51
|
Sharif K, Bridgewood C, Dubash S, McGonagle D. Intestinal and enthesis innate immunity in early axial spondyloarthropathy. Rheumatology (Oxford) 2021; 59:iv67-iv78. [PMID: 33053197 PMCID: PMC7566539 DOI: 10.1093/rheumatology/keaa408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Indexed: 12/23/2022] Open
Abstract
Axial SpA (axSpA), encompassing AS, is a multifactorial disease that localizes to sites of high spinal biomechanical stress. Much has been written on T cells and adaptive immunity in axSpA, which is understandable given the very strong HLA-B27 disease association. Extra-axial disease characteristically involves the anterior uveal tract, aortic root, lung apex and terminal ileum. Under recent classification, axSpA is classified as an intermediate between autoimmunity and autoinflammatory disease, with the latter term being synonymous with innate immune dysregulation. The purpose of this review is to evaluate the ‘danger signals’ from both the exogenous intestinal microbiotal adjuvants or pathogen-associated molecular patterns that access the circulation and endogenously derived damaged self-tissue or damage-associated molecular patterns derived from entheses and other sites of high biomechanical stress or damage that may serve as key drivers of axSpA onset, evolution, disease flares and eventual outcomes.
Collapse
Affiliation(s)
- Kassem Sharif
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Sheba Medical Center, Tel Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Sayam Dubash
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK
| |
Collapse
|
52
|
Reekie IR, Sharma S, Foers A, Sherlock J, Coles MC, Dick AD, Denniston AK, Buckley CD. The Cellular Composition of the Uveal Immune Environment. Front Med (Lausanne) 2021; 8:721953. [PMID: 34778287 PMCID: PMC8586083 DOI: 10.3389/fmed.2021.721953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
The uveal tract consists of the iris, the ciliary body and the choroid; these three distinct tissues form a continuous layer within the eye. Uveitis refers to inflammation of any region of the uveal tract. Despite being grouped together anatomically, the iris, ciliary body and choroid are distinct functionally, and inflammatory diseases may affect only one part and not the others. Cellular structure of tissues direct their function, and understanding the cellular basis of the immune environment of a tissue in health, the "steady state" on which the perturbations of disease are superimposed, is vital to understanding the pathogenesis of those diseases. A contemporary understanding of the immune system accepts that haematopoietic and yolk sac derived leukocytes, though vital, are not the only players of importance. An array of stromal cells, connective tissue cells such as fibroblasts and endothelial cells, may also have a role in the inflammatory reaction seen in several immune-mediated diseases. In this review we summarise what is known about the cellular composition of the uveal tract and the roles these disparate cell types have to play in immune homeostasis. We also discuss some unanswered questions surrounding the constituents of the resident leukocyte population of the different uveal tissues, and we look ahead to the new understanding that modern investigative techniques such as single cell transcriptomics, multi-omic data integration and highly-multiplexed imaging techniques may bring to the study of the uvea and uveitis, as they already have to other immune mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ian R. Reekie
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Srilakshmi Sharma
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford Eye Hospital, Oxford, United Kingdom
| | - Andrew Foers
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Jonathan Sherlock
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Mark C. Coles
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Andrew D. Dick
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Institute of Ophthalmology, Moorfields Eye Hospital, University College London, London, United Kingdom
| | - Alastair K. Denniston
- Institute for Inflammation and Ageing, College of Medical and Dental Sciences, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
| | - Christopher D. Buckley
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Institute for Inflammation and Ageing, College of Medical and Dental Sciences, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Christopher D. Buckley
| |
Collapse
|
53
|
Wang LT, Ma KSK. Correspondence to 'Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression'. Ann Rheum Dis 2020; 81:e254. [PMID: 33023961 DOI: 10.1136/annrheumdis-2020-218995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Li-Tzu Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Kevin Sheng-Kai Ma
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
54
|
Watad A, Bridgewood C, McGonagle DG. Response to: 'Correspondence to 'Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression'' by Wang and Ma. Ann Rheum Dis 2020; 81:e255. [PMID: 33023960 DOI: 10.1136/annrheumdis-2020-219047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Abdulla Watad
- Internal medicine, Sheba Medical Center at Tel Hashomer, Tel Hashomer, Israel
| | | | - Dennis G McGonagle
- Chapel Allerton Hospital, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
55
|
Revisiting the gut-joint axis: links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol 2020; 16:415-433. [PMID: 32661321 DOI: 10.1038/s41584-020-0454-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Gut inflammation is strongly associated with spondyloarthritis (SpA), as exemplified by the high prevalence of inflammatory bowel disease (IBD) and the even higher occurrence of subclinical gut inflammation in patients with SpA. The gut-joint axis of inflammation in SpA is further reinforced by similarities in immunopathogenesis at both anatomical sites and by the clinical success of therapies blocking TNF and IL-23 in IBD and in some forms of SpA. Many genetic risk factors are shared between SpA and IBD, and changes in the composition of gut microbiota are seen in both diseases. Current dogma is that inflammation in SpA initiates in the gut and leads to joint inflammation; however, although conceptually attractive, some research does not support this causal relationship. For example, therapies targeting IL-17A are efficacious in the joint but not the gut, and interfering with gut trafficking by targeting molecules such as α4β7 in IBD can lead to onset or flares of SpA. Several important knowledge gaps remain that must be addressed in future studies. Determining the true nature of the gut-joint axis has real-world implications for the treatment of patients with co-incident IBD and SpA and for the repurposing of therapeutics from one disease to the other.
Collapse
|
56
|
Alunno A, Bistoni O, Gerli R. Beware of wolves in sheep's clothing: immune cell plasticity and instability in health and disease. Ann Rheum Dis 2020; 81:e129. [PMID: 32532751 DOI: 10.1136/annrheumdis-2020-218094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
57
|
Watad A, Rowe H, Newton D, Bridgewood C, McGonagle DG. Is a human in vitro enthesitis model relevant to SpA-associated enthesitis? Response to: ‘Beware of wolves in sheep's clothing: immune cell plasticity and instability in health and disease’ by Alunno et al. Ann Rheum Dis 2020; 81:e130. [DOI: 10.1136/annrheumdis-2020-218151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/03/2022]
|