51
|
Cillo F, Finetti-Sialer MM, Papanice MA, Gallitelli D. Analysis of mechanisms involved in the Cucumber mosaic virus satellite RNA-mediated transgenic resistance in tomato plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:98-108. [PMID: 14714873 DOI: 10.1094/mpmi.2004.17.1.98] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transgenic tomato (Lycopersicon esculentum Mill. cv. UC82) plants expressing a benign variant of Cucumber mosaic virus satellite RNA (CMV Tfn-satRNA) were generated. The transformed plants did not produce symptoms when challenged with a satRNA-free strain of CMV (CMV-FL). The same plant lines initially were susceptible to necrosis elicited by a CMV strain supporting a necrogenic variant of satRNA (CMV-77), but a phenotype of total recovery from the necrosis was observed in the newly developing leaves. The features of the observed resistance were analyzed and are consistent with two different mechanisms of resistance. In transgenic plants inoculated with CMV-FL strain, the symptomless phenotype was correlated to the down-regulation of CMV by Tfn-satRNA, amplified from the transgene transcripts, as the first resistance mechanism. On the other hand, the delayed resistance to CMV-77 in transgenic tomato lines was mediated by a degradation process that targets satRNAs in a sequence-specific manner. Evidence is provided for a correlation between a reduced accumulation level of transgenic messenger Tfn-satRNA, the accumulation of small (approximately 23 nucleotides) RNAs with sequence homology to satRNAs, the progressively reduced accumulation of 77-satRNA in infected tissues, and the transition in infected plants from diseased to healthy. Thus, events leading to the degradation of satRNA sequences indicate a role for RNA silencing as the second mechanism determining resistance of transgenic tomato lines.
Collapse
Affiliation(s)
- Fabrizio Cillo
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR-sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | |
Collapse
|
52
|
Simon AE, Roossinck MJ, Havelda Z. Plant virus satellite and defective interfering RNAs: new paradigms for a new century. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:415-37. [PMID: 15283672 DOI: 10.1146/annurev.phyto.42.040803.140402] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although many subviral RNAs reduce or intensify disease symptoms caused by the helper virus, only recently have clues concerning the mechanism of disease modulation been revealed. New models for DI RNA-mediated reduction in helper virus levels and symptom attenuation include DI RNA enhancement of posttranscriptional gene silencing (PTGS), which is an antiviral defense mechanism in plants. Symptom enhancement by the satRNA of Cucumber mosaic virus is caused by minus-strand induction of the programmed cell death pathway. In contrast, symptom enhancement by satC of Turnip crinkle virus is due to satC interference with virion formation, leading to increased levels of free coat protein, which is the viral suppressor of PTGS. Mutualism between satRNA and helper virus can be seen for the satRNA of Groundnut rosette virus, which contributes to the virus by allowing virion assembly. These novel findings are leading to re-evaluation of the relationships between subviral RNAs, helper viruses, and hosts.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
53
|
Sun X, Simon AE. Fitness of a turnip crinkle virus satellite RNA correlates with a sequence-nonspecific hairpin and flanking sequences that enhance replication and repress the accumulation of virions. J Virol 2003; 77:7880-9. [PMID: 12829828 PMCID: PMC161943 DOI: 10.1128/jvi.77.14.7880-7889.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
satC, a satellite RNA associated with Turnip crinkle virus (TCV), enhances the ability of the virus to colonize plants by interfering with stable virion accumulation (F. Zhang and A. E. Simon, unpublished data). Previous results suggested that the motif1-hairpin (M1H), a replication enhancer on minus strands, forms a plus-strand hairpin flanked by CA-rich sequence that may be involved in enhancing systemic infection (G. Zhang and A. E. Simon, J. Mol. Biol. 326:35-48, 2003). In this study, sequence and structural requirements of the M1H were further assayed by replacing the 28-base M1H with 10 random bases and then subjecting the pool of satellite RNA to functional selection in plants. Unlike previous results with 28-base replacement sequences (G. Zhang and A. E. Simon, J. Mol. Biol. 326:35-48, 2003), only a few of the 10-base SELEX (systematic evolution of ligands by exponential enrichment) assay winners contained short motifs in their minus-sense orientation that were similar to TCV replication elements. However, all second- and third-round winning replacement sequences folded into hairpins flanked by CA-rich sequence predicted to be more stable on plus strands than minus strands. Plus strands of several of the most fit satellite RNAs contained insertions of CA-rich sequence at the base of their hairpins whose presence correlated with enhanced replication and reduced detection of virions. Deletion of the M1H resulted in no detectable virions despite very low satellite accumulation. These results support the hypothesis that a sequence-nonspecific plus-strand hairpin brings together flanking CA-rich sequences in the M1H region that confers fitness to satC by reducing the accumulation of stable virions.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Cell Biology and Molecular Genetics, Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
54
|
Annamalai P, Hsu YH, Liu YP, Tsai CH, Lin NS. Structural and mutational analyses of cis-acting sequences in the 5'-untranslated region of satellite RNA of bamboo mosaic potexvirus. Virology 2003; 311:229-39. [PMID: 12832220 DOI: 10.1016/s0042-6822(03)00178-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The satellite RNA of Bamboo mosaic virus (satBaMV) contains on open reading frame for a 20-kDa protein that is flanked by a 5'-untranslated region (UTR) of 159 nucleotides (nt) and a 3'-UTR of 129 nt. A secondary structure was predicted for the 5'-UTR of satBaMV RNA, which folds into a large stem-loop (LSL) and a small stem-loop. Enzymatic probing confirmed the existence of LSL (nt 8-138) in the 5'-UTR. The essential cis-acting sequences in the 5'-UTR required for satBaMV RNA replication were determined by deletion and substitution mutagenesis. Their replication efficiencies were analyzed in Nicotiana benthamiana protoplasts and Chenopodium quinoa plants coinoculated with helper BaMV RNA. All deletion mutants abolished the replication of satBaMV RNA, whereas mutations introduced in most of the loop regions and stems showed either no replication or a decreased replication efficiency. Mutations that affected the positive-strand satBaMV RNA accumulation also affected the accumulation of negative-strand RNA; however, the accumulation of genomic and subgenomic RNAs of BaMV were not affected. Moreover, covariation analyses of natural satBaMV variants provide substantial evidence that the secondary structure in the 5'-UTR of satBaMV is necessary for efficient replication.
Collapse
Affiliation(s)
- Padmanaban Annamalai
- Institute of Botany, Academia Sinica, Nankang, 115, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
55
|
Briddon RW, Mansoor S, Bedford ID, Pinner MS, Saunders K, Stanley J, Zafar Y, Malik KA, Markham PG. Identification of dna components required for induction of cotton leaf curl disease. Virology 2001; 285:234-43. [PMID: 11437658 DOI: 10.1006/viro.2001.0949] [Citation(s) in RCA: 355] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cotton leaf curl disease (CLCuD) is a major constraint to cotton production in Pakistan. Infectious clones of the monopartite begomovirus cotton leaf curl virus (CLCuV), associated with diseased cotton, are unable to induce typical symptoms in host plants. We have identified and isolated a single-stranded DNA molecule approximately 1350 nucleotides in length which, when coinoculated with the begomovirus to cotton, induces symptoms typical of CLCuD, including vein swelling, vein darkening, leaf curling, and enations. This molecule (termed DNA beta) requires the begomovirus for replication and encapsidation. The CLCuV/DNA 1/DNA beta complex, together with a similar complex previously identified in Ageratum conyzoides, represent members of an entirely new type of infectious, disease-causing agents. The implications of this finding to our understanding of the evolution of new disease-causing agents are discussed.
