51
|
Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, Tang TH. Bacterial regulatory RNAs: complexity, function, and putative drug targeting. Crit Rev Biochem Mol Biol 2018; 53:335-355. [PMID: 29793351 DOI: 10.1080/10409238.2018.1473330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, RNA-deep sequencing has uncovered copious non-protein coding RNAs (npcRNAs) in bacteria. Many of them are key players in the regulation of gene expression, taking part in various regulatory circuits, such as metabolic responses to different environmental stresses, virulence, antibiotic resistance, and host-pathogen interactions. This has contributed to the high adaptability of bacteria to changing or even hostile environments. Their mechanisms include the regulation of transcriptional termination, modulation of translation, and alteration of messenger RNA (mRNA) stability, as well as protein sequestration. Here, the mechanisms of gene expression by regulatory bacterial npcRNAs are comprehensively reviewed and supplemented with well-characterized examples. This class of molecules and their mechanisms of action might be useful targets for the development of novel antibiotics.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Carsten A Raabe
- b Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany.,c Brandenburg Medical School (MHB) , Neuruppin , Germany.,d Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany
| | - Li-Pin Lee
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Timofey S Rozhdestvensky
- e Medical Faculty, Transgenic Mouse and Genome Engineering Model Core Facility (TRAM) , University of Münster , Münster , Germany
| | - Marimuthu Citartan
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Siti Aminah Ahmed
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Thean-Hock Tang
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| |
Collapse
|
52
|
Feranchuk S, Belkova N, Potapova U, Kuzmin D, Belikov S. Evaluating the use of diversity indices to distinguish between microbial communities with different traits. Res Microbiol 2018; 169:254-261. [PMID: 29800679 DOI: 10.1016/j.resmic.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
|
53
|
Mastwijk H, Timmermans R, Van Boekel M. The Gauss-Eyring model: A new thermodynamic model for biochemical and microbial inactivation kinetics. Food Chem 2017; 237:331-341. [DOI: 10.1016/j.foodchem.2017.05.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
|
54
|
Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices. Food Microbiol 2017; 72:89-97. [PMID: 29407409 DOI: 10.1016/j.fm.2017.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 11/20/2022]
Abstract
Bacterial foodborne illness continues to be a pressing issue in our food supply. Rapid detection methods are needed for perishable foods due to their short shelf lives and significant contribution to foodborne illness. Previously, a sensitive and reliable surface-enhanced Raman spectroscopy (SERS) sandwich assay based on 3-mercaptophenylboronic acid (3-MBPA) as a capturer and indicator molecule was developed for rapid bacteria detection. In this study, we explored the advantages and constraints of this assay over the conventional aerobic plate count (APC) method and further developed methods for detection in real environmental and food matrices. The SERS sandwich assay was able to detect environmental bacteria in pond water and on spinach leaves at higher levels than the APC method. In addition, the SERS assay appeared to have higher sensitivity to quantify bacteria in the stationary phase. On the other hand, the APC method was more sensitive to cell viability. Finally, a method to detect bacteria in a challenging high-sugar juice matrix was developed to enhance bacteria capture. This study advanced the SERS technique for real applications in environment and food matrices.
Collapse
|
55
|
González-Cabaleiro R, Mitchell AM, Smith W, Wipat A, Ofiţeru ID. Heterogeneity in Pure Microbial Systems: Experimental Measurements and Modeling. Front Microbiol 2017; 8:1813. [PMID: 28970826 PMCID: PMC5609101 DOI: 10.3389/fmicb.2017.01813] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/05/2017] [Indexed: 01/02/2023] Open
Abstract
Cellular heterogeneity influences bioprocess performance in ways that until date are not completely elucidated. In order to account for this phenomenon in the design and operation of bioprocesses, reliable analytical and mathematical descriptions are required. We present an overview of the single cell analysis, and the mathematical modeling frameworks that have potential to be used in bioprocess control and optimization, in particular for microbial processes. In order to be suitable for bioprocess monitoring, experimental methods need to be high throughput and to require relatively short processing time. One such method used successfully under dynamic conditions is flow cytometry. Population balance and individual based models are suitable modeling options, the latter one having in particular a good potential to integrate the various data collected through experimentation. This will be highly beneficial for appropriate process design and scale up as a more rigorous approach may prevent a priori unwanted performance losses. It will also help progressing synthetic biology applications to industrial scale.
Collapse
Affiliation(s)
- Rebeca González-Cabaleiro
- School of Engineering, Chemical Engineering, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Anca M Mitchell
- School of Engineering, Chemical Engineering, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Wendy Smith
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of ComputingNewcastle University, Newcastle upon Tyne, United Kingdom
| | - Anil Wipat
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of ComputingNewcastle University, Newcastle upon Tyne, United Kingdom
| | - Irina D Ofiţeru
- School of Engineering, Chemical Engineering, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| |
Collapse
|
56
|
Ding T, Liao XY, Dong QL, Xuan XT, Chen SG, Ye XQ, Liu DH. Predictive modeling of microbial single cells: A review. Crit Rev Food Sci Nutr 2017; 58:711-725. [DOI: 10.1080/10408398.2016.1217193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tian Ding
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Yu Liao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing-Li Dong
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao-Ting Xuan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shi-Guo Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing-Qian Ye
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dong-Hong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
57
|
Bachmann H, Molenaar D, Branco dos Santos F, Teusink B. Experimental evolution and the adjustment of metabolic strategies in lactic acid bacteria. FEMS Microbiol Rev 2017. [DOI: 10.1093/femsre/fux024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
58
|
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol J 2017; 11:53-62. [PMID: 28553416 PMCID: PMC5427689 DOI: 10.2174/1874285801711010053] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023] Open
Abstract
A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms.
