institute, Denmark Hill Campus, London UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Stokes PH, Liew CW, Kwan AH, Foo P, Barker HE, Djamirze A, O'Reilly V, Visvader JE, Mackay JP, Matthews JM. Structural basis of the interaction of the breast cancer oncogene LMO4 with the tumour suppressor CtIP/RBBP8. J Mol Biol 2013; 425:1101-10. [PMID: 23353824 DOI: 10.1016/j.jmb.2013.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 12/14/2022]
Abstract
LIM-only protein 4 (LMO4) is strongly linked to the progression of breast cancer. Although the mechanisms underlying this phenomenon are not well understood, a role is emerging for LMO4 in regulation of the cell cycle. We determined the solution structure of LMO4 in complex with CtIP (C-terminal binding protein interacting protein)/RBBP8, a tumour suppressor protein that is involved in cell cycle progression, DNA repair and transcriptional regulation. Our data reveal that CtIP and the essential LMO cofactor LDB1 (LIM-domain binding protein 1) bind to the same face on LMO4 and cannot simultaneously bind to LMO4. We hypothesise that overexpression of LMO4 may disrupt some of the normal tumour suppressor activities of CtIP, thereby contributing to breast cancer progression.
Collapse
Affiliation(s)
- P H Stokes
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Bothmer A, Rommel PC, Gazumyan A, Polato F, Reczek CR, Muellenbeck MF, Schaetzlein S, Edelmann W, Chen PL, Brosh RM, Casellas R, Ludwig T, Baer R, Nussenzweig A, Nussenzweig MC, Robbiani DF. Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching. ACTA ACUST UNITED AC 2012; 210:115-23. [PMID: 23254285 PMCID: PMC3549709 DOI: 10.1084/jem.20121975] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CtBP-interacting protein, exonuclease 1, and RecQ helicases contribute to the processing of DNA ends during double-strand break repairs in primary lymphocytes. DNA double-strand breaks (DSBs) are byproducts of normal cellular metabolism and obligate intermediates in antigen receptor diversification reactions. These lesions are potentially dangerous because they can lead to deletion of genetic material or chromosome translocation. The chromatin-binding protein 53BP1 and the histone variant H2AX are required for efficient class switch (CSR) and V(D)J recombination in part because they protect DNA ends from resection and thereby favor nonhomologous end joining (NHEJ). Here, we examine the mechanism of DNA end resection in primary B cells. We find that resection depends on both CtBP-interacting protein (CtIP, Rbbp8) and exonuclease 1 (Exo1). Inhibition of CtIP partially rescues the CSR defect in 53BP1- and H2AX-deficient lymphocytes, as does interference with the RecQ helicases Bloom (Blm) and Werner (Wrn). We conclude that CtIP, Exo1, and RecQ helicases contribute to the metabolism of DNA ends during DSB repair in B lymphocytes and that minimizing resection favors efficient CSR.
Collapse
Affiliation(s)
- Anne Bothmer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Povirk LF. Processing of damaged DNA ends for double-strand break repair in mammalian cells. ISRN MOLECULAR BIOLOGY 2012; 2012. [PMID: 24236237 PMCID: PMC3825254 DOI: 10.5402/2012/345805] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Most DNA double-strand breaks (DSBs)formed in a natural environment have chemical modifications at or near the ends that preclude direct religation and require removal or other processing so that rejoining can proceed. Free radical-mediated DSBs typically bear unligatable 3'-phosphate or 3'-phosphoglycolate termini and often have oxidized bases and/or abasic sites near the break. Topoisomerase-mediated DSBs are blocked by covalently bound peptide fragments of the topoisomerase. Enzymes capable of resolving damaged ends include polynucleotide kinase/phosphatase, which restores missing 5'-phosphates and removes 3'-phosphates; tyrosyl-DNA phosphodiesterases I and II (TDP1 and TDP2), which remove peptide fragments of topoisomerases I and II, respectively, and the Artemis and Metnase endonucleases, which can trim damaged overhangs of diverse structure. TDP1 as well as APE1 can remove 3'-phosphoglycolates and other 3' blocks, while CtIP appears to provide an alternative pathway for topoisomerase II fragment removal. Ku, a core DSB joining protein, can cleave abasic sites near DNA ends. The downstream processes of patching and ligation are tolerant of residual damage, and can sometimes proceed without complete damage removal. Despite these redundant pathways for resolution, damaged ends appear to be a significant barrier to rejoining, and their resolution may be a rate-limiting step in repair of some DSBs..
Collapse
Affiliation(s)
- Lawrence F Povirk
- Department of Pharmacology and Toxicology, and Massey Cancer Center, Virginia Commonwealth University, 401 College St. Richmond, VA 23298, USA, 804-828-9640
| |
Collapse
|
72
|
Duquette ML, Zhu Q, Taylor ER, Tsay AJ, Shi LZ, Berns MW, McGowan CH. CtIP is required to initiate replication-dependent interstrand crosslink repair. PLoS Genet 2012; 8:e1003050. [PMID: 23144634 PMCID: PMC3493458 DOI: 10.1371/journal.pgen.1003050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 09/12/2012] [Indexed: 11/26/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that block the progression of replication and transcription. CtIP is a conserved DNA repair protein that facilitates DNA end resection in the double-strand break (DSB) repair pathway. Here we show that CtIP plays a critical role during initiation of ICL processing in replicating human cells that is distinct from its role in DSB repair. CtIP depletion sensitizes human cells to ICL inducing agents and significantly impairs the accumulation of DNA damage response proteins RPA, ATR, FANCD2, γH2AX, and phosphorylated ATM at sites of laser generated ICLs. In contrast, the appearance of γH2AX and phosphorylated ATM at sites of laser generated double strand breaks (DSBs) is CtIP-independent. We present a model in which CtIP functions early in ICL repair in a BRCA1– and FANCM–dependent manner prior to generation of DSB repair intermediates. One of the most lethal forms of DNA damage is the interstrand crosslink (ICL). An ICL is a chemical bridge between two nucleotides on complementary strands of DNA. An unrepaired ICL is toxic because it poses an unsurpassable block to DNA replication and transcription. Certain forms of cancer treatment exploit the toxicity of ICL generating agents to target rapidly dividing cells. Sensitivity to crosslinking agents is a defining characteristic of Fanconi Anemia (FA), a hereditary syndrome characterized by an increased risk in cancer development and hematopoietic abnormalities frequently resulting in bone marrow failure. The mechanism underlying ICL repair is important to human health; however, the sequence of molecular events governing ICL repair is poorly understood. Here we describe how the repair protein CtIP functions to initiate ICL repair in replicating cells in a manner distinct from its previously described role in other forms of DNA repair.