Collapse
Affiliation(s)
- R W Briddon
- Department of Virus Research, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Qiu W, Scholthof KB. Defective interfering RNAs of a satellite virus. J Virol 2001; 75:5429-32. [PMID: 11333930 PMCID: PMC114954 DOI: 10.1128/jvi.75.11.5429-5432.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2000] [Accepted: 03/07/2001] [Indexed: 11/20/2022] Open
Abstract
Panicum mosaic virus (PMV) is a recently molecularly characterized RNA virus with the unique feature of supporting the replication of two subviral RNAs in a few species of the family Gramineae. The subviral agents include a satellite RNA (satRNA) that is devoid of a coding region and the unrelated satellite panicum mosaic virus (SPMV) that encodes its own capsid protein. Here we report the association of this complex with a new entity in the RNA world, a defective-interfering RNA (DI) of a satellite virus. The specificity of interactions governing this four-component viral system is illustrated by the ability of the SPMV DIs to strongly interfere with the accumulation of the parental SPMV. The SPMV DIs do not interfere with PMV satRNA, but they do slightly enhance the rate of spread and titer of PMV. The SPMV-derived DIs provide an additional avenue by which to investigate fundamental biological questions, including the evolution and interactions of infectious RNAs.
Collapse
Affiliation(s)
- W Qiu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA
| | | |
Collapse
|
57
|
Yuan W, Hillman BI. In vitro translational analysis of genomic, defective, and satellite RNAs of Cryphonectria hypovirus 3-GH2. Virology 2001; 281:117-23. [PMID: 11222102 DOI: 10.1006/viro.2000.0806] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryphonectria hypovirus 3-GH2 (CHV3-GH2) is a member of the fungal virus family Hypoviridae that differs from previously characterized members in having a single large open reading frame with the potential to encode a protein of 326 kDa from its 9.8-kb genome. The N-terminal portion of the ORF contains sequence motifs that are somewhat similar to papain-like proteinases identified in other hypoviruses. Translation of the ORF is predicted to release autocatalytically a 32.5-kDa protein. A defective RNA, predicted to encode a 91.6-kDa protein representing most of the N-terminal proteinase fused to the entire putative helicase domain, and two satellite RNAs, predicted to encode very small proteins, also are associated with CHV3-GH2 infected fungal cultures. We performed in vitro translation experiments to examine expression of these RNAs. Translation of three RT-PCR clones representing different lengths of the amino-terminal portion of the ORF of the genomic RNA resulted in autocatalytic release of the predicted 32.5-kDa protein. Site-directed mutagenesis was used to map the processing site between Gly(297) and Thr(298). In vitro translation of multiple independent cDNA clones of CHV3-GH2-defective RNA 2 resulted in protein products of approximately 92 kDa, predicted to be the full-length translation product, 32 kDa, predicted to represent the N-terminal proteinase, and 60 kDa, predicted to represent the C-terminal two-thirds of the full-length product. In vitro translation of cDNA clones representing satellite RNA 4 resulted in products of slightly less than 10 kDa, consistent with the predicted 9.4 kDa product.
Collapse
Affiliation(s)
- W Yuan
- Department of Plant Pathology, Cook College, Foran Hall, Rutgers University, 59 Dudley Rd., New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
58
|
Abstract
The interactions between satellite panicum mosaic virus (SPMV) capsid protein (CP) and its 824 nucleotide (nt) single stranded RNA were investigated by gel mobility shift assay and Northwestern blot assay. SPMV CP has specificity for its RNA at high affinity, but little affinity for non-viral RNA. The SPMV CP also bound a 350 nt satellite RNA (satRNA) that, like SPMV, is dependent on panicum mosaic virus for its replication. SPMV CP has the novel property of encapsidating SPMV RNA and satRNA. Competition gel mobility shift assays performed with a non-viral RNA and unlabeled SPMV RNA and satRNA revealed that these RNA:protein interactions were in part sequence specific.
Collapse
Affiliation(s)
- B Desvoyes
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845-2132, USA
| | | |
Collapse
|
59
|
Cabrera O, Roossinck MJ, Scholthof KB. Genetic Diversity of Panicum mosaic virus Satellite RNAs in St. Augustinegrass. PHYTOPATHOLOGY 2000; 90:977-980. [PMID: 18944522 DOI: 10.1094/phyto.2000.90.9.977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT St. Augustine decline is a viral disease caused by Panicum mosaic virus (PMV) alone or in combination with a satellite virus (SPMV) and/or satellite RNAs (satRNAs). A ribonuclease protection assay (RPA) was used to evaluate the genetic diversity of PMV satRNAs isolated from 100 naturally infected St. Augustinegrass plants (Stenotaphrum secundatum). Distinctive satRNA RPA profiles were observed for 40 of 52 samples from College Station (CS) and 37 of 48 samples from Corpus Christi (CC), Texas. A dendrogram constructed from the RPA data revealed that satRNAs were grouped in two distinct clusters based on their place of origin. From 100 samples, only 4 satRNAs from CS were placed in the CC group, and only 2 satRNAs from CC were placed in the CS group. The data show that there is genetic variability in PMV satRNAs in naturally occurring infections, and distinct geographically separate populations can be identified from CC and CS.
Collapse
|
60
|
Zaitlin M, Palukaitis P. Advances in Understanding Plant Viruses and Virus Diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:117-143. [PMID: 11701839 DOI: 10.1146/annurev.phyto.38.1.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
▪ Abstract Plant viruses have had an impact on the science of virology and on plant pathology ever since the virus concept was discovered with Tobacco mosaic virus at the end of the nineteenth century. In this review, we highlight those discoveries. We have divided plant virus research into a "Classical Discovery Period" from 1883-1951 in which the findings were very descriptive; an "Early Molecular Era" from 1952 to about 1983, in which information was developed that described further properties of the viruses, aided by the development of a number of salient techniques; and the "Recent Period" from 1983 to the present, when techniques have been developed to modify plant virus genomes, to detect nonstructural gene products, to determine the functions of viral gene products, and to transform plants to elicit novel forms of resistance to viral diseases. In this period, plant virology has played a significant role in formulating an understanding of the mechanisms of gene silencing and recombination, plasmodesmatal function, systemic acquired resistance, and in developing methods for pathogen detection. We also attempt to predict the direction plant virology will take in the future.
Collapse
Affiliation(s)
- Milton Zaitlin
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853; e-mail:
| | - Peter Palukaitis
- Pathology Division, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom; e-mail:
| |
Collapse
|
61
|
Wang J, Simon AE. 3'-End stem-loops of the subviral RNAs associated with turnip crinkle virus are involved in symptom modulation and coat protein binding. J Virol 2000; 74:6528-37. [PMID: 10864666 PMCID: PMC112162 DOI: 10.1128/jvi.74.14.6528-6537.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many plant RNA viruses are associated with one or more subviral RNAs. Two subviral RNAs, satellite RNA C (satC) and defective interfering RNA G (diG) intensify the symptoms of their helper, turnip crinkle virus (TCV). However, when the coat protein (CP) of TCV was replaced with that of the related Cardamine chlorotic fleck virus (CCFV), both subviral RNAs attenuated symptoms of the hybrid virus TCV-CP(CCFV). In contrast, when the translation initiation codon of the TCV CP was altered to ACG and reduced levels of CP were synthesized, satC attenuated symptoms while diG neither intensified nor attenuated symptoms. The determinants for this differential symptom modulation were previously localized to the 3'-terminal 100 bases of the subviral RNAs, which contain six positional differences (Q. Kong, J.-W. Oh, C. D. Carpenter, and A. E. Simon, Virology 238:478-485, 1997). In the current study, we have determined that certain sequences within the 3'-terminal stem-loop structures of satC and diG, which also serve as promoters for complementary strand synthesis, are critical for symptom modulation. Furthermore, the ability to attenuate symptoms was correlated with weakened binding of TCV CP to the hairpin structure.