Collapse
Affiliation(s)
- Shriti Singh
- Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi- 221 005 UP India
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology; Morehouse School of Medicine, Atlanta, GA, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
59
|
Gołębiewski M, Całkiewicz J, Creer S, Piwosz K. Tideless estuaries in brackish seas as possible freshwater-marine transition zones for bacteria: the case study of the Vistula river estuary. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:129-143. [PMID: 27935224 DOI: 10.1111/1758-2229.12509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Most bacteria are found either in marine or fresh waters and transitions between the two habitats are rare, even though freshwater and marine bacteria co-occur in brackish habitats. Estuaries in brackish, tideless seas could be habitats where the transition of freshwater phylotypes to marine conditions occurs. We tested this hypothesis in the Gulf of Gdańsk (Baltic Sea) by comparing bacterial communities from different zones of the estuary, via pyrosequencing of 16S rRNA amplicons. We predicted the existence of a core microbiome (CM, a set of abundant OTUs present in all samples) comprising OTUs consisting of populations specific for particular zones of the estuary. The CMs for the entire studied period consisted of only eight OTUs, and this number was even lower for specific seasons: five in spring, two in summer, and one in autumn and winter. Six of the CM OTUs, and another 21 of the 50 most abundant OTUs consisted of zone-specific populations, plausibly representing micro-evolutionary forces. The presence of up to 15% of freshwater phylotypes from the Vistula River in the brackish Gulf of Gdańsk supported our hypothesis, but high dissimilarity between the bacterial communities suggested that freshwater-marine transitions are rare even in tideless estuaries in brackish seas.
Collapse
Affiliation(s)
- Marcin Gołębiewski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
- Centre for Modern Interdisciplinary Research, Nicolaus Copernicus University, Toruń, Poland
| | | | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Gdynia, Poland
- Laboratory of Anoxygenic Phototrophs, Center Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, 37981, Czech Republic
| |
Collapse
|
60
|
Wang J, Butler RR, Wu F, Pombert JF, Kilbane JJ, Stark BC. Enhancement of Microbial Biodesulfurization via Genetic Engineering and Adaptive Evolution. PLoS One 2017; 12:e0168833. [PMID: 28060828 PMCID: PMC5218467 DOI: 10.1371/journal.pone.0168833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022] Open
Abstract
In previous work from our laboratories a synthetic gene encoding a peptide (“Sulpeptide 1” or “S1”) with a high proportion of methionine and cysteine residues had been designed to act as a sulfur sink and was inserted into the dsz (desulfurization) operon of Rhodococcus erythropolis IGTS8. In the work described here this construct (dszAS1BC) and the intact dsz operon (dszABC) cloned into vector pRESX under control of the (Rhodococcus) kstD promoter were transformed into the desulfurization-negative strain CW25 of Rhodococcus qingshengii. The resulting strains (CW25[pRESX-dszABC] and CW25[pRESX-dszAS1BC]) were subjected to adaptive selection by repeated passages at log phase (up to 100 times) in minimal medium with dibenzothiophene (DBT) as sole sulfur source. For both strains DBT metabolism peaked early in the selection process and then decreased, eventually averaging four times that of the initial transformed cells; the maximum specific activity achieved by CW25[pRESX-dszAS1BC] exceeded that of CW25[pRESX-dszABC]. Growth rates increased by 7-fold (CW25[pRESX-dszABC]) and 13-fold (CW25[pRESX-dszAS1BC]) and these increases were stable. The adaptations of CW25[pRESX-dszAS1BC] were correlated with a 3-5X increase in plasmid copy numbers from those of the initial transformed cells; whole genome sequencing indicated that during its selection processes no mutations occurred to any of the dsz, S1, or other genes and promoters involved in sulfur metabolism, stress response, or DNA methylation, and that the effect of the sulfur sink produced by S1 is likely very small compared to the cells’ overall cysteine and methionine requirements. Nevertheless, a combination of genetic engineering using sulfur sinks and increasing Dsz capability with adaptive selection may be a viable strategy to increase biodesulfurization ability.
Collapse
Affiliation(s)
- Jia Wang
- Department of Biology, Illinois Institute of Technology, Chicago IL, United States of America
| | - Robert R. Butler
- Department of Biology, Illinois Institute of Technology, Chicago IL, United States of America
| | - Fan Wu
- Department of Biology, Illinois Institute of Technology, Chicago IL, United States of America
| | - Jean-François Pombert
- Department of Biology, Illinois Institute of Technology, Chicago IL, United States of America
| | - John J. Kilbane
- Department of Biology, Illinois Institute of Technology, Chicago IL, United States of America
| | - Benjamin C. Stark
- Department of Biology, Illinois Institute of Technology, Chicago IL, United States of America
- * E-mail:
| |
Collapse
|
61
|
den Besten HM, Aryani DC, Metselaar KI, Zwietering MH. Microbial variability in growth and heat resistance of a pathogen and a spoiler: All variabilities are equal but some are more equal than others. Int J Food Microbiol 2017; 240:24-31. [DOI: 10.1016/j.ijfoodmicro.2016.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 11/25/2022]
|
62
|
Liu B, Eydallin G, Maharjan RP, Feng L, Wang L, Ferenci T. Natural Escherichia coli isolates rapidly acquire genetic changes upon laboratory domestication. Microbiology (Reading) 2017; 163:22-30. [DOI: 10.1099/mic.0.000405] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, Tianjin 300457, PR China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, PR China
| | - Gustavo Eydallin
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Ram P. Maharjan
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Lu Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, Tianjin 300457, PR China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, PR China
| | - Lei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, Tianjin 300457, PR China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, PR China
| | - Thomas Ferenci
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| |
Collapse
|
63
|
Casado Muñoz MDC, Benomar N, Lavilla Lerma L, Knapp CW, Gálvez A, Abriouel H. Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented Aloreña table to different physico-chemical stresses. Food Microbiol 2016; 60:1-12. [DOI: 10.1016/j.fm.2016.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/22/2016] [Accepted: 06/15/2016] [Indexed: 11/16/2022]
|
64
|
Govers SK, Gayan E, Aertsen A. Intracellular movement of protein aggregates reveals heterogeneous inactivation and resuscitation dynamics in stressed populations ofEscherichia coli. Environ Microbiol 2016; 19:511-523. [DOI: 10.1111/1462-2920.13460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Sander K. Govers
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M S), Faculty of Bioscience Engineering; KU Leuven; Leuven Belgium
| | - Elisa Gayan
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M S), Faculty of Bioscience Engineering; KU Leuven; Leuven Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M S), Faculty of Bioscience Engineering; KU Leuven; Leuven Belgium
| |
Collapse
|
65
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
66
|
Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches. Sci Rep 2016; 6:27392. [PMID: 27273017 PMCID: PMC4895336 DOI: 10.1038/srep27392] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
Lactobacillus plantarum has been isolated from a large variety of ecological niches, thus highlighting its remarkable environmental adaptability as a generalist. Plant fermentation conditions markedly affect the functional features of L. plantarum strains. We investigated the plant niche-specific traits of L. plantarum through whole-transcriptome and phenotypic microarray profiles. Carrot (CJ) and pineapple (PJ) juices were chosen as model systems, and MRS broth was used as a control. A set of 3,122 genes was expressed, and 21 to 31% of genes were differentially expressed depending on the plant niche and cell physiological state. L. plantarum C2 seemed to specifically respond to plant media conditions. When L. plantarum was cultured in CJ, useful pathways were activated, which were aimed to sense the environment, save energy and adopt alternative routes for NAD+ regeneration. In PJ the acidic environment caused a transcriptional switching, which was network-linked to an acid tolerance response involving carbohydrate flow, amino acid and protein metabolism, pH homeostasis and membrane fluidity. The most prominent phenotypic dissimilarities observed in cells grown in CJ and PJ were related to carbon and nitrogen metabolism, respectively. Summarising, a snapshot of a carrot and pineapple sensing and adaptive regulation model for L. plantarum C2 was proposed.