Collapse
Affiliation(s)
- Michelle L Duquette
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
73
|
Ji J, Tang D, Wang K, Wang M, Che L, Li M, Cheng Z. The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:18-30. [PMID: 22507309 DOI: 10.1111/j.1365-313x.2012.05025.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
COM1/SAE2 is a highly conserved gene from yeast to higher eukaryotes. Its orthologs, known to cooperate with the MRX complex (Mre11/Rad50/Xrs2), are required for meiotic DNA double-strand break (DSB) ends resection and specific mitotic DSB repair events. Here, the rice (Oryza sativa, 2n = 2x = 24) COM1/SAE2 homolog was identified through positional cloning, termed OsCOM1. Four independent mutants of OsCOM1 were isolated and characterized. In Oscom1 mutants, synaptonemal complex (SC) formation, homologous pairing and recombination were severely inhibited, whereas aberrant non-homologous chromosome entanglements occurred constantly. Several key meiotic proteins, including ZEP1 and OsMER3, were not loaded normally onto chromosomes in Oscom1 mutants, whereas the localization of OsREC8, PAIR2 and PAIR3 seemed to be normal. Moreover, OsCOM1 was loaded normally onto meiotic chromosomes in Osrec8, zep1 and Osmer3 mutants, but could not be properly loaded in Osam1, pair2 and OsSPO11-1(RNAi) plants. These results provide direct evidence for the functions of OsCOM1 in promoting homologous synapsis and recombination in rice meiosis.
Collapse
Affiliation(s)
- Jianhui Ji
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
74
|
Kousholt AN, Fugger K, Hoffmann S, Larsen BD, Menzel T, Sartori AA, Sørensen CS. CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation. ACTA ACUST UNITED AC 2012; 197:869-76. [PMID: 22733999 PMCID: PMC3384414 DOI: 10.1083/jcb.201111065] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
CtIP-dependent DNA end resection, which was previously thought to be necessary for CHK1 kinase activation and subsequent DNA damage checkpoint induction, is in fact only required for sustained checkpoint signaling. To prevent accumulation of mutations, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homology-directed repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of ATR (ataxia telangiectasia mutated and Rad3 related) and CHK1 kinases to induce the cell cycle checkpoint. In this paper, we show that CHK1 was rapidly and robustly activated before detectable end resection. Moreover, we show that the key resection factor CtIP was dispensable for initial ATR–CHK1 activation after DNA damage by camptothecin and ionizing radiation. In contrast, we find that DNA end resection was critically required for sustained ATR–CHK1 checkpoint signaling and for maintaining both the intra–S- and G2-phase checkpoints. Consequently, resection-deficient cells entered mitosis with persistent DNA damage. In conclusion, we have uncovered a temporal program of checkpoint activation, where CtIP-dependent DNA end resection is required for sustained checkpoint signaling.
Collapse
|
75
|
LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol 2012; 19:803-10. [DOI: 10.1038/nsmb.2314] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 05/24/2012] [Indexed: 12/11/2022]
|
76
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
77
|
Chen PL, Chen CF, Chen Y, Guo XE, Huang CK, Shew JY, Reddick RL, Wallace DC, Lee WH. Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene 2012; 32:1193-201. [PMID: 22562243 PMCID: PMC3416964 DOI: 10.1038/onc.2012.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial dysfunction has been a hallmark of cancer. However, whether it has a causative role awaits to be elucidated. Here, using an animal model derived from inactivation of SUV3, a mitochondrial helicase, we demonstrated that mSuv3+/- mice harbored increased mitochondrial DNA (mtDNA) mutations and decreased mtDNA copy numbers, leading to tumor development in various sites and shortened lifespan. These phenotypes were transmitted maternally, indicating the etiological role of the mitochondria. Importantly, reduced SUV3 expression was observed in human breast tumor specimens compared with corresponding normal tissues in two independent cohorts. These results demonstrated for the first time that maintaining mtDNA integrity by SUV3 helicase is critical for cancer suppression.
Collapse
Affiliation(s)
- P-L Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Wu J, Liu C, Chen J, Yu X. RAP80 protein is important for genomic stability and is required for stabilizing BRCA1-A complex at DNA damage sites in vivo. J Biol Chem 2012; 287:22919-26. [PMID: 22539352 DOI: 10.1074/jbc.m112.351007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RAP80 (receptor-associated protein 80) is a ubiquitin-binding protein that can specifically recognize and bind to Lys-63-linked polyubiquitin chains, thus targeting the BRCA1-A complex to DNA damage sites. To study the role of RAP80 in vivo, we generated RAP80-deficient mice. The deficient mice are prone to B-cell lymphomagenesis. B-cell lymphomas in RAP80-deficient mice are nearly diploid but harbor clonal chromosome translocations. Moreover, the deficient mice are hypersensitive to ionizing radiation. Repair of ionizing radiation-induced DNA double-strand breaks is impaired in RAP80-deficient mouse embryonic fibroblasts. Mechanistically, loss of RAP80 suppresses recruitment of the BRCA1-A complex to DNA damage sites and abrogates the DNA damage repair process at DNA damage sites. Taken together, these results reveal that RAP80 plays a crucial role in the DNA damage response and in maintaining genomic integrity.
