51
|
Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab Eng 2013; 19:69-78. [DOI: 10.1016/j.ymben.2013.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/27/2013] [Accepted: 06/14/2013] [Indexed: 11/21/2022]
|
52
|
Abstract
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.
Collapse
Affiliation(s)
- Bijan Zakeri
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| | - Timothy K. Lu
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| |
Collapse
|
53
|
Pethick FE, MacFadyen AC, Tang Z, Sangal V, Liu TT, Chu J, Kosec G, Petkovic H, Guo M, Kirby R, Hoskisson PA, Herron PR, Hunter IS. Draft Genome Sequence of the Oxytetracycline-Producing Bacterium Streptomyces rimosus ATCC 10970. GENOME ANNOUNCEMENTS 2013; 1:e0006313. [PMID: 23516198 PMCID: PMC3593331 DOI: 10.1128/genomea.00063-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/06/2013] [Indexed: 11/20/2022]
Abstract
We report the draft genome of Streptomyces rimosus (ATCC 10970), a soil isolate that produces oxytetracycline, a commercially important and clinically useful antibiotic.
Collapse
Affiliation(s)
- Florence E. Pethick
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Alison C. MacFadyen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Zhenyu Tang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Vartul Sangal
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Tze-Tze Liu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | | | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ralph Kirby
- Department of Life Sciences, Institute of Genome Science, National Yang-Ming University, Taipei, Taiwan
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul R. Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Iain S. Hunter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
54
|
Gillings MR. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol 2013; 4:4. [PMID: 23386843 PMCID: PMC3560386 DOI: 10.3389/fmicb.2013.00004] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/03/2013] [Indexed: 12/16/2022] Open
Abstract
The widespread use and abuse of antibiotic therapy has evolutionary and ecological consequences, some of which are only just beginning to be examined. One well known consequence is the fixation of mutations and lateral gene transfer (LGT) events that confer antibiotic resistance. Sequential selection events, driven by different classes of antibiotics, have resulted in the assembly of diverse resistance determinants and mobile DNAs into novel genetic elements of ever-growing complexity and flexibility. These novel plasmids, integrons, and genomic islands have now become fixed at high frequency in diverse cell lineages by human antibiotic use. Consequently they can be regarded as xenogenetic pollutants, analogous to xenobiotic compounds, but with the critical distinction that they replicate rather than degrade when released to pollute natural environments. Antibiotics themselves must also be regarded as pollutants, since human production overwhelms natural synthesis, and a major proportion of ingested antibiotic is excreted unchanged into waste streams. Such antibiotic pollutants have non-target effects, raising the general rates of mutation, recombination, and LGT in all the microbiome, and simultaneously providing the selective force to fix such changes. This has the consequence of recruiting more genes into the resistome and mobilome, and of increasing the overlap between these two components of microbial genomes. Thus the human use and environmental release of antibiotics is having second order effects on the microbial world, because these small molecules act as drivers of bacterial evolution. Continued pollution with both xenogenetic elements and the selective agents that fix such elements in populations has potentially adverse consequences for human welfare.
Collapse
Affiliation(s)
- Michael R Gillings
- Department of Biological Sciences, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
55
|
Wang P, Kim W, Pickens LB, Gao X, Tang Y. Heterologous Expression and Manipulation of Three Tetracycline Biosynthetic Pathways. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
56
|
Wang P, Kim W, Pickens LB, Gao X, Tang Y. Heterologous expression and manipulation of three tetracycline biosynthetic pathways. Angew Chem Int Ed Engl 2012; 51:11136-40. [PMID: 23024027 DOI: 10.1002/anie.201205426] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/02/2012] [Indexed: 11/11/2022]
Abstract
A very accommodating host: Three tetracycline biosynthetic pathways were overexpressed and manipulated in the heterologous host Streptomyces lividans K4-114. Through the inactivation of various genes and characterization of the resulting biosynthetic intermediates, new tetracycline-modifying enzymes were identified (see scheme).
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
57
|
Yu L, Yan X, Wang L, Chu J, Zhuang Y, Zhang S, Guo M. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus. BMC Biotechnol 2012; 12:52. [PMID: 22906146 PMCID: PMC3533511 DOI: 10.1186/1472-6750-12-52] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 08/11/2012] [Indexed: 11/16/2022] Open
Abstract
Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC) resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC) transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC) assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877) and 1.4-fold in SR16 (P = 0.00973) duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively). Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics.