Collapse
|
67
|
Nguyen HT, Truong DH, Kouhoundé S, Ly S, Razafindralambo H, Delvigne F. Biochemical Engineering Approaches for Increasing Viability and Functionality of Probiotic Bacteria. Int J Mol Sci 2016; 17:E867. [PMID: 27271598 PMCID: PMC4926401 DOI: 10.3390/ijms17060867] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 01/02/2023] Open
Abstract
The literature presents a growing body of evidence demonstrating the positive effect of probiotics on health. Probiotic consumption levels are rising quickly in the world despite the fluctuation of their viability and functionality. Technological methods aiming at improving probiotic characteristics are thus highly wanted. However, microbial metabolic engineering toolbox is not available for this kind of application. On the other hand, basic microbiology teaches us that bacteria are able to exhibit adaptation to external stresses. It is known that adequately applied sub-lethal stress, i.e., controlled in amplitude and frequency at a given stage of the culture, is able to enhance microbial robustness. This property could be potentially used to improve the viability of probiotic bacteria, but some technical challenges still need to be overcome before any industrial implementation. This review paper investigates the different technical tools that can be used in order to define the proper condition for improving viability of probiotic bacteria and their implementation at the industrial scale. Based on the example of Bifidobacterium bifidum, potentialities for simultaneously improving viability, but also functionality of probiotics will be described.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Natural Products and Industrial Biochemistry Research Group (NPIB), Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Dieu-Hien Truong
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
| | - Sonagnon Kouhoundé
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Sokny Ly
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Hary Razafindralambo
- Food technology and Formulation, Agro-Biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| |
Collapse
|
68
|
Courtens ENP, Vandekerckhove T, Prat D, Vilchez-Vargas R, Vital M, Pieper DH, Meerbergen K, Lievens B, Boon N, Vlaeminck SE. Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers. WATER RESEARCH 2016; 92:94-103. [PMID: 26841233 DOI: 10.1016/j.watres.2016.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/29/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L(-1) d(-1) after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d(-1)) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d(-1)) and the moving bed biofilm reactor (0.08 °C d(-1)) could not reach nitrification at temperatures higher than 46 °C. However, nitrification rates up to 800 mg N L(-1) d(-1) and 150 mg N g(-1) volatile suspended solids d(-1) were achieved at a temperature as high as 49 °C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49 °C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process.
Collapse
Affiliation(s)
- Emilie N P Courtens
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Tom Vandekerckhove
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Delphine Prat
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Ramiro Vilchez-Vargas
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ken Meerbergen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, Fortsesteenweg 30A, 2860 Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, Fortsesteenweg 30A, 2860 Sint-Katelijne-Waver, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Siegfried E Vlaeminck
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
69
|
Abee T, Koomen J, Metselaar K, Zwietering M, den Besten H. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety. Annu Rev Food Sci Technol 2016; 7:439-56. [DOI: 10.1146/annurev-food-041715-033128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Abee
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - J. Koomen
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - K.I. Metselaar
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - M.H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - H.M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
70
|
Karahan HE, Wei L, Goh K, Wiraja C, Liu Z, Xu C, Jiang R, Wei J, Chen Y. Synergism of Water Shock and a Biocompatible Block Copolymer Potentiates the Antibacterial Activity of Graphene Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:951-62. [PMID: 26707949 DOI: 10.1002/smll.201502496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/08/2015] [Indexed: 05/14/2023]
Abstract
Graphene oxide (GO) is promising in the fight against pathogenic bacteria. However, the antibacterial activity of pristine GO is relatively low and concern over human cytotoxicity further limits its potential. This study demonstrates a general approach to address both issues. The developed approach synergistically combines the water shock treatment (i.e., a sudden decrease in environmental salinity) and the use of a biocompatible block copolymer (Pluronic F-127) as a synergist co-agent. Hypoosmotic stress induced by water shock makes gram-negative pathogens more susceptible to GO. Pluronic forms highly stable nanoassemblies with GO (Pluronic-GO) that can populate around bacterial envelopes favoring the interactions between GO and bacteria. The antibacterial activity of GO at a low concentration (50 μg mL(-1) ) increases from <30% to virtually complete killing (>99%) when complemented with water shock and Pluronic (5 mg mL(-1) ) at ≈2-2.5 h of exposure. Results suggest that the enhanced dispersion of GO and the osmotic pressure generated on bacterial envelopes by polymers together potentiate GO. Pluronic also significantly suppresses the toxicity of GO toward human fibroblast cells. Fundamentally, the results highlight the crucial role of physicochemical milieu in the antibacterial activity of GO. The demonstrated strategy has potentials for daily-life bacterial disinfection applications, as hypotonic Pluronic-GO mixture is both safe and effective.