Collapse
Affiliation(s)
- Jiaxue Wu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
79
|
Tan FJ, Hoang ML, Koshland D. DNA resection at chromosome breaks promotes genome stability by constraining non-allelic homologous recombination. PLoS Genet 2012; 8:e1002633. [PMID: 22479212 PMCID: PMC3315486 DOI: 10.1371/journal.pgen.1002633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/20/2012] [Indexed: 12/05/2022] Open
Abstract
DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5′→3′ resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and Exo1-dependent resection on genome stability using a non-selective assay that we previously developed using diploid yeast. We find that Saccharomyces cerevisiae lacking Sgs1 and Exo1 retains a very efficient repair process that is highly mutagenic to genome structure. Specifically, 51% of cells lacking Sgs1 and Exo1 repair a double-strand break using repetitive sequences 12–48 kb distal from the initial break site, thereby generating a genome rearrangement. These Sgs1- and Exo1-independent rearrangements depend partially upon a Rad51-mediated homologous recombination pathway. Furthermore, without resection a robust cell cycle arrest is not activated, allowing a cell with a single double-strand break to divide before repair, potentially yielding multiple progeny each with a different rearrangement. This profusion of rearranged genomes suggests that cells tolerate any dangers associated with extensive resection to inhibit mutagenic pathways such as break-distal recombination. The activation of break-distal recipient repeats and amplification of broken chromosomes when resection is limited raise the possibility that genome regions that are difficult to resect may be hotspots for rearrangements. These results may also explain why mutations in resection machinery are associated with cancer. Chromosomes encode most of the genetic information necessary for cells to function. When large changes in chromosome structure occur, these changes can lead to a variety of diseases, including cancer. One type of DNA damage that triggers chromosomal changes is a DNA double-strand break. These breaks are often healed correctly by searching the cell for a second undamaged copy of the chromosome and using it as a repair template. However, when breaks occur near DNA sequences that are repeated tens to thousands of times in a genome, these breaks may be healed using a repeat on a different chromosome, leading to a translocation and resulting in the loss or gain of genetic information. In this study, we examine how the extensive processing that normally occurs at double-strand breaks affects the frequency of chromosome rearrangements in yeast. Unexpectedly, we find that limited processing of double-strand breaks leads to more, not fewer, chromosome rearrangements even when breaks occur far from repeated sequences. Furthermore, limited processing allows some cells to duplicate damaged chromosomes resulting in multiple rearrangements from just one break. We discuss possible mechanisms by which these repeats generate rearrangements, as well as how extensive processing of double-strand breaks prevents the accumulation of large-scale mutations.
Collapse
Affiliation(s)
- Frederick J. Tan
- Howard Hughes Medical Institute and Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Margaret L. Hoang
- Howard Hughes Medical Institute and Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Douglas Koshland
- Howard Hughes Medical Institute and Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
80
|
Wang B. BRCA1 tumor suppressor network: focusing on its tail. Cell Biosci 2012; 2:6. [PMID: 22369660 PMCID: PMC3315748 DOI: 10.1186/2045-3701-2-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 02/07/2023] Open
Abstract
Germline mutations of the BRCA1 tumor suppressor gene are a major cause of familial breast and ovarian cancer. BRCA1 plays critical roles in the DNA damage response that regulates activities of multiple repair and checkpoint pathways for maintaining genome stability. The BRCT domains of BRCA1 constitute a phospho-peptide binding domain recognizing a phospho-SPxF motif (S, serine; P, proline; × varies; F, phenylalanine). The BRCT domains are frequently targeted by clinically important mutations and most of these mutations disrupt the binding surface of the BRCT domains to phosphorylated peptides. The BRCT domain and its capability to bind phosphorylated protein is required for the tumor suppressor function of BRCA1. Through its BRCT phospho-binding ability BRCA1 forms at least three mutually exclusive complexes by binding to phosphorylated proteins Abraxas, Bach1 and CTIP. The A, B and C complexes, at lease partially undertake BRCA1's role in mechanisms of cell cycle checkpoint and DNA repair that maintain genome stability, thus may play important roles in BRCA1's tumor suppressor function.
Collapse
Affiliation(s)
- Bin Wang
- Department of Genetics, The University of Texas M,D, Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA.
| |
Collapse
|
81
|
Ciriello G, Cerami E, Sander C, Schultz N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 2012; 22:398-406. [PMID: 21908773 PMCID: PMC3266046 DOI: 10.1101/gr.125567.111] [Citation(s) in RCA: 478] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/18/2011] [Indexed: 12/26/2022]
Abstract
Although individual tumors of the same clinical type have surprisingly diverse genomic alterations, these events tend to occur in a limited number of pathways, and alterations that affect the same pathway tend to not co-occur in the same patient. While pathway analysis has been a powerful tool in cancer genomics, our knowledge of oncogenic pathway modules is incomplete. To systematically identify such modules, we have developed a novel method, Mutual Exclusivity Modules in cancer (MEMo). The method uses correlation analysis and statistical tests to identify network modules by three criteria: (1) Member genes are recurrently altered across a set of tumor samples; (2) member genes are known to or are likely to participate in the same biological process; and (3) alteration events within the modules are mutually exclusive. Applied to data from the Cancer Genome Atlas (TCGA), the method identifies the principal known altered modules in glioblastoma (GBM) and highlights the striking mutual exclusivity of genomic alterations in the PI(3)K, p53, and Rb pathways. In serous ovarian cancer, we make the novel observation that inactivation of BRCA1 and BRCA2 is mutually exclusive of amplification of CCNE1 and inactivation of RB1, suggesting distinct alternative causes of genomic instability in this cancer type; and, we identify RBBP8 as a candidate oncogene involved in Rb-mediated cell cycle control. When applied to any cancer genomics data set, the algorithm can nominate oncogenic alterations that have a particularly strong selective effect and may also be useful in the design of therapeutic combinations in cases where mutual exclusivity reflects synthetic lethality.