Collapse
Affiliation(s)
- Lan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | | | | | | | | | | | | |
Collapse
|
58
|
Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes. Enzyme Microb Technol 2012; 50:318-24. [PMID: 22500899 DOI: 10.1016/j.enzmictec.2012.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022]
Abstract
Oxytetracycline (OTC) is a widely used antibiotic, which is commercially produced by Streptomyces rimosus. The type II minimal polyketide synthases (minimal PKS) genes of the oxytetracycline biosynthesis cluster in S. rimosus, consisting of oxyA, oxyB and oxyC, are involved in catalyzing 19-C chain building by the condensation of eight malonyl-CoA groups to form the starting polyketide. This study aimed to investigate the effects of overexpression of the minimal PKS gene in a model S. rimosus strain (M4018) and in an industrial overproducer (SR16) by introduction of a second copy of the gene into the chromosome. Increased levels of oxyA, oxyB and oxyC gene transcription were monitored using reverse transcription quantitative real-time PCR. Overexpression of the minimal PKS gene elicited retardation of cell growth and a significant improvement in OTC production in corresponding mutants (approximately 51.2% and 32.9% in M4018 and SR16 mutants respectively). These data indicate that the minimal PKS plays an important role in carbon flux redirection from cell growth pathways to OTC biosynthesis pathways.
Collapse
|
59
|
Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front Microbiol 2012; 3:18. [PMID: 22303296 PMCID: PMC3266646 DOI: 10.3389/fmicb.2012.00018] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/10/2012] [Indexed: 11/25/2022] Open
Abstract
The environment, and especially freshwater, constitutes a reactor where the evolution and the rise of new resistances occur. In water bodies such as waste water effluents, lakes, and rivers or streams, bacteria from different sources, e.g., urban, industrial, and agricultural waste, probably selected by intensive antibiotic usage, are collected and mixed with environmental species. This may cause two effects on the development of antibiotic resistances: first, the contamination of water by antibiotics or other pollutants lead to the rise of resistances due to selection processes, for instance, of strains over-expressing broad range defensive mechanisms, such as efflux pumps. Second, since environmental species are provided with intrinsic antibiotic resistance mechanisms, the mixture with allochthonous species is likely to cause genetic exchange. In this context, the role of phages and integrons for the spread of resistance mechanisms appears significant. Allochthonous species could acquire new resistances from environmental donors and introduce the newly acquired resistance mechanisms into the clinics. This is illustrated by clinically relevant resistance mechanisms, such as the fluoroquinolones resistance genes qnr. Freshwater appears to play an important role in the emergence and in the spread of antibiotic resistances, highlighting the necessity for strategies of water quality improvement. We assume that further knowledge is needed to better understand the role of the environment as reservoir of antibiotic resistances and to elucidate the link between environmental pollution by anthropogenic pressures and emergence of antibiotic resistances. Only an integrated vision of these two aspects can provide elements to assess the risk of spread of antibiotic resistances via water bodies and suggest, in this context, solutions for this urgent health issue.
Collapse
Affiliation(s)
- Agnese Lupo
- Institute of Hydrobiology, Department of Hydrosciences, Technical University Dresden Dresden, Germany
| | | | | |
Collapse
|
60
|
Larsen PE, Collart FR, Field D, Meyer F, Keegan KP, Henry CS, McGrath J, Quinn J, Gilbert JA. Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. MICROBIAL INFORMATICS AND EXPERIMENTATION 2011; 1:4. [PMID: 22587810 PMCID: PMC3348665 DOI: 10.1186/2042-5783-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
Abstract
Background The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites. Results We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure. Conclusions The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets.
Collapse
Affiliation(s)
- Peter E Larsen
- Argonne National Laboratory, 9700, S, Cass Ave, Argonne, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Tang Z, Xiao C, Zhuang Y, Chu J, Zhang S, Herron PR, Hunter IS, Guo M. Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzyme Microb Technol 2011; 49:17-24. [PMID: 22112266 DOI: 10.1016/j.enzmictec.2011.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
The aromatic polyketide antibiotic, oxytetracycline (OTC), is produced by Streptomyces rimosus as an important secondary metabolite. High level production of antibiotics in Streptomycetes requires precursors and cofactors which are derived from primary metabolism; therefore it is exigent to engineer the primary metabolism. This has been demonstrated by targeting a key enzyme in the oxidative pentose phosphate pathway (PPP) and nicotinamide adenine dinucleotide phosphate (NADPH) generation, glucose-6-phosphate dehydrogenase (G6PDH), which is encoded by zwf1 and zwf2. Disruption of zwf1 or zwf2 resulted in a higher production of OTC. The disrupted strain had an increased carbon flux through glycolysis and a decreased carbon flux through PPP, as measured by the enzyme activities of G6PDH and phosphoglucose isomerase (PGI), and by the levels of ATP, which establishes G6PDH as a key player in determining carbon flux distribution. The increased production of OTC appeared to be largely due to the generation of more malonyl-CoA, one of the OTC precursors, as observed in the disrupted mutants. We have studied the effect of zwf modification on metabolite levels, gene expression, and secondary metabolite production to gain greater insight into flux distribution and the link between the fluxes in the primary and secondary metabolisms.