Collapse
Affiliation(s)
- H Enis Karahan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- Singapore Institute of Manufacturing Technology (SIMTech), Singapore, 638075, Singapore
| | - Li Wei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Kunli Goh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Zhe Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- NTU-Northwestern Institute of Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rongrong Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jun Wei
- Singapore Institute of Manufacturing Technology (SIMTech), Singapore, 638075, Singapore
| | - Yuan Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
71
|
Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese–A review. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13594-015-0267-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
72
|
Quandt EM, Gollihar J, Blount ZD, Ellington AD, Georgiou G, Barrick JE. Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment. eLife 2015; 4:e09696. [PMID: 26465114 PMCID: PMC4718724 DOI: 10.7554/elife.09696] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/13/2015] [Indexed: 01/20/2023] Open
Abstract
Evolutionary innovations that enable organisms to colonize new ecological niches are rare compared to gradual evolutionary changes in existing traits. We discovered that key mutations in the gltA gene, which encodes citrate synthase (CS), occurred both before and after Escherichia coli gained the ability to grow aerobically on citrate (Cit(+) phenotype) during the Lenski long-term evolution experiment. The first gltA mutation, which increases CS activity by disrupting NADH-inhibition of this enzyme, is beneficial for growth on the acetate and contributed to preserving the rudimentary Cit(+) trait from extinction when it first evolved. However, after Cit(+) was refined by further mutations, this potentiating gltA mutation became deleterious to fitness. A second wave of beneficial gltA mutations then evolved that reduced CS activity to below the ancestral level. Thus, dynamic reorganization of central metabolism made colonizing this new nutrient niche contingent on both co-opting and overcoming a history of prior adaptation.
Collapse
Affiliation(s)
- Erik M Quandt
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, United States
| | - Jimmy Gollihar
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
| | - Zachary D Blount
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
| | - George Georgiou
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, United States
| | - Jeffrey E Barrick
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, United States
| |
Collapse
|
73
|
Lindmeyer M, Jahn M, Vorpahl C, Müller S, Schmid A, Bühler B. Variability in subpopulation formation propagates into biocatalytic variability of engineered Pseudomonas putida strains. Front Microbiol 2015; 6:1042. [PMID: 26483771 PMCID: PMC4589675 DOI: 10.3389/fmicb.2015.01042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Pivotal challenges in industrial biotechnology are the identification and overcoming of cell-to-cell heterogeneity in microbial processes. While the development of subpopulations of isogenic cells in bioprocesses is well described (intra-population variability), a possible variability between genetically identical cultures growing under macroscopically identical conditions (clonal variability) is not. A high such clonal variability has been found for the recombinant expression of the styrene monooxygenase genes styAB from Pseudomonas taiwanensis VLB120 in solvent-tolerant Pseudomonas putida DOT-T1E using the alk-regulatory system from P. putida GPo1. In this study, the oxygenase subunit StyA fused to eGFP was used as readout tool to characterize the population structure in P. putida DOT-T1E regarding recombinant protein content. Flow cytometric analyses revealed that in individual cultures, at least two subpopulations with highly differing recombinant StyA-eGFP protein contents appeared (intra-population variability). Interestingly, subpopulation sizes varied from culture-to-culture correlating with the specific styrene epoxidation activity of cells derived from respective cultures (clonal variability). In addition, flow cytometric cell sorting coupled to plasmid copy number (PCN) determination revealed that detected clonal variations cannot be correlated to the PCN, but depend on the combination of the regulatory system and the host strain employed. This is, to the best of our knowledge, the first work reporting that intra-population variability (with differing protein contents in the presented case study) causes clonal variability of genetically identical cultures. Respective impacts on bioprocess reliability and performance and strategies to overcome respective reliability issues are discussed.
Collapse
Affiliation(s)
- Martin Lindmeyer
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University Dortmund, Germany
| | - Michael Jahn
- Helmholtz Centre for Environmental Research - UFZ, Department for Environmental Microbiology Leipzig, Germany
| | - Carsten Vorpahl
- Helmholtz Centre for Environmental Research - UFZ, Department for Environmental Microbiology Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research - UFZ, Department for Environmental Microbiology Leipzig, Germany
| | - Andreas Schmid
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University Dortmund, Germany ; Helmholtz Centre for Environmental Research - UFZ, Department of Solar Materials Leipzig, Germany
| | - Bruno Bühler
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University Dortmund, Germany ; Helmholtz Centre for Environmental Research - UFZ, Department of Solar Materials Leipzig, Germany
| |
Collapse
|
74
|
Delvigne F, Pêcheux H, Tarayre C. Fluorescent Reporter Libraries as Useful Tools for Optimizing Microbial Cell Factories: A Review of the Current Methods and Applications. Front Bioeng Biotechnol 2015; 3:147. [PMID: 26442261 PMCID: PMC4585110 DOI: 10.3389/fbioe.2015.00147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/11/2015] [Indexed: 01/26/2023] Open
Abstract
The use of genetically encoded fluorescent reporters allows speeding up the initial optimization steps of microbial bioprocesses. These reporters can be used for determining the expression level of a particular promoter, not only the synthesis of a specific protein but also the content of intracellular metabolites. The level of protein/metabolite is thus proportional to a fluorescence signal. By this way, mean expression profiles of protein/metabolites can be determined non-invasively at a high-throughput rate, allowing the rapid identification of the best producers. Actually, different kinds of reporter systems are available, as well as specific cultivation devices allowing the on-line recording of the fluorescent signal. Cell-to-cell variability is another important phenomenon that can be integrated into the screening procedures for the selection of more efficient microbial cell factories.