Collapse
Affiliation(s)
- J Wang
- Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
62
|
Qiu W, Scholthof KB. In vitro- and in vivo-generated defective RNAs of satellite panicum mosaic virus define cis-acting RNA elements required for replication and movement. J Virol 2000; 74:2247-54. [PMID: 10666255 PMCID: PMC111706 DOI: 10.1128/jvi.74.5.2247-2254.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1999] [Accepted: 11/24/1999] [Indexed: 11/20/2022] Open
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper virus, panicum mosaic virus (PMV), to provide trans-acting proteins for replication and movement. The 824-nucleotide (nt) genome of SPMV possesses an open reading frame encoding a 17.5-kDa capsid protein (CP), which is shown to be dispensable for SPMV replication. To localize cis-acting RNA elements required for replication and movement, a comprehensive set of SPMV cDNA deletion mutants was generated. The results showed that the 263-nt 3' untranslated region (UTR) plus 73 nt upstream of the CP stop codon and the first 16 nt in the 5' UTR are required for SPMV RNA amplification and/or systemic spread. A region from nt 17 to 67 within the 5' UTR may have an accessory role in RNA accumulation, and a fragment bracketing nt 68 to 104 appears to be involved in the systemic movement of SPMV RNA in a host-dependent manner. Unexpectedly, defective RNAs (D-RNAs) accumulated de novo in millet plants coinfected with PMV and either of two SPMV mutants: SPMV-91, which is incapable of expressing the 17.5-kDa CP, and SPMV-GUG, which expresses low levels of the 17.5-kDa CP. The D-RNA derived from SPMV-91 was isolated from infected plants and used as a template to generate a cDNA clone. RNA transcripts derived from this 399-nt cDNA replicated and moved in millet plants coinoculated with PMV. The characterization of this D-RNA provided a biological confirmation that the critical RNA domains identified by the reverse genetic strategy are essential for SPMV replication and movement. The results additionally suggest that a potential "trigger" for spontaneous D-RNA accumulation may be associated with the absence or reduced accumulation of the 17.5-kDa SPMV CP. This represents the first report of a D-RNA associated with a satellite virus.
Collapse
Affiliation(s)
- W Qiu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
63
|
Célix A, Burgyán J, Rodríguez-Cerezo E. Interactions between tombusviruses and satellite RNAs of tomato bushy stunt virus: a defect in sat RNA B1 replication maps to ORF1 of a helper virus. Virology 1999; 262:129-38. [PMID: 10489347 DOI: 10.1006/viro.1999.9865] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biological properties of two recently described satellite RNAs of tomato bushy stunt virus (TBSV) were analyzed in natural and experimental hosts. Full-length cDNA clones were constructed for sat RNAs B1(822 nt) and B10 (612 nt) and used in inoculations with satellite-free transcripts of different tombusviruses. In all virus-host combinations tested, TBSV sat RNA B10 drastically reduced the accumulation of viral genomic RNA and attenuated symptoms. In contrast, sat RNA B1 caused a less marked reduction of viral RNA level and did not have any effect on symptoms. Experiments with Nicotiana benthamiana protoplasts showed that the differential effects of sat RNAs B1 and B10 on TBSV titer were related to differential abilities to interfere with virus replication. Three tombusviruses tested were able to maintain both sat RNAs in N. benthamiana plants, although carnation Italian ringspot virus (CIRV) was a poor helper for sat RNA B1. Using chimeric viruses, a strong determinant for low sat RNA B1 accumulation was mapped to the 5'-terminal part of the genome of CIRV. The poor helper activity of CIRV was shown to be due to low sat RNA B1 replication. A single-nucleotide mutation in the start codon of CIRV ORF1 restored the ability to replicate sat RNA B1 to high levels. This mutant encodes an ORF1 that is 22 amino acids shorter at the N-terminus than the wild-type virus.
Collapse
Affiliation(s)
- A Célix
- Centro Nacional de Biotecnología (CSIC), Cantoblanco, Madrid, 28049, Spain
| | | | | |
Collapse
|
64
|
Wang J, Simon AE. Symptom attenuation by a satellite RNA in vivo is dependent on reduced levels of virus coat protein. Virology 1999; 259:234-45. [PMID: 10364508 DOI: 10.1006/viro.1999.9781] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many plant RNA viruses provide replication and encapsidation functions for one or more satellite RNAs (sat-RNAs) that can modulate the symptoms of the associated helper virus. Sat-RNA C, a virulent sat-RNA associated with turnip crinkle virus (TCV), normally intensifies symptoms but can attenuate symptoms if the TCV coat protein (CP) is replaced with that of cardamine chlorotic fleck carmovirus [Kong et al. (1995) Plant Cell 7, 1625-1634] or if TCV contains an alteration in the CP initiation codon (TCV-CPm) [Kong et al. (1997b) Plant Cell 9, 2051-2063]. To further elucidate the mechanism of symptom attenuation by sat-RNA C, the composition of the CP produced by TCV-CPm (CPCPm) was determined. Our results reveal that CPCPm likely has two additional amino acids at its N-terminus compared with wild-type TCV CP. TCV-CPm produces reduced levels of CP, and this reduction, not the two additional residues at the CP N-terminus, is responsible for symptom attenuation by sat-RNA C.
Collapse
Affiliation(s)
- J Wang
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
65
|
Montasser MS, Tousignant ME, Kaper JM. Viral Satellite RNAs for the Prevention of Cucumber Mosaic Virus (CMV) Disease in Field-Grown Pepper and Melon Plants. PLANT DISEASE 1998; 82:1298-1303. [PMID: 30845460 DOI: 10.1094/pdis.1998.82.12.1298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A benign viral satellite RNA, in combination with a mild strain of cucumber mosaic virus (CMV-S), was used as a "vaccine" or "preinoculum" to demonstrate the feasibility of protecting pepper (Capsicum annuum cv. California Wonder) and melon (Cucurbita melo cv. Janus des Canaries) against two severe CMV strains, CMV-D and CMV-16, in the final 2 years of a 4-year pilot field and greenhouse experiment. In the field, healthy pepper and melon seedlings challenged with CMV-D and CMV-16 reduced yields by 33 to 60%; CMV-S caused only limited yield reduction in pepper and had no effect on the yield of melon. Different time intervals between preinoculation of pepper and melon seedlings with CMV-S and challenge inoculation with the severe CMV strains were tested. All plants challenged 3 weeks after vaccination showed nearly complete protection from subsequent infection by severe strains. The yield from preinoculated and challenged pepper plants was 80% that of untreated plants, while the yield from preinoculated and challenged melon plants was increased slightly over the untreated control plants. The use of this technology for biological control of plant viruses is discussed.
Collapse
Affiliation(s)
- M S Montasser
- Assistant Professor, Department of Biological Sciences, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
| | | | - J M Kaper
- Research Chemist (Retired), Plant Sciences Institute, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| |
Collapse
|
66
|
Alonso-Prados JL, Aranda MA, Malpica JM, García-Arenal F, Fraile A. Satellite RNA of cucumber mosaic cucumovirus spreads epidemically in natural populations of its helper virus. PHYTOPATHOLOGY 1998; 88:520-524. [PMID: 18944903 DOI: 10.1094/phyto.1998.88.6.520] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Three hundred thirty-eight isolates of cucumber mosaic cucumovirus (CMV), sampled from natural populations in six areas of Spain between 1989 and 1996, were screened for the presence of satellite RNA (satRNA). The frequency of CMV isolates with satRNA approached 1.00 in Valencia (east Spain) between 1990 and 1994 where a tomato necrosis epidemic induced by CMV+satRNA had started in 1986 and was smaller north and west of this area in 1992 and 1993. After 1994, satRNA almost disappeared from all CMV populations. Genetic typing of satRNA variantswas done by ribonuclease protection assay, and from these data, genetic distances were estimated for any pair of satRNA variants. CMV-satRNA populations were highly diverse, containing 0.07865 nucleotide substitutions per site on average. Data also showed that the whole compared set of 100 satRNA variants form a single population that is not structured according to place, year, host plant, or strain of helper virus (HV). This is in sharp contrast with the metapopulation structure of the Spanish CMV population. Thus, the genetic structure and dynamics of populations of CMV and its satRNA are not coupled. This shows that CMV-satRNA spreads epidemically, as a hyperparasite, in the population of its HV. This conclusion is relevant to the use of CMV-satRNA as a biocontrol agent of CMV.