Collapse
Affiliation(s)
- Giovanni Ciriello
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Ethan Cerami
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10065, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Nikolaus Schultz
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
82
|
Peterson SE, Li Y, Chait BT, Gottesman ME, Baer R, Gautier J. Cdk1 uncouples CtIP-dependent resection and Rad51 filament formation during M-phase double-strand break repair. ACTA ACUST UNITED AC 2012; 194:705-20. [PMID: 21893598 PMCID: PMC3171114 DOI: 10.1083/jcb.201103103] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
M-phase DNA double-strand break repair differs from S-phase repair caused by the action of Cdk1, which prevents RPA-bound single-stranded DNA from activating classical DNA repair pathways. DNA double-strand break (DSB) resection, which results in RPA-bound single-stranded DNA (ssDNA), is activated in S phase by Cdk2. RPA-ssDNA activates the ATR-dependent checkpoint and homology-directed repair (HDR) via Rad51-dependent mechanisms. On the other hand, the fate of DSBs sustained during vertebrate M phase is largely unknown. We use cell-free Xenopus laevis egg extracts to examine the recruitment of proteins to chromatin after DSB formation. We find that S-phase extract recapitulates a two-step resection mechanism. M-phase chromosomes are also resected in cell-free extracts and cultured human cells. In contrast to the events in S phase, M-phase resection is solely dependent on MRN-CtIP. Despite generation of RPA-ssDNA, M-phase resection does not lead to ATR activation or Rad51 chromatin association. Remarkably, we find that Cdk1 permits resection by phosphorylation of CtIP but also prevents Rad51 binding to the resected ends. We have thus identified Cdk1 as a critical regulator of DSB repair in M phase. Cdk1 induces persistent ssDNA-RPA overhangs in M phase, thereby preventing both classical NHEJ and Rad51-dependent HDR.
Collapse
Affiliation(s)
- Shaun E Peterson
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
83
|
Qvist P, Huertas P, Jimeno S, Nyegaard M, Hassan MJ, Jackson SP, Børglum AD. CtIP Mutations Cause Seckel and Jawad Syndromes. PLoS Genet 2011; 7:e1002310. [PMID: 21998596 PMCID: PMC3188555 DOI: 10.1371/journal.pgen.1002310] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 07/30/2011] [Indexed: 11/18/2022] Open
Abstract
Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5) but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2). Here, we report two mutations in the CtIP (RBBP8) gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder. Cellular DNA is frequently damaged through the actions of exogenous and endogenously arising DNA damaging agents. To maintain genome integrity, cells have evolved complex mechanisms to detect DNA damage, signal its presence, and mediate its repair. The importance of such mechanisms is evident because inherited defects in them can cause embryonic lethality or severe genetically inherited diseases. The clinical manifestations of such diseases are complex and include growth delay, mental retardation, skeletal abnormalities, and predisposition to cancer. While most such syndromes are inherited recessively, in some cases they are inherited dominantly. Here, we show that mutations in CtIP/RBBP8 cause related disorders: Seckel and Jawad syndromes. In addition to revealing how mutated CtIP impairs responses to DNA damage in Seckel cells, we establish that, despite the recessive mode of inheritance for this syndrome, the Seckel mutation has a dominant manifestation at the cellular level. To our knowledge, this represents a new form of molecular mechanism for recessive inheritance of a human disease. Furthermore, the aberrantly spliced mRNA is expressed at very low levels and yet significantly impairs cellular functions and causes severe clinical symptoms. This should provide new awareness that even very subtle splice mutations may have pronounced pathogenic potential.
Collapse
Affiliation(s)
- Per Qvist
- Department of Human Genetics and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Pablo Huertas
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
- * E-mail: (SPJ); (ADB); (PH)
| | - Sonia Jimeno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Mette Nyegaard
- Department of Human Genetics and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Muhammad J. Hassan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid i Azam University, Islamabad, Pakistan
| | - Stephen P. Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SPJ); (ADB); (PH)
| | - Anders D. Børglum
- Department of Human Genetics and Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail: (SPJ); (ADB); (PH)
| |
Collapse
|
84
|
Langerak P, Mejia-Ramirez E, Limbo O, Russell P. Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks. PLoS Genet 2011; 7:e1002271. [PMID: 21931565 PMCID: PMC3169521 DOI: 10.1371/journal.pgen.1002271] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023] Open
Abstract
The multifunctional Mre11-Rad50-Nbs1 (MRN) protein complex recruits ATM/Tel1 checkpoint kinase and CtIP/Ctp1 homologous recombination (HR) repair factor to double-strand breaks (DSBs). HR repair commences with the 5'-to-3' resection of DNA ends, generating 3' single-strand DNA (ssDNA) overhangs that bind Replication Protein A (RPA) complex, followed by Rad51 recombinase. In Saccharomyces cerevisiae, the Mre11-Rad50-Xrs2 (MRX) complex is critical for DSB resection, although the enigmatic ssDNA endonuclease activity of Mre11 and the DNA-end processing factor Sae2 (CtIP/Ctp1 ortholog) are largely unnecessary unless the resection activities of Exo1 and Sgs1-Dna2 are also eliminated. Mre11 nuclease activity and Ctp1/CtIP are essential for DSB repair in Schizosaccharomyces pombe and mammals. To investigate DNA end resection in Schizo. pombe, we adapted an assay that directly measures ssDNA formation at a defined DSB. We found that Mre11 and Ctp1 are essential for the efficient initiation of resection, consistent with their equally crucial roles in DSB repair. Exo1 is largely responsible for extended resection up to 3.1 kb from a DSB, with an activity dependent on Rqh1 (Sgs1) DNA helicase having a minor role. Despite its critical function in DSB repair, Mre11 nuclease activity is not required for resection in fission yeast. However, Mre11 nuclease and Ctp1 are required to disassociate the MRN complex and the Ku70-Ku80 nonhomologous end-joining (NHEJ) complex from DSBs, which is required for efficient RPA localization. Eliminating Ku makes Mre11 nuclease activity dispensable for MRN disassociation and RPA localization, while improving repair of a one-ended DSB formed by replication fork collapse. From these data we propose that release of the MRN complex and Ku from DNA ends by Mre11 nuclease activity and Ctp1 is a critical step required to expose ssDNA for RPA localization and ensuing HR repair.