Collapse
Affiliation(s)
- Frank Delvigne
- Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège , Gembloux , Belgium
| | - Hélène Pêcheux
- Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège , Gembloux , Belgium
| | - Cédric Tarayre
- Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège , Gembloux , Belgium
| |
Collapse
|
75
|
George SE, Nguyen T, Geiger T, Weidenmaier C, Lee JC, Liese J, Wolz C. Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in Staphylococcus aureus. Mol Microbiol 2015; 98:1073-88. [PMID: 26303846 DOI: 10.1111/mmi.13174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 01/18/2023]
Abstract
Bacteria respond to ever-changing environments through several adaptive strategies. This includes mechanisms leading to a high degree of phenotypic variability within a genetically homogeneous population. In Staphylococcus aureus, the capsular polysaccharide (CP) protects against phagocytosis, but also impedes adherence to endothelial cells and/or matrix proteins. We analysed the regulation of core biosynthesis genes (capA-P) necessary for CP synthesis using single-cell assays (immunofluorescence and promoter-activity). In persistent human carriers, we found a distinct subpopulation of nasal S. aureus to be CP positive. In vitro, cap expression is also heterogeneous and strongly growth-phase dependent. We asked whether this peculiar expression pattern (earlyOff/lateHeterogen) is orchestrated by the quorum system Agr. We show that the Agr-driven effector molecule RNAIII promotes cap expression largely via inactivation of the repressor Rot. High NaCl, deletion of CodY or Sae also resulted in higher cap expression but did not change the earlyOFF/lateHeterogen expression pattern. Activity of the quorum system itself is largely homogenous and does not account for the observed heterogeneity of cap expression or the strictly growth phase dependent expression. Our findings are in contrast to the prevailing view that quorum sensing is the main driving force for virulence gene expression when bacterial cell densities increase.
Collapse
Affiliation(s)
- Shilpa E George
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Tran Nguyen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Geiger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Jean C Lee
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jan Liese
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
76
|
Cortés JT, Flores N, Bolívar F, Lara AR, Ramírez OT. Physiological effects of pH gradients onEscherichia coliduring plasmid DNA production. Biotechnol Bioeng 2015; 113:598-611. [DOI: 10.1002/bit.25817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/02/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
Affiliation(s)
- José T. Cortés
- Departamento de Medicina Molecular y Bioprocesos; Instituto de Biotecnología; Universidad Nacional Autónoma de México; México
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biotecnología; Instituto de Biotecnología; Universidad Nacional Autónoma de México; Av. Universidad 2001, Col. Chamilpa CP 62210 Cuernavaca Morelos México
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biotecnología; Instituto de Biotecnología; Universidad Nacional Autónoma de México; Av. Universidad 2001, Col. Chamilpa CP 62210 Cuernavaca Morelos México
| | - Alvaro R. Lara
- Departamento de Procesos y Tecnología; Universidad Autónoma Metropolitana-Cuajimalpa; Av. Vasco de Quiroga 4871, Col. Santa Fe, Del. Cuajimalpa, México, D.F. CP 05348 México
| | - Octavio T. Ramírez
- Departamento de Medicina Molecular y Bioprocesos; Instituto de Biotecnología; Universidad Nacional Autónoma de México; México
| |
Collapse
|
77
|
Hershberg R. Mutation--The Engine of Evolution: Studying Mutation and Its Role in the Evolution of Bacteria. Cold Spring Harb Perspect Biol 2015; 7:a018077. [PMID: 26330518 DOI: 10.1101/cshperspect.a018077] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mutation is the engine of evolution in that it generates the genetic variation on which the evolutionary process depends. To understand the evolutionary process we must therefore characterize the rates and patterns of mutation. Starting with the seminal Luria and Delbruck fluctuation experiments in 1943, studies utilizing a variety of approaches have revealed much about mutation rates and patterns and about how these may vary between different bacterial strains and species along the chromosome and between different growth conditions. This work provides a critical overview of the results and conclusions drawn from these studies, of the debate surrounding some of these conclusions, and of the challenges faced when studying mutation and its role in bacterial evolution.
Collapse
Affiliation(s)
- Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
78
|
Ying BW, Honda T, Tsuru S, Seno S, Matsuda H, Kazuta Y, Yomo T. Evolutionary Consequence of a Trade-Off between Growth and Maintenance along with Ribosomal Damages. PLoS One 2015; 10:e0135639. [PMID: 26292224 PMCID: PMC4546238 DOI: 10.1371/journal.pone.0135639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/24/2015] [Indexed: 12/15/2022] Open
Abstract
Microorganisms in nature are constantly subjected to a limited availability of resources and experience repeated starvation and nutrition. Therefore, microbial life may evolve for both growth fitness and sustainability. By contrast, experimental evolution, as a powerful approach to investigate microbial evolutionary strategies, often targets the increased growth fitness in controlled, steady-state conditions. Here, we address evolutionary changes balanced between growth and maintenance while taking nutritional fluctuations into account. We performed a 290-day-long evolution experiment with a histidine-requiring Escherichia coli strain that encountered repeated histidine-rich and histidine-starved conditions. The cells that experienced seven rounds of starvation and re-feed grew more sustainably under prolonged starvation but dramatically lost growth fitness under rich conditions. The improved sustainability arose from the evolved capability to use a trace amount of histidine for cell propagation. The reduced growth rate was attributed to mutations genetically disturbing the translation machinery, that is, the ribosome, ultimately slowing protein translation. This study provides the experimental demonstration of slow growth accompanied by an enhanced affinity to resources as an evolutionary adaptation to oscillated environments and verifies that it is possible to evolve for reduced growth fitness. Growth economics favored for population increase under extreme resource limitations is most likely a common survival strategy adopted by natural microbes.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305–8572, Japan
| | - Tomoya Honda
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, United States of America
| | - Saburo Tsuru
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Yasuaki Kazuta
- ERATO, JST, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- ERATO, JST, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- * E-mail:
| |
Collapse
|
79
|
Baert J, Kinet R, Brognaux A, Delepierre A, Telek S, Sørensen SJ, Riber L, Fickers P, Delvigne F. Phenotypic variability in bioprocessing conditions can be tracked on the basis of on-line flow cytometry and fits to a scaling law. Biotechnol J 2015; 10:1316-25. [DOI: 10.1002/biot.201400537] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/27/2015] [Accepted: 07/06/2015] [Indexed: 11/11/2022]
|
80
|
Sutrina SL, Daniel K, Lewis M, Charles NT, Anselm CKE, Thomas N, Holder N. Biofilm Growth of Escherichia coli Is Subject to cAMP-Dependent and cAMP-Independent Inhibition. J Mol Microbiol Biotechnol 2015; 25:209-25. [PMID: 26159080 DOI: 10.1159/000375498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We established that Escherichia coli strain 15 (ATCC 9723) produces both curli and cellulose, and forms robust biofilms. Since this strain is wild type with respect to the phosphoenolpyruvate:sugar phosphotransferase system (PTS), it is an ideal strain in which to investigate the effects of the PTS on the biofilm growth of E. coli. We began by looking into the effects of PTS and non-PTS sugars on the biofilm growth of this strain. All the sugars tested tended to activate biofilm growth at low concentrations but to inhibit biofilm growth at high concentrations. Acidification of the medium was an inhibitory factor in the absence of buffer, but buffering to prevent a pH drop did not prevent the inhibitory effects of the sugars. The concentration at which inhibition set in varied from sugar to sugar. For most sugars, cyclic (c)AMP counteracted the inhibition at the lowest inhibitory concentrations but became ineffective at higher concentrations. Our results suggest that cAMP-dependent catabolite repression, which is mediated by the PTS in E. coli, plays a role in the regulation of biofilm growth in response to sugars. cAMP-independent processes, possibly including Cra, also appear to be involved, in addition to pH effects.