Collapse
Affiliation(s)
- Zhenyu Tang
- State Key Laboratory of Bioreactor Engineering, P.O. Box 329#, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, PR China
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Baltz RH. Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 2011; 38:657-66. [PMID: 21253811 DOI: 10.1007/s10295-010-0934-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/20/2010] [Indexed: 01/08/2023]
Abstract
With the recent advances in DNA sequencing technologies, it is now feasible to sequence multiple actinomycete genomes rapidly and inexpensively. An important observation that emerged from early Streptomyces genome sequencing projects was that each strain contains genes that encode 20 or more potential secondary metabolites, only a fraction of which are expressed during fermentation. More recently, this observation has been extended to many other actinomycetes with large genomes. The discovery of a wealth of orphan or cryptic secondary metabolite biosynthetic gene clusters has suggested that sequencing large numbers of actinomycete genomes may provide the starting materials for a productive new approach to discover novel secondary metabolites. The key issue for this approach to be successful is to find ways to turn on or turn up the expression of cryptic or poorly expressed pathways to provide material for structure elucidation and biological testing. In this review, I discuss several genetic approaches that are potentially applicable to many actinomycetes for this application.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 6438 North Olney Street, Indianapolis, IN 46220, USA.
| |
Collapse
|
63
|
Abstract
Oxytetracycline (OTC) is a broad-spectrum antibiotic that acts by inhibiting protein synthesis in bacteria. It is an important member of the bacterial aromatic polyketide family, which is a structurally diverse class of natural products. OTC is synthesized by a type II polyketide synthase that generates the poly-beta-ketone backbone through successive decarboxylative condensation of malonyl-CoA extender units, followed by modifications by cyclases, oxygenases, transferases, and additional tailoring enzymes. Genetic and biochemical studies have illuminated most of the steps involved in the biosynthesis of OTC, which is detailed here as a representative case study in type II polyketide biosynthesis.
Collapse
Affiliation(s)
- Lauren B. Pickens
- From the Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- From the Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| |
Collapse
|
64
|
Abstract
Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.
Collapse
|
65
|
Abstract
Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.
Collapse
Affiliation(s)
- Julian Davies
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| | | |
Collapse
|
66
|
Enhancement of oxytetracycline production after gamma irradiation-induced mutagenesis of Streptomyces rimosus CN08 strain. World J Microbiol Biotechnol 2010; 26:1317-22. [PMID: 24026936 DOI: 10.1007/s11274-009-0303-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
Abstract
Streptomyces rimosus CN08 isolated from Tunisian soil produced 8.6 mg l(-1) of oxytetracycline (OTC) under submerged fermentation (SmF). Attempts were made for enhancing OTC production after irradiation-induced mutagenesis of Streptomyces rimosus CN08 with Co(60)-γ rays. 125 OTC-producing colonies were obtained after screening on kanamycin containing medium. One mutant called Streptomyces rimosus γ-45 whose OTC production increased 19-fold (165 mg l(-1)) versus wild-type strain was selected. γ-45 mutant was used for OTC production under solid-state fermentation (SSF). Wheat bran (WB) was used as solid substrate and process parameters influencing OTC production were optimized. Solid-state fermentation increased the yield of antibiotic production (257 mg g(-1)) when compared with submerged fermentation. Ammonium sulphate as additional nitrogen source enhanced OTC level to 298 mg g(-1). Interestingly, OTC production by γ-45 mutant was insensitive to phosphate which opens the way to high OTC production even in medium containing phosphate necessary for optimal mycelia growth.