Collapse
Affiliation(s)
- Petra Langerak
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eva Mejia-Ramirez
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Oliver Limbo
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
85
|
CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol 2010; 18:75-9. [PMID: 21131982 PMCID: PMC3471154 DOI: 10.1038/nsmb.1942] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/10/2010] [Indexed: 01/19/2023]
Abstract
Immunoglobulin heavy chain (Igh locus) class-switch recombination (CSR) requires targeted introduction of DNA double strand breaks (DSBs) into repetitive 'switch'-region DNA elements in the Igh locus and subsequent ligation between distal DSBs. Both canonical nonhomologous end joining (C-NHEJ) that seals DNA ends with little or no homology and a poorly defined alternative end joining (A-NHEJ, also known as alt-NHEJ) process that requires microhomology ends for ligation have been implicated in CSR. Here, we show that the DNA end-processing factor CtIP is required for microhomology-directed A-NHEJ during CSR. Additionally, we demonstrate that microhomology joins that are enriched upon depletion of the C-NHEJ component Ku70 require CtIP. Finally, we show that CtIP binds to switch-region DNA in a fashion dependent on activation-induced cytidine deaminase. Our results establish CtIP as a bona fide component of microhomology-dependent A-NHEJ and unmask a hitherto unrecognized physiological role of microhomology-mediated end joining in a C-NHEJ-proficient environment.
Collapse
|
86
|
Yuan J, Adamski R, Chen J. Focus on histone variant H2AX: to be or not to be. FEBS Lett 2010; 584:3717-24. [PMID: 20493860 DOI: 10.1016/j.febslet.2010.05.021] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/04/2010] [Accepted: 05/11/2010] [Indexed: 12/16/2022]
Abstract
Phosphorylation of histone variant H2AX at serine 139, named gammaH2AX, has been widely used as a sensitive marker for DNA double-strand breaks (DSBs). gammaH2AX is required for the accumulation of many DNA damage response (DDR) proteins at DSBs. Thus it is believed to be the principal signaling protein involved in DDR and to play an important role in DNA repair. However, only mild defects in DNA damage signaling and DNA repair were observed in H2AX-deficient cells and animals. Such findings prompted us and others to explore H2AX-independent mechanisms in DNA damage response. Here, we will review recent advances in our understanding of H2AX-dependent and independent DNA damage signaling and repair pathways in mammalian cells.
Collapse
Affiliation(s)
- Jingsong Yuan
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
87
|
Abstract
Germline mutations in the BRCA1 and BRCA2 genes are characterized by deficient repair of DNA double-strand breaks by homologous recombination. Defective DNA double-strand break repair has been not only implicated as a key contributor to tumorigenesis in mutation carriers but also represents a potential target for therapy. The transcriptional similarities between BRCA1-deficient tumors and sporadic tumors of the basal-like subtype have led to the investigation of homologous recombination repair-directed therapy in triple-negative tumors, which demonstrates overlap with the basal-like subtype. We broaden the scope of this topic by addressing a "repair-defective" rather than "BRCA1-like" phenotype. We discuss structural and functional aspects of key repair proteins including BRCA1, BRCA2, BRCA1 interacting protein C-terminal helicase 1, and partner and localizer of BRCA2 and describe the phenotypic consequences of their loss at the cellular, tissue, and organism level. We review potential mechanisms of repair pathway dysfunction in sporadic tumors and address how the identification of such defects may guide the application of repair-directed therapies.
Collapse
|
88
|
DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 2010; 20:402-9. [PMID: 20444606 DOI: 10.1016/j.tcb.2010.04.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 04/02/2010] [Accepted: 04/07/2010] [Indexed: 11/23/2022]
Abstract
Maintenance of genome stability depends on efficient, accurate repair of DNA damage. DNA double-strand breaks (DSBs) are among the most lethal types of DNA damage, with the potential to cause mutation, chromosomal rearrangement, and genomic instability that could contribute to cancer. DSB damage can be repaired by various pathways including nonhomologous end-joining (NHEJ) and homologous recombination (HR). However, the cellular mechanisms that regulate the choice of repair pathway are not well understood. Recent studies suggest that the tumor suppressor protein CtIP controls the decision to repair DSB damage by HR. It does so by regulating the initiation of DSB end resection after integrating signals from the DNA damage checkpoint response and cell cycle cues.
Collapse
|
89
|
Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11:196-207. [PMID: 20177395 DOI: 10.1038/nrm2851] [Citation(s) in RCA: 679] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitotic homologous recombination promotes genome stability through the precise repair of DNA double-strand breaks and other lesions that are encountered during normal cellular metabolism and from exogenous insults. As a result, homologous recombination repair is essential during proliferative stages in development and during somatic cell renewal in adults to protect against cell death and mutagenic outcomes from DNA damage. Mutations in mammalian genes encoding homologous recombination proteins, including BRCA1, BRCA2 and PALB2, are associated with developmental abnormalities and tumorigenesis. Recent advances have provided a clearer understanding of the connections between these proteins and of the key steps of homologous recombination and DNA strand exchange.
Collapse
|
90
|
Rupnik A, Lowndes NF, Grenon M. MRN and the race to the break. Chromosoma 2010; 119:115-35. [PMID: 19862546 DOI: 10.1007/s00412-009-0242-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/12/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
In all living cells, DNA is constantly threatened by both endogenous and exogenous agents. In order to protect genetic information, all cells have developed a sophisticated network of proteins, which constantly monitor genomic integrity. This network, termed the DNA damage response, senses and signals the presence of DNA damage to effect numerous biological responses, including DNA repair, transient cell cycle arrests ("checkpoints") and apoptosis. The MRN complex (MRX in yeast), composed of Mre11, Rad50 and Nbs1 (Xrs2), is a key component of the immediate early response to DNA damage, involved in a cross-talk between the repair and checkpoint machinery. Using its ability to bind DNA ends, it is ideally placed to sense and signal the presence of double strand breaks and plays an important role in DNA repair and cellular survival. Here, we summarise recent observation on MRN structure, function, regulation and emerging mechanisms by which the MRN nano-machinery protects genomic integrity. Finally, we discuss the biological significance of the unique MRN structure and summarise the emerging sequence of early events of the response to double strand breaks orchestrated by the MRN complex.