Collapse
Affiliation(s)
- Sarah L Sutrina
- Department of Biological and Chemical Sciences, University of the West Indies, Bridgetown, Barbados
| | | | | | | | | | | | | |
Collapse
|
81
|
Bridier A, Hammes F, Canette A, Bouchez T, Briandet R. Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 2015; 213:2-16. [PMID: 26163933 DOI: 10.1016/j.ijfoodmicro.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022]
Abstract
The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.
Collapse
Affiliation(s)
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A Canette
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - R Briandet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France.
| |
Collapse
|
82
|
Ivanov V, Rezaeinejad S, Stabnikova O. Physiological comparison of cells with high and low alcohol dehydrogenase activities in bacterial populations consuming ethanol. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
83
|
Investigating the interactions between physical and biological heterogeneities in bioreactors using compartment, population balance and metabolic models. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.11.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
84
|
De-convoluting the Genetic Adaptations of E. coli C41(DE3) in Real Time Reveals How Alleviating Protein Production Stress Improves Yields. Cell Rep 2015; 10:1758-1766. [DOI: 10.1016/j.celrep.2015.02.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/08/2015] [Indexed: 11/20/2022] Open
|
85
|
Delvigne F, Zune Q, Lara AR, Al-Soud W, Sørensen SJ. Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol 2014; 32:608-16. [DOI: 10.1016/j.tibtech.2014.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/24/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
|
86
|
Zhurina MV, Gannesen AV, Zdorovenko EL, Plakunov VK. Composition and functions of the extracellular polymer matrix of bacterial biofilms. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171406023x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
87
|
Ferenci T, Maharjan R. Mutational heterogeneity: A key ingredient of bet-hedging and evolutionary divergence? Bioessays 2014; 37:123-30. [DOI: 10.1002/bies.201400153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thomas Ferenci
- School of Molecular Bioscience; University of Sydney; NSW Australia
| | - Ram Maharjan
- School of Molecular Bioscience; University of Sydney; NSW Australia
| |
Collapse
|
88
|
The rpoS gene is predominantly inactivated during laboratory storage and undergoes source-sink evolution in Escherichia coli species. J Bacteriol 2014; 196:4276-84. [PMID: 25266386 DOI: 10.1128/jb.01972-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The rpoS gene codes for an alternative RNA polymerase sigma factor, which acts as a general regulator of the stress response. Inactivating alleles of rpoS in collections of natural Escherichia coli isolates have been observed at very variable frequencies, from less than 1% to more than 70% of strains. rpoS is easily inactivated in nutrient-deprived environments such as stab storage, which makes it difficult to determine the true frequency of rpoS inactivation in nature. We studied the evolutionary history of rpoS and compared it to the phylogenetic history of bacteria in two collections of 82 human commensal and extraintestinal E. coli strains. These strains were representative of the phylogenetic diversity of the species and differed only by their storage conditions. In both collections, the phylogenetic histories of rpoS and of the strains were congruent, indicating that horizontal gene transfer had not occurred at the rpoS locus, and rpoS was under strong purifying selection, with a ratio of the nonsynonymous mutation rate (Ka) to the synonymous substitution rate (Ks) substantially smaller than 1. Stab storage was associated with a high frequency of inactivating alleles, whereas almost no amino acid sequence variation was observed in RpoS in the collection studied directly after isolation of the strains from the host. Furthermore, the accumulation of variations in rpoS was typical of source-sink dynamics. In conclusion, rpoS is rarely inactivated in natural E. coli isolates within their mammalian hosts, probably because such strains rapidly become evolutionary dead ends. Our data should encourage bacteriologists to freeze isolates immediately and to avoid the use of stab storage.
Collapse
|
89
|
Random mutagenesis of the multidrug transporter AcrB from Escherichia coli for identification of putative target residues of efflux pump inhibitors. Antimicrob Agents Chemother 2014; 58:6870-8. [PMID: 25182653 DOI: 10.1128/aac.03775-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efflux is an important mechanism of bacterial multidrug resistance (MDR), and the inhibition of MDR pumps by efflux pump inhibitors (EPIs) could be a promising strategy to overcome MDR. 1-(1-Naphthylmethyl)-piperazine (NMP) and phenylalanine-arginine-β-naphthylamide (PAβN) are model EPIs with activity in various Gram-negative bacteria expressing AcrB, the major efflux pump of Escherichia coli, or similar homologous pumps of the resistance-nodulation-cell division class. The aim of the present study was to generate E. coli AcrB mutants resistant to the inhibitory action of the two model EPIs and to identify putative EPI target residues in order to better understand mechanisms of pump inhibition. Using an in vitro random mutagenesis approach focusing on the periplasmic domain of AcrB, we identified the double mutation G141D N282Y, which substantially compromised the synergistic activity of NMP with linezolid, was associated with similar intracellular linezolid concentrations in the presence and absence of NMP, and did not impair the intrinsic MICs of various pump substrates and dye accumulation. We propose that these mutations near the outer face of the distal substrate binding pocket reduce NMP trapping. Other residues found to be relevant for efflux inhibition by NMP were G288 and A279, but mutations at these sites also changed the susceptibility to several pump substrates. Unlike with NMP, we were unable to generate AcrB periplasmic domain mutants with resistance or partial resistance to the EPI activity of PAβN, which is consistent with the modes of action of PAβN differing from those of NMP.