Collapse
|
67
|
Phornphisutthimas S, Sudtachat N, Bunyoo C, Chotewutmontri P, Panijpan B, Thamchaipenet A. Development of an intergeneric conjugal transfer system for rimocidin-producingStreptomyces rimosus. Lett Appl Microbiol 2010; 50:530-6. [DOI: 10.1111/j.1472-765x.2010.02835.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
68
|
Heterologous expression of the oxytetracycline biosynthetic pathway in Myxococcus xanthus. Appl Environ Microbiol 2010; 76:2681-3. [PMID: 20208031 DOI: 10.1128/aem.02841-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New natural products for drug discovery may be accessed by heterologous expression of bacterial biosynthetic pathways in metagenomic DNA libraries. However, a "universal" host is needed for this experiment. Herein, we show that Myxococcus xanthus is a potential "universal" host for heterologous expression of polyketide biosynthetic gene clusters.
Collapse
|
69
|
Thaker M, Spanogiannopoulos P, Wright GD. The tetracycline resistome. Cell Mol Life Sci 2010; 67:419-31. [PMID: 19862477 PMCID: PMC11115633 DOI: 10.1007/s00018-009-0172-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/24/2009] [Accepted: 10/05/2009] [Indexed: 11/27/2022]
Abstract
Resistance to tetracycline emerged soon after its discovery six decades ago. Extensive clinical and non-clinical uses of this class of antibiotic over the years have combined to select for a large number of resistant determinants, collectively termed the tetracycline resistome. In order to impart resistance, microbes use different molecular mechanisms including target protection, active efflux, and enzymatic degradation. A deeper understanding of the structure, mechanism, and regulation of the genes and proteins associated with tetracycline resistance will contribute to the development of tetracycline derivatives that overcome resistance. Newer generations of tetracyclines derived from engineering of biosynthetic genetic programs, semi-synthesis, and in particular recent developments in their chemical synthesis, together with a growing understanding of resistance, will serve to retain this class of antibiotic to combat pathogens.
Collapse
Affiliation(s)
- Maulik Thaker
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1200 Main St W, Hamilton, Canada
| | - Peter Spanogiannopoulos
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1200 Main St W, Hamilton, Canada
| | - Gerard D. Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1200 Main St W, Hamilton, Canada
| |
Collapse
|
70
|
Abstract
For more than 50 years, natural products have served us well in combating infectious bacteria and fungi. Microbial and plant secondary metabolites helped to double our life span during the 20th century, reduced pain and suffering, and revolutionized medicine. Most antibiotics are either (i) natural products of microorganisms, (ii) semi-synthetically produced from natural products, or (iii) chemically synthesized based on the structure of the natural products. Production of antibiotics began with penicillin in the late 1940s and proceeded with great success until the 1970-1980s when it became harder and harder to discover new and useful products. Furthermore, resistance development in pathogens became a major problem, which is still with us today. In addition, new pathogens are continually emerging and there are still bacteria that are not eliminated by any antibiotic, e.g., Pseudomonas aeruginosa. In addition to these problems, many of the major pharmaceutical companies have abandoned the antibiotic field, leaving much of the discovery efforts to small companies, new companies, and the biotechnology industries. Despite these problems, development of new antibiotics has continued, albeit at a much lower pace than in the last century. We have seen the (i) appearance of newly discovered antibiotics (e.g., candins), (ii) development of old but unutilized antibiotics (e.g., daptomycin), (iii) production of new semi-synthetic versions of old antibiotics (e.g., glycylcyclines, streptogrammins), as well as the (iv) very useful application of old but underutilized antibiotics (e.g., teicoplanin).
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ 07940, USA.
| |
Collapse
|
71
|
Solanki R, Khanna M, Lal R. Bioactive compounds from marine actinomycetes. Indian J Microbiol 2008; 48:410-31. [PMID: 23100742 PMCID: PMC3476783 DOI: 10.1007/s12088-008-0052-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 06/12/2008] [Indexed: 11/28/2022] Open
Abstract
Actinomycetes are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Among its various genera, Streptomyces, Saccharopolyspora, Amycolatopsis, Micromonospora and Actinoplanes are the major producers of commercially important biomolecules. Several species have been isolated and screened from the soil in the past decades. Consequently the chance of isolating a novel actinomycete strain from a terrestrial habitat, which would produce new biologically active metabolites, has reduced. The most relevant reason for discovering novel secondary metabolites is to circumvent the problem of resistant pathogens, which are no longer susceptible to the currently used drugs. Existence of actinomycetes has been reported in the hitherto untapped marine ecosystem. Marine actinomycetes are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, insecticidal and enzyme inhibition. Bioactive compounds from marine actinomycetes possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens.