Collapse
|
67
|
Burgyán J, García-Arenal F. Template-independent repair of the 3' end of cucumber mosaic virus satellite RNA controlled by RNAs 1 and 2 of helper virus. J Virol 1998; 72:5061-6. [PMID: 9573276 PMCID: PMC110069 DOI: 10.1128/jvi.72.6.5061-5066.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA viruses which do not have a poly(A) tail or a tRNA-like structure for the protection of their vulnerable 3' termini may have developed a different strategy to maintain their genome integrity. We provide evidence that deletions of up to 7 nucleotides from the 3' terminus of cucumber mosaic cucumovirus (CMV) satellite RNA (satRNA) were repaired in planta in the presence of the helper virus (HV) CMV. Sequence comparison of 3'-end-repaired satRNA progenies, and of satRNA and HV RNA, suggested that the repair was not dependent on a viral template. The 3' end of CMV satRNA lacking the last three cytosines was not repaired in planta in the presence of tomato aspermy cucumovirus (TAV), although TAV is an efficient helper for the replication of CMV satRNA. With use of pseudorecombinants constructed by the interchange of RNAs 1 and 2 of TAV and CMV, evidence was provided that the 3'-end repair was controlled by RNAs 1 and 2 of CMV, which encode subunits of the viral RNA replicase. These results, and the observation of short repeated sequences close to the 3' terminus of repaired molecules, suggest that the HV replicase maintains the integrity of the satRNA genome, playing a role analogous to that of cellular telomerases.
Collapse
Affiliation(s)
- J Burgyán
- Agricultural Biotechnology Center, Plant Science Institute, 2101 Gödöllö, Hungary.
| | | |
Collapse
|
68
|
Hong Y, Cole TE, Brasier CM, Buck KW. Novel structures of two virus-like RNA elements from a diseased isolate of the Dutch elm disease fungus, Ophiostoma novo-ulmi. Virology 1998; 242:80-9. [PMID: 9501045 DOI: 10.1006/viro.1997.8999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nucleotide sequences of 2 of the 10 mitochondrial double-stranded (ds) RNA segments in a diseased isolate, Log 1/3-8d2 (Ld), of Ophiostoma novo-ulmi, RNA-7 (1057 nucleotides) and RNA-10 (317-330 nucleotides), have been determined. Both RNAs are A-U-rich, but in Southern and Northern blots, no hybridization with mitochondrial DNA or RNA could be detected. Only very short open reading frames were found in both RNAs. As most of its sequence is unrelated to any of the other Ld dsRNAs, RNA-7 may be regarded as a satellite RNA. Northern blotting detected a full-length single-stranded (ss) form of RNA-7 in nucleic acid extracts from Ld. The 5'- and 3'-terminal 39 nucleotides of ssRNA-7 are imperfect inverted complementary repeats of each other, which could cause ssRNA-7 to form a panhandle structure. In addition, the 5'-terminal nucleotides 1-28 and 3'-terminal nucleotides 1032-1057 of ssRNA-7 each contained inverted complementary sequences, allowing the possibility for each terminus to form separate stem-loop structures. The combination of these two structural features has not been found previously in any dsRNA or ssRNA virus. RNA-10 was shown to have an unusual structure, consisting of a mosaic of sequences derived from regions of the 5'- and 3'-termini, or just the 5'-terminus, of RNA-7, RNA-10 has a high degree of inverted complementarity, with the potential to be folded into a very stable hairpin structure. A model for the formation of RNA-10 is presented, involving replicase-driven strand switching between (-)-strand and (+)-strand templates during RNA synthesis, followed by utilization of the nascent strand as a primer and template to form a snap-back RNA.
Collapse
Affiliation(s)
- Y Hong
- Department of Biology, Imperial College of Science, Technology, and Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
69
|
Hu CC, Ghabrial SA. Molecular Evidence That Strain BV-15 of Peanut Stunt Cucumovirus Is a Reassortant Between Subgroup I and II Strains. PHYTOPATHOLOGY 1998; 88:92-97. [PMID: 18944976 DOI: 10.1094/phyto.1998.88.2.92] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT In Northern hybridization assays, RNA1 of peanut stunt virus (PSV) strain BV-15 hybridized strongly with a cloned cDNA probe to RNA1 from strain PSV-W (subgroup II). Cloned probes to PSV-W RNA2 and RNA3, however, did not hybridize with the corresponding RNAs from strain BV-15. The complete nucleotide sequence of PSV-BV-15 RNA2 has been determined, and sequence comparison analysis showed that it is closely related to PSV subgroup I strains; the percent nucleotide sequence identity between PSV-BV-15 RNA2 and RNA2 sequences from PSV subgroup I and II strains were 90.5 and 75%, respectively. The possibility that PSV-BV-15 RNA2 may contain short regions derived from a subgroup II strain (i.e., represent a mosaic structure indicative of recombination) was investigated. Results indicated, however, that the entire PSV-BV-15 RNA2 sequence is derived from a subgroup I strain. PSV-BV-15 RNA3 has previously been shown to belong to subgroup I strains. These results thus establish that PSV strain BV-15 is a natural reassortant between PSV subgroups I and II strains. A reverse transcription-po-lymerase chain reaction assay is proposed for differentiating between this reassortant strain and PSV strains in subgroups I and II.
Collapse
|
70
|
Celix A, Rodriguez-Cerezo E, Garcia-Arenal F. New satellite RNAs, but no DI RNAs, are found in natural populations of tomato bushy stunt tombusvirus. Virology 1997; 239:277-84. [PMID: 9434719 DOI: 10.1006/viro.1997.8864] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A collection of 57 field isolates of the tombusvirus tomato bushy stunt virus was obtained from eggplant and tomato during 1994-1997 and was examined for the presence of defective interfering (DI) RNA species by Northern blot hybridization and RT-PCR. No DI RNA species were detected associated with any of the field TBSV isolates. However, serial passaging of two field isolates in Nicotiana clevelandii at high multiplicity of infection resulted in the rapid generation of DI-like RNA species, indicating that the absence of DI RNAs in natural populations of the virus was not due to the inability of the TBSV field isolates to generate them in a suitable host. The results indicate that DI RNAs may not play a role in modulating natural TBSV infections in the hosts examined. In 4 of 57 isolates analyzed we have detected less than full-length RNAs and we show here that they are true satellite RNAs. Two different satellite RNA species were detected, named TBSV sat RNAs B1 (822 nt) and B10 (612 nt). TBSV sat RNAs lack significant open reading frames and do not present sequence homology except in a central box that is also conserved in TBSV-Ch genomic RNA and in all the DI RNAs derived from it. TBSV sat RNA B10 attenuated the symptoms induced by the helper virus in N. clevelandii while sat RNA B1 did not modify the symptoms. This is the first report of sat RNAs associated with TBSV and the first time that sat RNAs are associated with natural tombusvirus infections.
Collapse
Affiliation(s)
- A Celix
- Centro Nacional de Biotecnologia (CSIC), Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
71
|
Kong Q, Oh JW, Carpenter CD, Simon AE. The coat protein of turnip crinkle virus is involved in subviral RNA-mediated symptom modulation and accumulation. Virology 1997; 238:478-85. [PMID: 9400620 DOI: 10.1006/viro.1997.8853] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Some satellite (sat-) and defective interfering (DI) RNAs associated with plant viruses intensify or ameliorate the symptoms of the virus. We recently demonstrated that the TCV coat protein (CP) is involved in symptom modulation by sat-RNA C. Two additional subviral RNAs have now been tested for effect of the CP on symptom modulation. DI RNA G, which normally intensifies the symptoms of TCV, is able to attenuate symptoms if the TCV CP is replaced with the CP of cardamine chlorotic fleck virus. DI RNA G had no effect on the symptoms of TCV with a single base alteration in the CP open reading frame, unlike sat-RNA C, which was able to ameliorate the symptoms of the mutant TCV. Using a hybrid sat-RNA constructed from sat-RNA C and TCV (which shares a similar 3'-end region with DI RNA G), the 3'-terminal 53 bases of sat-RNA C were found to be involved in symptom attenuation, which was directly correlated with the lack of detectable viral genomic RNA in whole plants. Sat-RNA D had no effect on the symptoms of mutant or wild-type TCV. The accumulation of TCV subviral RNAs in plants and protoplasts was also found to be strongly influenced by the presence or absence of the wild-type TCV CP.