Collapse
|
90
|
Claudi B, Spröte P, Chirkova A, Personnic N, Zankl J, Schürmann N, Schmidt A, Bumann D. Phenotypic Variation of Salmonella in Host Tissues Delays Eradication by Antimicrobial Chemotherapy. Cell 2014; 158:722-733. [DOI: 10.1016/j.cell.2014.06.045] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/15/2014] [Accepted: 06/06/2014] [Indexed: 11/24/2022]
|
91
|
Mil’ko ES, Krasil’nikova EN, Keppen OI, Lebedeva NV, Ivanovsky RN. Metabolism of the phase variants of the phototrophic bacterium Rhodobacter sphaeroides. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714040122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
92
|
Milko ES, Milko DM. The process of bacterial population splitting into dissociants and long-term batch cultivation of bacteria. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814040097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
93
|
Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter. Proc Natl Acad Sci U S A 2014; 111:9852-7. [PMID: 24958866 DOI: 10.1073/pnas.1321421111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplankton account for roughly half of global primary production; it is vital that we understand the processes that control their abundance. A key process is cell division. We have, however, been unable to estimate division rate in natural populations at the appropriate timescale (hours to days) for extended periods of time (months to years). For phytoplankton, the diel change in cell size distribution is related to division rate, which offers an avenue to obtain estimates from in situ observations. We show that a matrix population model, fit to hourly cell size distributions, accurately estimates division rates of both cultured and natural populations of Synechococcus. Application of the model to Synechococcus at the Martha's Vineyard Coastal Observatory provides an unprecedented view that reveals a distinct seasonality in division rates. This information allows us to separate the effects of growth and loss quantitatively over an entire seasonal cycle. We find that division and loss processes are tightly coupled throughout the year. The large seasonal changes in cell abundance are the result of periods of time (weeks to months) when there are small systematic differences that favor either net growth or loss. We also find that temperature plays a critical role in limiting division rate during the annual spring bloom. This approach opens a path to quantify the role of Synechococcus in ecological and biogeochemical processes in natural systems.
Collapse
|
94
|
Mehlan H, Schmidt F, Weiss S, Schüler J, Fuchs S, Riedel K, Bernhardt J. Data visualization in environmental proteomics. Proteomics 2014; 13:2805-21. [PMID: 23913834 DOI: 10.1002/pmic.201300167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 01/04/2023]
Abstract
From raw data to gene expression profiles, from single cultures to complex microbial communities, environmental proteomics works with data of different complexity levels that need to be interpreted in detail or in its entirety. Although data visualization is closely connected with data analysis approaches, this work will solely focus on data visualization. Complementing traditional tools such as bar charts or line graphs, scientists and visualization professionals have been provided sophisticated visualization tools. Many rules and concerns regarding the display of single but also complex data will be reviewed and discussed. Visual approaches such as microcharts, heat maps, stream graphs, and tree maps will be brought to the reader's attention and demonstrated by utilizing real data sets.
Collapse
Affiliation(s)
- Henry Mehlan
- Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
95
|
Solieri L, Dakal TC, Bicciato S. Quantitative phenotypic analysis of multistress response in Zygosaccharomyces rouxii complex. FEMS Yeast Res 2014; 14:586-600. [PMID: 24533625 DOI: 10.1111/1567-1364.12146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 12/30/2022] Open
Abstract
Zygosaccharomyces rouxii complex comprises three yeasts clusters sourced from sugar- and salt-rich environments: haploid Zygosaccharomyces rouxii, diploid Zygosaccharomyces sapae and allodiploid/aneuploid strains of uncertain taxonomic affiliations. These yeasts have been characterized with respect to gene copy number variation, karyotype variability and change in ploidy, but functional diversity in stress responses has not been explored yet. Here, we quantitatively analysed the stress response variation in seven strains of the Z. rouxii complex by modelling growth variables via model and model-free fitting methods. Based on the spline fit as most reliable modelling method, we resolved different interstrain responses to 15 environmental perturbations. Compared with Z. rouxii CBS 732(T) and Z. sapae strains ABT301(T) and ABT601, allodiploid strain ATCC 42981 and aneuploid strains CBS 4837 and CBS 4838 displayed higher multistress resistance and better performance in glycerol respiration even in the presence of copper. μ-based logarithmic phenotypic index highlighted that ABT601 is a slow-growing strain insensitive to stress, whereas ABT301(T) grows fast on rich medium and is sensitive to suboptimal conditions. Overall, the differences in stress response could imply different adaptation mechanisms to sugar- and salt-rich niches. The obtained phenotypic profiling contributes to provide quantitative insights for elucidating the adaptive mechanisms to stress in halo- and osmo-tolerant Zygosaccharomyces yeasts.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | | |
Collapse
|
96
|
Renda BA, Hammerling MJ, Barrick JE. Engineering reduced evolutionary potential for synthetic biology. MOLECULAR BIOSYSTEMS 2014; 10:1668-78. [PMID: 24556867 DOI: 10.1039/c3mb70606k] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of synthetic biology seeks to engineer reliable and predictable behaviors in organisms from collections of standardized genetic parts. However, unlike other types of machines, genetically encoded biological systems are prone to changes in their designed sequences due to mutations in their DNA sequences after these devices are constructed and deployed. Thus, biological engineering efforts can be confounded by undesired evolution that rapidly breaks the functions of parts and systems, particularly when they are costly to the host cell to maintain. Here, we explain the fundamental properties that determine the evolvability of biological systems. Then, we use this framework to review current efforts to engineer the DNA sequences that encode synthetic biology devices and the genomes of their microbial hosts to reduce their ability to evolve and therefore increase their genetic reliability so that they maintain their intended functions over longer timescales.