Collapse
Affiliation(s)
- Renu Solanki
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110 019 India
| | - Monisha Khanna
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110 019 India
| | - Rup Lal
- Molecular Biology Lab, Department of Zoology, University of Delhi, Delhi, 110 007 India
| |
Collapse
|
72
|
Decoding and engineering tetracycline biosynthesis. Metab Eng 2008; 11:69-75. [PMID: 19007902 DOI: 10.1016/j.ymben.2008.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/03/2008] [Accepted: 10/06/2008] [Indexed: 11/22/2022]
Abstract
Tetracyclines have been important agents in combating infectious disease since their discovery in the mid-20th century. Following widespread use, tetracycline resistance mechanisms emerged and continue to create a need for new derivatives that are active against resistant bacterial strains. Semisynthesis has led to second and third generation tetracycline derivatives with enhanced antibiotic activity and pharmacological properties. Recent advancement in understanding of the tetracycline biosynthetic pathway may open the door to broaden the range of tetracycline derivatives and afford analogs that are difficult to access by synthetic chemistry.
Collapse
|
73
|
Kirby R, Gan TK, Hunter I, Herron P, Tilley E. The genome of Streptomyces rimosus subsp. rimosus shows a novel structure compared to other Streptomyces using DNA/DNA microarray analysis. Antonie van Leeuwenhoek 2008; 94:173-86. [DOI: 10.1007/s10482-008-9223-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
74
|
Kallio P, Liu Z, Mäntsälä P, Niemi J, Metsä-Ketelä M. A Nested Gene in Streptomyces Bacteria Encodes a Protein Involved in Quaternary Complex Formation. J Mol Biol 2008; 375:1212-21. [DOI: 10.1016/j.jmb.2007.11.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 12/01/2022]
|
75
|
Affiliation(s)
- Arnold L. Demain
- Charles A. Dana Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ
| |
Collapse
|
76
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 624] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
77
|
Zucko J, Skunca N, Curk T, Zupan B, Long PF, Cullum J, Kessin RH, Hranueli D. Polyketide synthase genes and the natural products potential of Dictyostelium discoideum. ACTA ACUST UNITED AC 2007; 23:2543-9. [PMID: 17660200 DOI: 10.1093/bioinformatics/btm381] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION The genome of the social amoeba Dictyostelium discoideum contains an unusually large number of polyketide synthase (PKS) genes. An analysis of the genes is a first step towards understanding the biological roles of their products and exploiting novel products. RESULTS A total of 45 Type I iterative PKS genes were found, 5 of which are probably pseudogenes. Catalytic domains that are homologous with known PKS sequences as well as possible novel domains were identified. The genes often occurred in clusters of 2-5 genes, where members of the cluster had very similar sequences. The D.discoideum PKS genes formed a clade distinct from fungal and bacterial genes. All nine genes examined by RT-PCR were expressed, although at different developmental stages. The promoters of PKS genes were much more divergent than the structural genes, although we have identified motifs that are unique to some PKS gene promoters.
Collapse
Affiliation(s)
- J Zucko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Zhang W, Watanabe K, Wang CCC, Tang Y. Investigation of early tailoring reactions in the oxytetracycline biosynthetic pathway. J Biol Chem 2007; 282:25717-25. [PMID: 17631493 DOI: 10.1074/jbc.m703437200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases. The amidated tetracycline backbone is biosynthesized by the minimal polyketide synthases and an amidotransferase homologue OxyD. Biosynthesis of the key intermediate 6-methylpretetramid requires two early tailoring steps, which are cyclization of the linearly fused tetracyclic scaffold and regioselective C-methylation of the aglycon. Using a heterologous host (CH999)/vector pair, we identified the minimum set of enzymes from the oxytetracycline biosynthetic pathway that is required to afford 6-methylpretetramid in vivo. Only two cyclases (OxyK and OxyN) are necessary to completely cyclize and aromatize the amidated tetracyclic aglycon. Formation of the last ring via C-1/C-18 aldol condensation does not require a dedicated fourth-ring cyclase, in contrast to the biosynthetic mechanism of other tetracyclic aromatic polyketides, such as daunorubicin and tetracenomycin. Acetyl-derived polyketides do not undergo spontaneous fourth-ring cyclization and form only anthracene carboxylic acids as demonstrated both in vivo and in vitro. OxyF was identified to be the C-6 C-methyltransferase that regioselectively methylates pretetramid to yield 6-methylpretetramid. Reconstitution of 6-methylpretetramid in a heterologous host sets the stage for a more systematic investigation of additional tetracycline downstream tailoring enzymes and is a key step toward the engineered biosynthesis of tetracycline analogs.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|