Collapse
Affiliation(s)
- Q Kong
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | | | | | |
Collapse
|
72
|
Stupina V, Simon AE. Analysis in vivo of turnip crinkle virus satellite RNA C variants with mutations in the 3'-terminal minus-strand promoter. Virology 1997; 238:470-7. [PMID: 9400619 DOI: 10.1006/viro.1997.8850] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Turnip crinkle virus and its associated RNA, sat-RNA C, share similar, but not identical hairpins near their 3' ends and terminate with CCUGCCC-OH, which forms a single-stranded tail. With an in vitro transcription system containing partially purified TCV RdRp, the 3'-terminal 29 bases making up the hairpin and single-stranded tail were previously demonstrated to be required for transcription, and alterations in the stem, but not the loop, could affect template activity (C. Song and A. E. Simon, 1995, J. Mol. Biol. 254, 6-14). We have now analyzed sat-RNA C mutants in the 3' hairpin for ability to accumulate in vivo. While active templates in vitro were able to accumulate in vivo, some very weak templates in vitro were also able to accumulate in vivo without reversion or second-site alterations. Computer models of hairpin structure indicated that biologically active promoters could have hairpins less stable than wild type, with loops of variable length and sequence, and without a need for a 6-base single-stranded tail. In addition, transcripts containing compensatory exchanges in the upper stem region that had limited activity in vitro were biologically active in vivo, indicating that positioning of specific bases in the stem is not required to produce an active minus-strand promoter.
Collapse
Affiliation(s)
- V Stupina
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
73
|
Kong Q, Wang J, Simon AE. Satellite RNA-mediated resistance to turnip crinkle virus in Arabidopsis involves a reduction in virus movement. THE PLANT CELL 1997; 9:2051-63. [PMID: 9401127 PMCID: PMC157057 DOI: 10.1105/tpc.9.11.2051] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Satellite RNAs (sat-RNAs) are parasites of viruses that can mediate resistance to the helper virus. We previously showed that a sat-RNA (sat-RNA C) of turnip crinkle virus (TCV), which normally intensifies symptoms of TCV, is able to attenuate symptoms when TCV contains the coat protein (CP) of cardamine chlorotic fleck virus (TCV-CPCCFV). We have now determined that sat-RNA C also attenuates symptoms of TCV containing an alteration in the initiating AUG of the CP open reading frame (TCV-CPm). TCV-CPm, which is able to move systemically in both the TCV-susceptible ecotype Columbia (Col-0) and the TCV-resistant ecotype Dijon (Di-0), produced a reduced level of CP and no detectable virions in infected plants. Sat-RNA C reduced the accumulation of TCV-CPm by < 25% in protoplasts while reducing the level of TCV-CPm by 90 to 100% in uninoculated leaves of Col-0 and Di-0. Our results suggest that in the presence of a reduced level of a possibly altered CP, sat-RNA C reduces virus long-distance movement in a manner that is independent of the salicylic acid-dependent defense pathway.
Collapse
Affiliation(s)
- Q Kong
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003-4505, USA
| | | | | |
Collapse
|
74
|
Rodriguez-Alvarado G, Roossinck MJ. Structural analysis of a necrogenic strain of cucumber mosaic cucumovirus satellite RNA in planta. Virology 1997; 236:155-66. [PMID: 9299628 DOI: 10.1006/viro.1997.8731] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structural studies of plant viral RNA molecules have been based on in vitro chemical and enzymatic modification. That approach, along with mutational analysis, has proven valuable in predicting structural models for some plant viruses such as tobacco mosaic tobamovirus and brome mosaic bromovirus. However, in planta conditions may be dramatically different from those found in vitro. In this study we analyzed the structure of cucumber mosaic cucumovirus satellite RNA (sat RNA) strain D4 in vivo and compared it to the structures found in vitro and in purified virions. Following a methodology developed to determine the structure of 18S rRNA within intact plant tissues, different patterns of adenosine and cytosine modification were found for D4-sat RNA molecules in vivo, in vitro, and in virions. This chemical probing procedure identifies adenosine and cytosine residues located in unpaired regions of the RNA molecules. Methylation data, a genetic algorithm in the STAR RNA folding program, and sequence alignment comparisons of 78 satellite CMV RNA sequences were used to identify several helical regions located at the 5' and 3' ends of the RNA molecule. Data from previous mutational and sequence comparison studies between satellite RNA strains inducing necrosis in tomato plants and those strains not inducing necrosis allowed us to identify one helix and two tetraloop regions correlating with the necrogenicity syndrome.
Collapse
|
75
|
Rasochová L, Passmore BK, Falk BW, Miller WA. The satellite RNA of barley yellow dwarf virus-RPV is supported by beet western yellows virus in dicotyledonous protoplasts and plants. Virology 1997; 231:182-91. [PMID: 9168880 DOI: 10.1006/viro.1997.8532] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The subgroup II luteovirus barley yellow dwarf virus-RPV (BYDV-RPV) acts as a helper virus for a satellite RNA (satRPV RNA). The subgroup II luteovirus beet western yellows virus (BWYV) and the ST9-associated RNA (ST9a RNA), a BWYV-associated RNA that encodes a polymerase similar to those of subgroup I luteoviruses, were assayed for their ability to support replication of satRPV RNA. SatRPV RNA was replicated in tobacco protoplasts in the presence of BWYV RNA or a mixture of BWYV plus the ST9a RNA, but not in the presence of ST9a RNA alone. ST9a RNA stimulated BWYV RNA accumulation which, in turn, increased the accumulation of satRPV RNA. SatRPV RNA was encapsidated in BWYV capsids primarily as circular monomers, which differs from the linear monomers found in BYDV (RPV + PAV) particles. SatRPV RNA was transmitted to Capsella bursa-pastoris plants by aphids only in the presence of BWYV and ST9a RNA. SatRPV RNA reduced accumulation of both BWYV helper and ST9a nonhelper RNAs in plants but did not affect symptoms. The replication of satRPV RNA only in the presence of subgroup II luteoviral RNAs but not in the presence of RNAs with subgroup I-like polymerase genes, in both monocotyledonous and dicotyledonous hosts, suggests that the specificity determinants of satRPV RNA replication are contained within the polymerase genes of supporting viruses rather than in structural genes or host plants.
Collapse
Affiliation(s)
- L Rasochová
- Plant Pathology Department, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
76
|
Taliansky ME, Robinson DJ. Down-regulation of groundnut rosette virus replication by a variant satellite RNA. Virology 1997; 230:228-35. [PMID: 9143278 DOI: 10.1006/viro.1997.8471] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Symptom production in groundnut plants infected with groundnut rosette virus (GRV) depends on the presence of satellite RNA (sat-RNA) in the GRV culture, and sat-RNA variants that induce only mild symptoms are known. One such variant drastically diminished the replication of GRV genomic RNA in infected Nicotiana benthamiana plants. This down-regulating ability did not involve either of the two open reading frames in the sat-RNA but was controlled by a region near its 5' end, which is required for sat-RNA replication. When N. benthamiana plants were inoculated with GRV and the mild satellite and challenged by inoculation with a GRV isolate (YB) containing a sat-RNA that induces yellow blotch symptoms, no symptoms appeared and little GRV genomic RNA or sat-RNA was detected in the plants, provided the two inoculations were no more than 2 days apart. A GRV isolate containing a sat-RNA that neither induces symptoms in N. benthamiana nor affects genomic RNA accumulation also provided protection against yellow blotch symptom production if inoculated before or up to 2 days after isolate YB. However, in this case protection ws incomplete and both GRV RNA and sat-RNA accumulated to normal levels. It is suggested that sequences from the mild sat-RNA may provide a novel source of resistance against rosette disease.