Collapse
Affiliation(s)
- Agnieszka Rupnik
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | |
Collapse
|
91
|
Abstract
DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation.
Collapse
|
92
|
Nakamura K, Kogame T, Oshiumi H, Shinohara A, Sumitomo Y, Agama K, Pommier Y, Tsutsui KM, Tsutsui K, Hartsuiker E, Ogi T, Takeda S, Taniguchi Y. Collaborative action of Brca1 and CtIP in elimination of covalent modifications from double-strand breaks to facilitate subsequent break repair. PLoS Genet 2010; 6:e1000828. [PMID: 20107609 PMCID: PMC2809774 DOI: 10.1371/journal.pgen.1000828] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/22/2009] [Indexed: 11/29/2022] Open
Abstract
Topoisomerase inhibitors such as camptothecin and etoposide are used as anti-cancer drugs and induce double-strand breaks (DSBs) in genomic DNA in cycling cells. These DSBs are often covalently bound with polypeptides at the 3′ and 5′ ends. Such modifications must be eliminated before DSB repair can take place, but it remains elusive which nucleases are involved in this process. Previous studies show that CtIP plays a critical role in the generation of 3′ single-strand overhang at “clean” DSBs, thus initiating homologous recombination (HR)–dependent DSB repair. To analyze the function of CtIP in detail, we conditionally disrupted the CtIP gene in the chicken DT40 cell line. We found that CtIP is essential for cellular proliferation as well as for the formation of 3′ single-strand overhang, similar to what is observed in DT40 cells deficient in the Mre11/Rad50/Nbs1 complex. We also generated DT40 cell line harboring CtIP with an alanine substitution at residue Ser332, which is required for interaction with BRCA1. Although the resulting CtIPS332A/−/− cells exhibited accumulation of RPA and Rad51 upon DNA damage, and were proficient in HR, they showed a marked hypersensitivity to camptothecin and etoposide in comparison with CtIP+/−/− cells. Finally, CtIPS332A/−/−BRCA1−/− and CtIP+/−/−BRCA1−/− showed similar sensitivities to these reagents. Taken together, our data indicate that, in addition to its function in HR, CtIP plays a role in cellular tolerance to topoisomerase inhibitors. We propose that the BRCA1-CtIP complex plays a role in the nuclease-mediated elimination of oligonucleotides covalently bound to polypeptides from DSBs, thereby facilitating subsequent DSB repair. Induction of double-strand breaks (DSBs) in chromosomal DNA effectively activates a program of cellular suicide and is widely used for chemotherapy on malignant cancer cells. Cells resist such therapies by quickly repairing the DSBs. Repair is carried out by two major DSB repair pathways, homologous recombination (HR) and nonhomologous end-joining. However, these pathways cannot join DSBs if their ends are chemically modified, as seen in the DSB ends that would arise after the prolonged treatment of the cells with topoisomerase inhibitors such as camptothecin and etoposide. These anti-cancer drugs can produce the polypeptides covalently attached to the 3′ or 5′ end of DSBs. It remains elusive which enzymes eliminate these chemical modifications prior to repair. We here show evidence that the BRCA1-CtIP complex plays a role in eliminating this chemical modification, thereby facilitating subsequent DSB repair. Thus, BRCA1 and CtIP have dual functions: their previously documented roles in HR and this newly identified function. This study contributes to our ability to predict the effectiveness of chemotherapeutic agents prior to their selection by evaluating the activity of individual repair factors. Accurate prediction is crucial, because chemotherapeutic agents that cause DNA damage have such strong side effects.
Collapse
Affiliation(s)
- Kyoko Nakamura
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Yuan J, Chen J. MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX. J Biol Chem 2010; 285:1097-104. [PMID: 19910469 PMCID: PMC2801237 DOI: 10.1074/jbc.m109.078436] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/11/2009] [Indexed: 11/06/2022] Open
Abstract
DNA double-strand breaks (DSBs) represent one of the most serious forms of DNA damage that can occur in the genome. Here, we show that the DSB-induced signaling cascade and homologous recombination (HR)-mediated DSB repair pathway can be genetically separated. We demonstrate that the MRE11-RAD50-NBS1 (MRN) complex acts to promote DNA end resection and the generation of single-stranded DNA, which is critically important for HR repair. These functions of the MRN complex can occur independently of the H2AX-mediated DNA damage signaling cascade, which promotes stable accumulation of other signaling and repair proteins such as 53BP1 and BRCA1 to sites of DNA damage. Nevertheless, mild defects in HR repair are observed in H2AX-deficient cells, suggesting that the H2AX-dependent DNA damage-signaling cascade assists DNA repair. We propose that the MRN complex is responsible for the initial recognition of DSBs and works together with both CtIP and the H2AX-dependent DNA damage-signaling cascade to facilitate repair by HR and regulate DNA damage checkpoints.