Collapse
Affiliation(s)
- Brian A Renda
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | |
Collapse
|
97
|
Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V. The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 2014; 16:628-42. [DOI: 10.1111/1462-2920.12360] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/23/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Pablo Iván Nikel
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| | - Ilaria Benedetti
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| |
Collapse
|
98
|
Rapid conversion of Pseudomonas aeruginosa to a spherical cell morphotype facilitates tolerance to carbapenems and penicillins but increases susceptibility to antimicrobial peptides. Antimicrob Agents Chemother 2014; 58:1956-62. [PMID: 24419348 DOI: 10.1128/aac.01901-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Gram-negative human pathogen Pseudomonas aeruginosa tolerates high concentrations of β-lactam antibiotics. Despite inhibiting the growth of the organism, these cell wall-targeting drugs exhibit remarkably little bactericidal activity. However, the mechanisms underlying β-lactam tolerance are currently unclear. Here, we show that P. aeruginosa undergoes a rapid en masse transition from normal rod-shaped cells to viable cell wall-defective spherical cells when treated with β-lactams from the widely used carbapenem and penicillin classes. When the antibiotic is removed, the entire population of spherical cells quickly converts back to the normal bacillary form. Our results demonstrate that these rapid population-wide cell morphotype transitions function as a strategy to survive antibiotic exposure. Taking advantage of these findings, we have developed a novel approach to efficiently kill P. aeruginosa by using carbapenem treatment to induce en masse transition to the spherical cell morphotype and then exploiting the relative fragility and sensitivity of these cells to killing by antimicrobial peptides (AMPs) that are relatively inactive against P. aeruginosa bacillary cells. This approach could broaden the repertoire of antimicrobial compounds used to treat P. aeruginosa and serve as a basis for developing new therapeutic agents to combat bacterial infections.
Collapse
|
99
|
Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci U S A 2013; 111:355-60. [PMID: 24351930 DOI: 10.1073/pnas.1316084111] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant isolates of Salmonella enterica were selected on plates containing lethal concentrations of rifampicin, kanamycin, and nalidixic acid. The stability of the resistance phenotype was scored after nonselective growth. Rifampicin-resistant (Rif(r)) isolates were stable, suggesting that they had arisen by mutation. Mutations in the rpoB gene were detected indeed in Rif(r) mutants. In contrast, a fraction of kanamycin-resistant (Km(r)) and nalidixic acid-resistant (Nal(r)) isolates showed reduced resistance after nonselective growth, suggesting that mechanisms other than mutation had contributed to bacterial survival upon lethal selection. Single-cell analysis revealed heterogeneity in expression of the porin gene ompC, and subpopulation separation provided evidence that reduced ompC expression confers adaptive resistance to kanamycin. In the case of Nal(r) isolates, mutations in the gyrA gene were present in most nalidixic acid-resistant isolates. However, the efflux pump inhibitor Phe-Arg-β-naphtylamide (PAβN) reduced the level of resistance in Nal(r) mutants, indicating that active efflux contributes to the overall level of nalidixic acid resistance. Heterogeneous efflux pump activity was detected in single cells and colonies, and a correlation between high efflux and increased resistance to nalidixic acid was found. These observations suggest that fluctuations in the expression and the activity of critical functions of the bacterial cell, alone or combined with mutations, can contribute to adaptive resistance to antibiotics.
Collapse
|
100
|
Katz S, Hershberg R. Elevated mutagenesis does not explain the increased frequency of antibiotic resistant mutants in starved aging colonies. PLoS Genet 2013; 9:e1003968. [PMID: 24244205 PMCID: PMC3828146 DOI: 10.1371/journal.pgen.1003968] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/06/2013] [Indexed: 11/18/2022] Open
Abstract
The frequency of mutants resistant to the antibiotic rifampicin has been shown to increase in aging (starved), compared to young colonies of Eschierchia coli. These increases in resistance frequency occur in the absence of any antibiotic exposure, and similar increases have also been observed in response to additional growth limiting conditions. Understanding the causes of such increases in the frequency of resistance is important for understanding the dynamics of antibiotic resistance emergence and spread. Increased frequency of rifampicin resistant mutants in aging colonies is cited widely as evidence of stress-induced mutagenesis (SIM), a mechanism thought to allow bacteria to increase mutation rates upon exposure to growth-limiting stresses. At the same time it has been demonstrated that some rifampicin resistant mutants are relatively fitter in aging compared to young colonies, indicating that natural selection may also contribute to increased frequency of rifampicin resistance in aging colonies. Here, we demonstrate that the frequency of mutants resistant to both rifampicin and an additional antibiotic (nalidixic-acid) significantly increases in aging compared to young colonies of a lab strain of Escherichia coli. We then use whole genome sequencing to demonstrate conclusively that SIM cannot explain the observed magnitude of increased frequency of resistance to these two antibiotics. We further demonstrate that, as was previously shown for rifampicin resistance mutations, mutations conferring nalidixic acid resistance can also increase fitness in aging compared to young colonies. Our results show that increases in the frequency of antibiotic resistant mutants in aging colonies cannot be seen as evidence of SIM. Furthermore, they demonstrate that natural selection likely contributes to increases in the frequency of certain antibiotic resistance mutations, even when no selection is exerted due to the presence of antibiotics. Antibiotic resistance is one of the most pressing threats on human health worldwide. Such resistance has been increasing largely due to widespread antibiotic usage. However, it has also been noticed that under certain growth limiting conditions, there is an increase in resistance frequency that is independent of the presence of antibiotics. Such increases in antibiotic resistance frequency can greatly affect the dynamics of antibiotic resistance emergence and spread. Yet currently their causes are far from understood. Many assume that we observe more resistance mutations when growth is limited, because more mutations occur under such conditions. Here we use whole genome sequencing to show that increases in resistance frequency to two different antibiotics under starvation cannot be explained by increased mutagenesis. We further show that at least some of the increase in resistance frequency is likely to be explained by natural selection that favors certain resistance mutations conferring increased fitness under starvation. These results are intriguing as they demonstrate that positive selection may contribute to increases in the frequency of certain antibiotic resistance mutations, even in the absence of selection exerted by the presence of antibiotics.
Collapse
Affiliation(s)
- Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|