Collapse
Affiliation(s)
- M E Taliansky
- Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | |
Collapse
|
77
|
Grieco F, Lanave C, Gallitelli D. Evolutionary dynamics of cucumber mosaic virus satellite RNA during natural epidemics in Italy. Virology 1997; 229:166-74. [PMID: 9123858 DOI: 10.1006/viro.1996.8426] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The evolutionary dynamics of 22 variants of cucumber mosaic virus satellite RNA (CMV satRNA) isolated in Italy during virus epidemics from 1988 to 1993 were investigated on the basis of their primary structure and biological properties. Most of the variants were amplified from total nucleic acid preparations extracted from field-infected plants, thus representing wild isolates of CMV satRNA. Eleven variants were associated with subgroup II CMV strains, 10 with subgroup I and 1 with a mixed infection by both strains. When inoculated onto tomato seedlings, the variants induced the phenotype (necrogenic or ameliorative) predicted by their nucleotide sequence. Phylogenetic relationships between the satRNA variants were determined using the stationary Markov model, a stochastic model for evolution. For each satRNA, the Markov analysis gave a good correlation between position in the phylogenetic tree and biological properties. The variants with ameliorative and necrogenic phenotypes in tomato followed two different evolutionary dynamics in nature. Tfn-satRNA, a 390-nt-long molecule, followed a third type of evolutionary dynamic far apart from that of the shorter satRNA molecules (i.e., those in the 334- to 340-nt-length class). Average values of the mean constant rate of nucleotide substitutions/site (Ksubs/site) indicated that in nature the variants tend to keep their heterogeneity unchanged from one epidemic episode to the other, even if the outbreaks occur in places very far from each other. This seems to be in agreement with the proposed maintenance of a functional molecular structure as a constraint to CMV satRNA evolution.
Collapse
Affiliation(s)
- F Grieco
- Dipartimento di Protezione delle Piante dalle Malattie, Università degli Studi, Bari, Italy
| | | | | |
Collapse
|
78
|
Trifonov EN. Segmented structure of separate and transposable DNA and RNA elements as suggested by their size distributions. J Biomol Struct Dyn 1997; 14:449-57. [PMID: 9172645 DOI: 10.1080/07391102.1997.10508144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A collection of about 1000 different eukaryotic and prokaryotic DNA mobile and separate elements is compiled from literature-transposons, plasmids, extrachromosomal circular DNA, insertion sequences, as well as viral genomes and separate genome segments. Only small elements are collected, upto 2000 base pairs. Analysis of the sequence length distributions of the elements reveals that certain sizes are clearly preferred, namely those which correspond to multiples of about 345 bp in eukaryotes and multiples of about 210 bp in prokaryotes. This provides additional evidence in support of the theory (1) that segmented structure is characteristic of not only protein-coding sequences (2) but rather of genomes in general. In particular, it confirms the prediction (1) that mobile and separate elements would also be segmented.
Collapse
Affiliation(s)
- E N Trifonov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
79
|
Aranda MA, Fraile A, Dopazo J, Malpica JM, García-Arenal F. Contribution of mutation and RNA recombination to the evolution of a plant pathogenic RNA. J Mol Evol 1997; 44:81-8. [PMID: 9010139 PMCID: PMC7079821 DOI: 10.1007/pl00006124] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The nucleotide sequence of 17 variants of the satellite RNA of cucumber mosaic virus (CMV-satRNA) isolated from field-infected tomato plants in the springs of 1989, 1990, and 1991 was determined. The sequence of each of the 17 satRNAs was unique and was between 334 and 340 nucleotides in length; 57 positions were polymorphic. There was much genetic divergence, ranging from 0.006 to 0.141 nucleotide substitutions per site for pairwise comparisons, and averaging 0.074 for any pair. When the polymorphic positions were analyzed relative to a secondary structure model proposed for CMV-satRNAs, it was found that there were significantly different numbers of changes in base-paired and non-base-paired positions, and that mutations that did not disrupt base pairing were preferred at the putatively paired sites. This supports the concept that the need to maintain a functional structure may limit genetic divergence of CMV-satRNA. Phylogenetic analyses showed that the 17 CMV-satRNA variants clustered into two subgroups, I and II, and evolutionary lines proceeding by the sequential accumulation of mutations were apparent. Three satRNA variants were outliers for these two phylogenetic groups. They were shown to be recombinants of subgroup I and II satRNAs by calculating phylogenies for different molecular regions and by using Sawyer's test for gene conversion. At least two recombination events were required to produce these three recombinant satRNAs. Thus, recombinants were found to be frequent ( approximately 17%) in natural populations of CMV-satRNA, and recombination may make an important contribution to the generation of new variants. To our knowledge this is the first report of data allowing the frequency of recombinant isolates in natural populations of an RNA replicon to be estimated.
Collapse
Affiliation(s)
- M A Aranda
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
80
|
Roossinck MJ, Kaplan I, Palukaitis P. Support of a cucumber mosaic virus satellite RNA maps to a single amino acid proximal to the helicase domain of the helper virus. J Virol 1997; 71:608-12. [PMID: 8985390 PMCID: PMC191091 DOI: 10.1128/jvi.71.1.608-612.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cucumber mosaic virus (CMV) is a tripartite RNA virus that can support the replication of satellite RNAs, small molecular parasites of the virus. Satellite RNAs can have a dramatic effect on the helper virus and the host plant in a manner specific to the helper, satellite, and host. Previously, we showed that the Sny-CMV strain is not able to support the replication of the WL1 satellite RNA in zucchini squash and that this phenotype maps to RNA 1. In the present study, we use recombinant cDNA clones of Fny- and Sny-CMV RNA 1 and a site-directed mutant of Fny-CMV RNA 1 to demonstrate that the inability to support WL1 satellite RNA maps to a single amino acid at residue 978 in the 1a protein, proximal to the helicase domain VI. Support of satellite RNA in whole plants and in protoplasts of zucchini squash is analyzed.
Collapse
Affiliation(s)
- M J Roossinck
- Plant Biology Division, The S. R. Noble Foundation, Ardmore, Oklahoma 73402, USA
| | | | | |
Collapse
|
81
|
Abstract
Plant viruses utilize several mechanisms to generate the large amount of genetic diversity found both within and between species. Plant RNA viruses and pararetroviruses probably have highly error prone replication mechanisms, that result in numerous mutations and a quasispecies nature. The plant DNA viruses also exhibit diversity, but the source of this is less clear. Plant viruses frequently use recombination and reassortment as driving forces in evolution, and, occasionally, other mechanisms such as gene duplication and overprinting. The amount of variation found in different species of plant viruses is remarkably different, even though there is no evidence that the mutation rate varies. The origin of plant viruses is uncertain, but several possible theories are proposed. The relationships between some plant and animal viruses suggests a common origin, possibly an insect virus. The propensity for rapid adaptation makes tracing the evolutionary history of viruses difficult, and long term control of virus disease nearly impossible, but it provides an excellent model system for studying general mechanisms of molecular evolution.
Collapse
Affiliation(s)
- M J Roossinck
- Plant Biology Division, The S.R. Noble Foundation, Ardmore, Oklahoma 73402-2180, USA.
| |
Collapse
|
82
|
Maia IG, Séron K, Haenni AL, Bernardi F. Gene expression from viral RNA genomes. PLANT MOLECULAR BIOLOGY 1996; 32:367-391. [PMID: 8980488 DOI: 10.1007/bf00039391] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review is centered on the major strategies used by plant RNA viruses to produce the proteins required for virus multiplication. The strategies at the level of transcription presented here are synthesis of mRNA or subgenomic RNAs from viral RNA templates, and 'cap-snatching'. At the level of translation, several strategies have been evolved by viruses at the steps of initiation, elongation and termination. At the initiation step, the classical scanning mode is the most frequent strategy employed by viruses; however in a vast number of cases, leaky scanning of the initiation complex allows expression of more than one protein from the same RNA sequence. During elongation, frameshift allows the formation of two proteins differing in their carboxy terminus. At the termination step, suppression of termination produces a protein with an elongated carboxy terminus. The last strategy that will be described is co- and/or post-translational cleavage of a polyprotein precursor by virally encoded proteinases. Most (+)-stranded RNA viruses utilize a combination of various strategies.
Collapse
Affiliation(s)
- I G Maia
- Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|
83
|
Klaff P, Riesner D, Steger G. RNA structure and the regulation of gene expression. PLANT MOLECULAR BIOLOGY 1996; 32:89-106. [PMID: 8980476 DOI: 10.1007/bf00039379] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA secondary and tertiary structure is involved in post-transcriptional regulation of gene expression either by exposing specific sequences or through the formation of specific structural motifs. An overview of RNA secondary and tertiary structures known from biophysical studies is followed by a review of examples of the elements of RNA processing, mRNA stability and translation of the messenger. These structural elements comprise sense-antisense double-stranded RNA, hairpin and stem-loop structures, and more complex structures such as bifurcations, pseudoknots and triple-helical elements. Metastable structures formed during RNA folding pathway are also discussed. The examples presented are mostly chosen from plant systems, plant viruses, and viroids. Examples from bacteria or fungi are discussed only when unique regulatory properties of RNA structures have been elucidated in these systems.