Collapse
Affiliation(s)
- Jingsong Yuan
- From the Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Junjie Chen
- From the Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
94
|
Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS, Guenther G, Classen S, Glover JM, Iwasaki H, Russell P, Tainer JA. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 2009; 139:87-99. [PMID: 19804755 PMCID: PMC2762657 DOI: 10.1016/j.cell.2009.07.033] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/14/2009] [Accepted: 07/10/2009] [Indexed: 11/30/2022]
Abstract
The Nijmegen breakage syndrome 1 (Nbs1) subunit of the Mre11-Rad50-Nbs1 (MRN) complex protects genome integrity by coordinating double-strand break (DSB) repair and checkpoint signaling through undefined interactions with ATM, MDC1, and Sae2/Ctp1/CtIP. Here, fission yeast and human Nbs1 structures defined by X-ray crystallography and small angle X-ray scattering (SAXS) reveal Nbs1 cardinal features: fused, extended, FHA-BRCT(1)-BRCT(2) domains flexibly linked to C-terminal Mre11- and ATM-binding motifs. Genetic, biochemical, and structural analyses of an Nbs1-Ctp1 complex show Nbs1 recruits phosphorylated Ctp1 to DSBs via binding of the Nbs1 FHA domain to a Ctp1 pThr-Asp motif. Nbs1 structures further identify an extensive FHA-BRCT interface, a bipartite MDC1-binding scaffold, an extended conformational switch, and the molecular consequences associated with cancer predisposing Nijmegen breakage syndrome mutations. Tethering of Ctp1 to a flexible Nbs1 arm suggests a mechanism for restricting DNA end processing and homologous recombination activities of Sae2/Ctp1/CtIP to the immediate vicinity of DSBs.
Collapse
Affiliation(s)
- R. Scott Williams
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
| | - Gerald E. Dodson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
| | - Oliver Limbo
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
| | - Yoshiki Yamada
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
| | - Jessica S. Williams
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
| | - Grant Guenther
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
| | - Scott Classen
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - J.N. Mark Glover
- Department of Biochemistry, 4-74 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Hiroshi Iwasaki
- Division of Molecular and Cellular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
| | - John A. Tainer
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
95
|
Heard PL, Carter EM, Crandall AC, Sebold C, Hale DE, Cody JD. High resolution genomic analysis of 18q- using oligo-microarray comparative genomic hybridization (aCGH). Am J Med Genet A 2009; 149A:1431-7. [PMID: 19533772 DOI: 10.1002/ajmg.a.32900] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The advent of oligonucleotide array comparative genomic hybridization (aCGH) has revolutionized diagnosis of chromosome abnormalities in the genetics clinic. This new technology also has valuable potential as a research tool to investigate larger genomic rearrangements that are typically diagnosed via routine karyotype. aCGH was used as a tool for the high-resolution analysis of chromosome content in individuals with known deletions of chromosome 18. The aim of this study was to clarify the precise location of the breakpoints as well as to determine the presence of occult translocations creating additional deletions and duplications. One hundred eighty-nine DNA samples from individuals with 18q deletions were analyzed. No breakpoint clusters were identified, as no more than two individuals had breakpoints within 2 kb of each other. Only two regions of 18q were never found to be haploid, suggesting the existence of haplolethal genes in those regions. Of the individuals with only a chromosome 18 abnormality, 17% (n = 29) had interstitial deletions. Six percent (n = 11) had a region of duplication immediately proximal to the deletion. Eight percent (n = 15) had more complex rearrangements with captured (non-18q) telomeres thus creating a trisomic region. The 15 captured telomeres originated from a limited number of other telomeres (4q, 10q, 17p, 18p, 20q, and Xq). These data were converted into a format for ease of viewing and analysis by creating custom tracks for the UCSC Genome Browser. Taken together, these findings confirm a higher level of variability and genomic complexity surrounding deletions of 18q than has previously been appreciated.
Collapse
Affiliation(s)
- Patricia L Heard
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
96
|
Epstein-Barr virus nuclear protein 3C domains necessary for lymphoblastoid cell growth: interaction with RBP-Jkappa regulates TCL1. J Virol 2009; 83:12368-77. [PMID: 19776126 DOI: 10.1128/jvi.01403-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes converted into lymphoblastoid cell lines (LCLs) by an Epstein-Barr virus that expresses a conditional EBNA3C require complementation with EBNA3C for growth under nonpermissive conditions. Complementation with relatively large EBNA3C deletion mutants identified amino acids (aa) 1 to 506 (which includes the RBP-Jkappa/CSL [RBP-Jkappa] binding domain) and 733 to 909 to be essential for LCL growth, aa 728 to 732 and 910 to 992 to be important for full wild-type (wt) growth, and only aa 507 to 727 to be unimportant (S. Maruo, Y. Wu, T. Ito, T. Kanda, E. D. Kieff, and K. Takada, Proc. Natl. Acad. Sci. USA 106:4419-4424, 2009). When mutants with smaller deletions were used, only aa 51 to 400 and 851 to 900 were essential for LCL growth; aa 447 to 544, 701 to 750, 801 to 850, and 901 to 992 were important for full wt growth; and aa 4 to 50, 401 to 450, 550 to 707, and 751 to 800 were unimportant. These data reduce the EBNA3C essential residues from 68% to 40% of the open reading frame. Point mutations confirmed RBP-Jkappa binding to be essential for wt growth and indicated that SUMO and CtBP binding interactions were important only for full wt growth. EBNA3C aa 51 to 150, 249 to 311, and 851 to 900 were necessary for maintaining LCL growth, but not RBP-Jkappa interaction, and likely mediate interactions with other key cell proteins. Moreover, all mutants null for LCL growth had fewer S+G(2)/M-phase cells at 14 days, consistent with EBNA3C interaction with RBP-Jkappa as well as aa 51 to 150, 249 to 311, and 851 to 900 being required to suppress p16(INK4A) (S. Maruo, Y. Wu, S. Ishikawa, T. Kanda, D. Iwakiri, and K. Takada, Proc. Natl. Acad. Sci. USA 103:19500-19505, 2006). We have confirmed that EBNA3C upregulates TCL1 and discovered that EBNA3C upregulates TCL1 through RBP-Jkappa, indicating a central role for EBNA3C interaction with RBP-Jkappa in mediating cell gene transcription.