Collapse
Affiliation(s)
- P Klaff
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
84
|
Lin NS, Lee YS, Lin BY, Lee CW, Hsu YH. The open reading frame of bamboo mosaic potexvirus satellite RNA is not essential for its replication and can be replaced with a bacterial gene. Proc Natl Acad Sci U S A 1996; 93:3138-42. [PMID: 8610182 PMCID: PMC39775 DOI: 10.1073/pnas.93.7.3138] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A satellite RNA of 836 nt depends on the bamboo mosaic potexvirus (BaMV) for its replication and encapsulation. The BaMV satellite RNA (satBaMV) contains a single open reading frame encoding a 20-kDa nonstructural protein. A full-length infectious cDNA clone has been generated downstream of the T7 RNA polymerase promoter. To investigate the role of the 20-kDa protein encoded by satBaMV, satBaMV transcripts containing mutations in the open reading frame were tested for their ability to replicate in barley protoplasts and in Chenopodium quinoa using BaMV RNA as a helper genome. Unlike other large satellite RNAs, mutants in the open reading frame did not block their replication, suggesting that the 20-kDa protein is not essential for satBaMV replication. Precise replacement of the open reading frame with sequences encoding chloramphenicol acetyltransferase resulted in high level expression of chloramphenicol acetyltransferase in infected C. quinoa, indicating that satBaMV is potentially useful as a satellite-based expression vector.
Collapse
Affiliation(s)
- N S Lin
- Institute of Botany, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
85
|
Abstract
It is clear from the experimental data that there are some similarities in RNA replication for all eukaryotic positive-stranded RNA viruses—that is, the mechanism of polymerization of the nucleotides is probably similar for all. It is noteworthy that all mechanisms appear to utilize host membranes as a site of replication. Membranes appear to function not only as a way of compartmentalizing virus RNA replication but also appear to have a central role in the organization and functioning of the replication complex, and further studies in this area are needed. Within virus supergroups, similarities are evident between animal and plant viruses—for example, in the nature and arrangements of replication genes and in sequence similarities of functional domains. However, it is also clear that there has been considerable divergence, even within supergroups. For example, the animal alpha-viruses have evolved to encode proteinases which play a central controlling function in the replication cycle, whereas this is not common in the plant alpha-like viruses and even when it occurs, as in the tymoviruses, the strategies that have evolved appear to be significantly different. Some of the divergence could be host-dependent and the increasing interest in the role of host proteins in replication should be fruitful in revealing how different systems have evolved. Finally, there are virus supergroups that appear to have no close relatives between animals and plants, such as the animal coronavirus-like supergroup and the plant carmo-like supergroup.
Collapse
Affiliation(s)
- K W Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London, England
| |
Collapse
|
86
|
Abstract
Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent and RNA-dependent RNA synthesis, sequences on the virus mRNAs that enable translational control, and sequences that control processing and intracellular sorting of virus proteins. Use of plant viruses as extrachromosomal expression vectors is also discussed, along with the issue of their stability.
Collapse
Affiliation(s)
- A R Mushegian
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | |
Collapse
|
87
|
Kong Q, Oh JW, Simon AE. Symptom attenuation by a normally virulent satellite RNA of turnip crinkle virus is associated with the coat protein open reading frame. THE PLANT CELL 1995; 7:1625-34. [PMID: 9750054 PMCID: PMC161022 DOI: 10.1105/tpc.7.10.1625] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many satellite RNAs (sat-RNAs) can attenuate or intensify the symptoms produced by their helper virus. Sat-RNA C, associated with turnip crinkle virus (TCV), was previously found to intensify the symptoms of TCV on all plants in which TCV produced visible symptoms. However, when the coat protein open reading frame (ORF) of TCV was precisely exchanged with that of cardamine chlorotic fleck virus, sat-RNA C attenuated the moderate symptoms of the chimeric virus when Arabidopsis plants were coinoculated with the chimeric virus. Symptom attenuation was correlated with a reduction in viral RNA levels in inoculated and uninoculated leaves. In protoplasts, the presence of sat-RNA C resulted in a reduction of approximately 70% in the chimeric viral genomic RNA at 44 hr postinoculation, whereas the sat-RNA wa consistently amplified to higher levels by the chimeric virus than by wild-type TCV. TCV with a deletion of the coat protein ORF also resulted in a similar increase in sat-RNA C levels in protoplasts, indicating that the TVC coat protein, or its ORF, downregulates the synthesis of sat-RNA C. These results suggest that the coat protein or its ORF is a viral determinant for symptom modulation by sat-RNA C, and symptom attenuation is at least partly due to inhibition of virus accumulation.
Collapse
Affiliation(s)
- Q Kong
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
88
|
Graves MV, Roossinck MJ. Characterization of defective RNAs derived from RNA 3 of the Fny strain of cucumber mosaic cucumovirus. J Virol 1995; 69:4746-51. [PMID: 7609040 PMCID: PMC189282 DOI: 10.1128/jvi.69.8.4746-4751.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two defective RNAs (designated D RNA 3 alpha and D RNA 3 beta) were found to be associated with the Fny strain of cucumber mosaic cucumovirus but not with the Sny strain after serial passages in a tobacco host. The D RNAs were derived from RNA 3 by single, in-frame deletions within the 3a open reading frame. A full-length cDNA clone from which biologically active transcripts can be produced in vitro has been constructed for D RNA 3 beta. This transcript can be replicated in tobacco plants infected with subgroup I and II cucumber mosaic cucumovirus strains and with peanut stunt cucumovirus. Translation of D RNA 3 beta in vitro produced a 20-kDa peptide, which was consistent with the predicted coding capacity of the deleted 3a open reading frame. D RNA 3 beta was also associated with polyribosomes isolated from infected tobacco plants. The presence of the D RNAs had no apparent effect upon helper virus yield or symptom production.
Collapse
Affiliation(s)
- M V Graves
- Plant Biology Division, Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73402-2180, USA
| | | |
Collapse
|
89
|
Liu JS, Lin NS. Satellite RNA associated with bamboo mosaic potexvirus shares similarity with satellites associated with sobemoviruses. Arch Virol 1995; 140:1511-4. [PMID: 7544972 DOI: 10.1007/bf01322678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A putative nonstructural protein encoded by a satellite RNA associated with bamboo mosaic potexvirus shares 46% identity with the capsid protein of satellite virus of panicum mosaic sobemovirus. The sequence similarity among satellite plant viruses which have no apparent relationship implies a common origin.
Collapse
Affiliation(s)
- J S Liu
- Institute of Botany, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
90
|
Kennell JC, Saville BJ, Mohr S, Kuiper MT, Sabourin JR, Collins RA, Lambowitz AM. The VS catalytic RNA replicates by reverse transcription as a satellite of a retroplasmid. Genes Dev 1995; 9:294-303. [PMID: 7532606 DOI: 10.1101/gad.9.3.294] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mitochondria of certain natural isolates of Neurospora contain both the Varkud plasmid, which encodes a reverse transcriptase, and a small unrelated RNA (VS RNA) that performs RNA-mediated self-cleavage and ligation reactions. Here, we show that VS RNA is transcribed from a VS plasmid DNA template by the Neurospora mitochondrial RNA polymerase using a promoter located immediately upstream of the RNA self-cleavage site that generates monomeric transcripts. VS RNA is then reverse transcribed by the Varkud plasmid reverse transcriptase to yield a full-length (-) strand cDNA, a predicted replication intermediate. Combined with previous genetic evidence, our results indicate that the VS plasmid replicates by reverse transcription as a satellite of the Varkud plasmid. This mode of replication, unprecedented for a satellite RNA, likely reflects the promiscuity of the Varkud plasmid reverse transcriptase, which does not require a specific primer to initiate cDNA synthesis. Our findings indicate how primitive reverse transcriptases with similar relaxed specificity could have facilitated the evolution of new retroelements.
Collapse
Affiliation(s)
- J C Kennell
- Department of Molecular Genetics, Ohio State University, Columbus 43210-1292
| | | | | | | | | | | | | |
Collapse
|
91
|
Felden B, Florentz C, McPherson A, Giegé R. A histidine accepting tRNA-like fold at the 3'-end of satellite tobacco mosaic virus RNA. Nucleic Acids Res 1994; 22:2882-6. [PMID: 8065897 PMCID: PMC310250 DOI: 10.1093/nar/22.15.2882] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A model of secondary structure is proposed for the 3'-terminal sequence of the satellite tobacco mosaic virus (STMV) RNA on the basis of phylogenetic comparisons with tobacco mosaic virus (TMV) genomic RNA. Sequence homologies and compensatory base changes found between the two related viral RNAs imply that the 3'-end of STMV RNA folds into a tRNA-like domain similar to that found in the TMV RNA. Accordingly, functional assays showed that STMV RNA can be aminoacylated in vitro with histidine by yeast histidyl-tRNA synthetase to plateaus reaching 30%. Histidylation properties of STMV RNA were compared to those of TMV RNA and of a canonical yeast tRNA(His) transcript which both are chargeable to nearly 100% plateau levels. Kinetic data indicate an excellent catalytic efficiency of STMV RNA charging expressed as Vmax/Km ratio, quasi-equivalent to that of TMV RNA, and only 17-fold reduced as compared to that of the yeast tRNAHis transcript. Biological implications of the structural mimicry between the tRNA-like regions of TMV and STMV RNAs are discussed in the light of the relationships of a satellite virus with its helper virus. This is the first report on a chargeable tRNA-like structure at the 3'-end of a satellite virus RNA.
Collapse
Affiliation(s)
- B Felden
- Unité Propre de Recherche Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
92
|
Dalmay T, Rubino L. The nature of multimeric forms of cymbidium ringspot tombusvirus satellite RNA. Arch Virol 1994; 138:161-7. [PMID: 7526827 DOI: 10.1007/bf01310047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The multimeric forms of cymbidium ringspot tombusvirus (CyRSV) satellite (sat) RNA were analysed. Attempts to amplify the putative junction region of oligomers using the polymerase chain reaction (PCR) failed, indicating the absence of such structures. SatRNA-related species having the size double than the unit length were shown to be double-stranded monomers and not single-stranded dimers. Similarly, satRNA species of a size four times the unit length were shown to be constituted by aggregates of double-stranded monomers. The absence of single-stranded CyRSV satRNA oligomers indicates that the formation of multimers is not a step in the replication of this RNA molecule.
Collapse
Affiliation(s)
- T Dalmay
- Dipartimento di Protezione delle Piante, Università degli Studi, Bari, Italy
| | | |
Collapse
|
93
|
Aranda MA, Fraile A, Garcia-Arenal F. Genetic variability and evolution of the satellite RNA of cucumber mosaic virus during natural epidemics. J Virol 1993; 67:5896-901. [PMID: 7690414 PMCID: PMC238009 DOI: 10.1128/jvi.67.10.5896-5901.1993] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genetic structure of populations of cucumber mosaic virus (CMV) satellite RNA (satRNA) and its evolution were analyzed during the course of a CMV epidemic in tomatoes in eastern Spain. A total of 62 variants of CMV-satRNA from epidemic episodes in 1989, 1990, and 1991 were characterized by RNase protection assay (RPA); RPA patterns defined 60 haplotypes in the CMV-satRNA population. RPA of nine CMV-satRNAs of known sequences showed that numbers of nucleotide substitutions per site (dij) between different satRNAs can be estimated from RPA data. Thus, dij were estimated for any possible pair of field CMV-satRNA types, and nucleotide diversities within and between yearly subpopulations were calculated. Also, phylogenetic relationships among CMV-satRNAs were derived from RPA data (by parsimony) or from dij (by neighbor joining). From these analyses, a model for the evolution of CMV-satRNAs in field epidemics can be built. High genetic variability of CMV-satRNA results in very heterogeneous populations, even compared with those of other RNA genomes. The high diversity of the population is maintained through time by the continuous generation of variants by mutation, counterbalanced by negative selection; this results in a certain replacement of haplotypes from year to year. The sequential accumulation of mutations in CMV-satRNA leads to fast genetic divergence to reach what appears to be an upper permitted threshold.
Collapse
Affiliation(s)
- M A Aranda
- Departamento de Pathología Vegetal, Escuela Técnia Superior Ingenieros Agrónomos, Ciudad Universitaria, Madrid, Spain
| | | | | |
Collapse
|
94
|
Crescenzi A, Barbarossa L, Cillo F, Di Franco A, Vovlas N, Gallitelli D. Role of cucumber mosaic virus and its satellite RNA in the etiology of tomato fruit necrosis in Italy. Arch Virol 1993; 131:321-33. [PMID: 7688506 DOI: 10.1007/bf01378635] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cucumber mosaic virus (CMV) isolate supporting a natural 390-ribonucleotide satellite was used to reproduce under experimental conditions a disease of processing tomatoes called fruit necrosis. The virus induced incomplete differentiation of the vascular tissue of fruit stalks, which was the likely cause of the disease. On the other hand, the satellite RNA attenuated viral symptoms on tomato leaves reproducing the disease pattern typically observed in the field. The biological properties of this seemingly new variant of cucumoviral satellite RNAs were determined.
Collapse
Affiliation(s)
- A Crescenzi
- Istituto di Patologia Vegetale, Portici, Italy
| | | | | | | | | | | |
Collapse
|
95
|
Valle RP, Wickner RB. Elimination of L-A double-stranded RNA virus of Saccharomyces cerevisiae by expression of gag and gag-pol from an L-A cDNA clone. J Virol 1993; 67:2764-71. [PMID: 8474174 PMCID: PMC237600 DOI: 10.1128/jvi.67.5.2764-2771.1993] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report that expression of a nearly full-length cDNA clone of the L-A double-stranded RNA virus causes virus loss in a wild-type strain of Saccharomyces cerevisiae. We show that in this system exclusion of the L-A virus is independent of the presence of the packaging site or of cis sites for replication and transcription and completely dependent on expression of functional recombinant gag and gag-pol fusion protein. Thus, this exclusion is not explained in terms of overexpression of packaging signals. Mutation of the chromosomal SKI2 gene, known to repress the copy number of double-stranded RNA cytoplasmic replicons of S. cerevisiae, nearly eliminates the exclusion. We suggest that exclusion is due to competition by proteins expressed from the plasmid for a possibly limiting cellular factor. Our hypotheses on exclusion of L-A proteins may also apply to resistance to plant viruses produced by expression of viral replicases in transgenic plants.
Collapse
Affiliation(s)
- R P Valle
- Section on Genetics of Simple Eukaryotes, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
96
|
Wilson TM. Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci U S A 1993; 90:3134-41. [PMID: 8475051 PMCID: PMC46254 DOI: 10.1073/pnas.90.8.3134] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Since 1986, the ability to confer resistance against an otherwise devastating virus by introducing a single pathogen-derived or virus-targeted sequence into the DNA of a potential host plant has had a marked influence on much of the research effort, focus, and short-term objectives of plant virologists throughout the world. The vast literature on coat protein-mediated protection, for example, attests to our fascination for unraveling fundamental molecular mechanism(s), our (vain) search for a unifying hypothesis, our pragmatic interest in commercially exploitable opportunities for crop protection, and our ingenuity in manipulating transgene constructions to broaden their utility and reduce real or perceived environmental risk issues. Other single dominant, pathogen-derived plant resistance genes have recently been discovered from a wide variety of viruses and are operative in an ever-increasing range of plant species. Additional candidates seem limited only by the effort invested in experimentation and by our ingenuity and imagination. This review attempts to consider, in a critical way, the current state of the art, some exceptions, and some proposed rules. The final impression, from all the case evidence considered, is that normal virus replication requires a subtle blend of host- and virus-coded proteins, present in critical relative concentrations and at specific times and places. Any unregulated superimposition of interfering protein or nucleic acid species can, therefore, result in an apparently virus-resistant plant phenotype.
Collapse
Affiliation(s)
- T M Wilson
- Department of Virology, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| |
Collapse
|