Collapse
|
97
|
Chinnadurai G. Joint surveillance of the replication foci by PCNA and CtIP. Cell Cycle 2009; 8:1306-1307. [PMID: 19377301 PMCID: PMC4366002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Affiliation(s)
- G. Chinnadurai
- Institute for Molecular Virology; Saint Louis University Medical
Center; St. Louis, MO USA
| |
Collapse
|
98
|
Yun MH, Hiom K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 2009; 459:460-3. [PMID: 19357644 PMCID: PMC2857324 DOI: 10.1038/nature07955] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 03/03/2009] [Indexed: 01/07/2023]
Abstract
The repair of DNA double-strand breaks (DSB) is tightly regulated during the cell cycle. In G1 phase, the absence of a sister chromatid means that repair of DSB occurs through non-homologous end-joining (NHEJ) or microhomology-mediated end-joining (MMEJ)1. These pathways often involve loss of DNA sequences at the break site and are therefore error-prone. In late S and G2 phases, even though DNA end-joining pathways remain functional2, there is an increase in repair of DSB by homologous recombination (HR), which is mostly error-free3,4. Consequently, the relative contribution of these different pathways to DSB repair in the cell cycle has a profound influence on the maintenance of genetic integrity. How then are DSB directed for repair by different, potentially competing, repair pathways? Here we identify a role for CtIP in this process in DT40. We establish that CtIP is not only required for repair of DSB by HR in S/G2 phase, but also for MMEJ in G1. The function of CtIP in HR, but not MMEJ, is dependent on the phosphorylation of serine residue 327 and recruitment of BRCA1. Cells expressing CtIP protein that cannot be phosphorylated at serine 327 are specifically defective in HR and exhibit decreased level of single-stranded DNA (ssDNA) after DNA damage, while MMEJ remains unaffected. Our data support a model in which phosphorylation of serine 327 of CtIP as cells enter S-phase and the recruitment of BRCA1 functions as a molecular switch to shift the balance of DSB repair from error-prone DNA end-joining to error-free homologous recombination (Supplementary Fig. 1).
Collapse
Affiliation(s)
- Maximina H Yun
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
99
|
Kim Y, McBride J, Kimlin L, Pae EK, Deshpande A, Wong DT. Targeted inactivation of p12, CDK2 associating protein 1, leads to early embryonic lethality. PLoS One 2009; 4:e4518. [PMID: 19229340 PMCID: PMC2641017 DOI: 10.1371/journal.pone.0004518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 01/23/2009] [Indexed: 01/24/2023] Open
Abstract
Targeted disruption of murine Cdk2ap1, an inhibitor of CDK2 function and hence G1/S transition, results in the embryonic lethality with a high penetration rate. Detailed timed pregnancy analysis of embryos showed that the lethality occurred between embryonic day 3.5 pc and 5.5 pc, a period of implantation and early development of implanted embryos. Two homozygous knockout mice that survived to term showed identical craniofacial defect, including a short snout and a round forehead. Examination of craniofacial morphology by measuring Snout Length (SL) vs. Face Width (FW) showed that the Cdk2ap1(+/-) mice were born with a reduced SL/FW ratio compared to the Cdk2ap1(+/+) and the reduction was more pronounced in Cdk2ap1(-/-) mice. A transgenic rescue of the lethality was attempted by crossing Cdk2ap1(+/-) animals with K14-Cdk2ap1 transgenic mice. Resulting Cdk2ap1(+/-:K14-Cdk2ap1) transgenic mice showed an improved incidence of full term animals (16.7% from 0.5%) on a Cdk2ap1(-/-) background. Transgenic expression of Cdk2ap1 in Cdk2ap1(-/-:K14-Cdk2ap1) animals restored SL/FW ratio to the level of Cdk2ap1(+/-:K14-Cdk2ap1) mice, but not to that of the Cdk2ap1(+/+:K14-Cdk2ap1) mice. Teratoma formation analysis using mESCs showed an abrogated in vivo pluripotency of Cdk2ap1(-/-) mESCs towards a restricted mesoderm lineage specification. This study demonstrates that Cdk2ap1 plays an essential role in the early stage of embryogenesis and has a potential role during craniofacial morphogenesis.
Collapse
Affiliation(s)
- Yong Kim
- Division of Oral Biology and Medicine, Dental Research Institute, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA's Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (YK); (DTW)
| | - Jim McBride
- Division of Oral Biology and Medicine, Dental Research Institute, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lauren Kimlin
- Division of Oral Biology and Medicine, Dental Research Institute, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eung-Kwon Pae
- Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Amit Deshpande
- Division of Oral Biology and Medicine, Dental Research Institute, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - David T. Wong
- Division of Oral Biology and Medicine, Dental Research Institute, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA's Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Head and Neck Surgery/Otolaryngology, University of California Los Angeles, Los Angeles, California, United States of America
- Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (YK); (DTW)
| |
Collapse
|
100
|
Huertas P, Jackson SP. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 2009; 284:9558-65. [PMID: 19202191 PMCID: PMC2666608 DOI: 10.1074/jbc.m808906200] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In G0 and G1, DNA double strand breaks are repaired
by nonhomologous end joining, whereas in S and G2, they are also
repaired by homologous recombination. The human CtIP protein controls double
strand break (DSB) resection, an event that occurs effectively only in
S/G2 and that promotes homologous recombination but not
non-homologous end joining. Here, we mutate a highly conserved
cyclin-dependent kinase (CDK) target motif in CtIP and reveal that mutating
Thr-847 to Ala impairs resection, whereas mutating it to Glu to mimic
constitutive phosphorylation does not. Moreover, we show that unlike cells
expressing wild-type CtIP, cells expressing the Thr-to-Glu mutant resect DSBs
even after CDK inhibition. Finally, we establish that Thr-847 mutations to
either Ala or Glu affect DSB repair efficiency, cause hypersensitivity toward
DSB-generating agents, and affect the frequency and nature of
radiation-induced chromosomal rearrangements. These results suggest that
CDK-mediated control of resection in human cells operates by mechanisms
similar to those recently established in yeast.
Collapse
Affiliation(s)
- Pablo Huertas
- Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | |
Collapse
|