51
|
Shah RM, McKenzie EJ, Rosin MT, Jadhav SR, Gondalia SV, Rosendale D, Beale DJ. An Integrated Multi-Disciplinary Perspectivefor Addressing Challenges of the Human Gut Microbiome. Metabolites 2020; 10:E94. [PMID: 32155792 PMCID: PMC7143645 DOI: 10.3390/metabo10030094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the human gut microbiome has grown exponentially. Advances in genome sequencing technologies and metagenomics analysis have enabled researchers to study microbial communities and their potential function within the context of a range of human gut related diseases and disorders. However, up until recently, much of this research has focused on characterizing the gut microbiological community structure and understanding its potential through system wide (meta) genomic and transcriptomic-based studies. Thus far, the functional output of these microbiomes, in terms of protein and metabolite expression, and within the broader context of host-gut microbiome interactions, has been limited. Furthermore, these studies highlight our need to address the issues of individual variation, and of samples as proxies. Here we provide a perspective review of the recent literature that focuses on the challenges of exploring the human gut microbiome, with a strong focus on an integrated perspective applied to these themes. In doing so, we contextualize the experimental and technical challenges of undertaking such studies and provide a framework for capitalizing on the breadth of insight such approaches afford. An integrated perspective of the human gut microbiome and the linkages to human health will pave the way forward for delivering against the objectives of precision medicine, which is targeted to specific individuals and addresses the issues and mechanisms in situ.
Collapse
Affiliation(s)
- Rohan M. Shah
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| | - Elizabeth J. McKenzie
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Magda T. Rosin
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Snehal R. Jadhav
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Shakuntla V. Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | | | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| |
Collapse
|
52
|
Álvarez-Cilleros D, Ramos S, López-Oliva ME, Escrivá F, Álvarez C, Fernández-Millán E, Martín MÁ. Cocoa diet modulates gut microbiota composition and improves intestinal health in Zucker diabetic rats. Food Res Int 2020; 132:109058. [PMID: 32331673 DOI: 10.1016/j.foodres.2020.109058] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/28/2019] [Accepted: 01/31/2020] [Indexed: 01/02/2023]
Abstract
Cocoa supplementation improves glucose metabolism in Zucker diabetic fatty (ZDF) rats via multiple mechanisms. Furthermore, cocoa rich-diets modify the intestinal microbiota composition both in humans and rats in healthy conditions. Accordingly, we hypothesized that cocoa could interact with the gut microbiota (GM) in ZDF rats, contributing to their antidiabetic effects. Therefore, here we investigate the effect of cocoa intake on gut health and GM in ZDF diabetic rats. Male ZDF rats were fed with standard (ZDF-C) or 10% cocoa-rich diet (ZDF-Co) during 10 weeks. Zucker Lean animals (ZL) received the standard diet. Colon tissues were obtained to determine the barrier integrity and the inflammatory status of the intestine and faeces were analysed for microbial composition, short-chain fatty acids (SCFA) and lactate levels. We found that cocoa supplementation up-regulated the levels of the tight junction protein Zonula occludens-1 (ZO-1) and the mucin glycoprotein and reduced the expression of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1) in the colon of ZDF diabetic animals. Additionally, cocoa modulated the microbial composition of the ZDF rats to values similar to those of the lean group. Importantly, cocoa treatment increased the relative abundance of acetate-producing bacteria such as Blautia and prevented the increase in the relative amount of lactate-producing bacteria (mainly Enterococcus and Lactobacillus genera) in ZDF diabetic animals. Accordingly, the total levels of SCFA (mainly acetate) increased significantly in the faeces of ZDF-Co diabetic rats. Finally, modified GM was closely associated with improved biochemical parameters related to glucose homeostasis and intestinal integrity and inflammation. These findings demonstrate for the first time that cocoa intake modifies intestinal bacteria composition towards a healthier microbial profile in diabetic animals and suggest that these changes could be associated with the improved glucose homeostasis and gut health induced by cocoa in ZDF diabetic rats.
Collapse
Affiliation(s)
| | - Sonia Ramos
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - María Elvira López-Oliva
- Departamento de Fisiología. Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Escrivá
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Carmen Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| | - María Ángeles Martín
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
53
|
Quesada-Molina M, Muñoz-Garach A, Tinahones FJ, Moreno-Indias I. A New Perspective on the Health Benefits of Moderate Beer Consumption: Involvement of the Gut Microbiota. Metabolites 2019; 9:metabo9110272. [PMID: 31717482 PMCID: PMC6918268 DOI: 10.3390/metabo9110272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Beer is the most widely consumed fermented beverage in the world. A moderate consumption of beer has been related to important healthy outcomes, although the mechanisms have not been fully understood. Beer contains only a few raw ingredients but transformations that occur during the brewing process turn beer into a beverage that is enriched in micronutrients. Beer also contains an important number of phenolic compounds and it could be considered to be a source of dietary polyphenols. On the other hand, gut microbiota is now attracting special attention due to its metabolic effects and as because polyphenols are known to interact with gut microbiota. Among others, ferulic acid, xanthohumol, catechins, epicatechins, proanthocyanidins, quercetin, and rutin are some of the beer polyphenols that have been related to microbiota. However, scarce literature exists about the effects of moderate beer consumption on gut microbiota. In this review, we focus on the relationship between beer polyphenols and gut microbiota, with special emphasis on the health outcomes.
Collapse
Affiliation(s)
- Mar Quesada-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
| | - Araceli Muñoz-Garach
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010 Málaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010 Málaga, Spain
- Correspondence: (F.J.T.); (I.M.-I.); Tel.: +34-951-036-2647 (F.J.T. & I.M.-I.)
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010 Málaga, Spain
- Correspondence: (F.J.T.); (I.M.-I.); Tel.: +34-951-036-2647 (F.J.T. & I.M.-I.)
| |
Collapse
|
54
|
Landberg R, Manach C, Kerckhof FM, Minihane AM, Saleh RNM, De Roos B, Tomas-Barberan F, Morand C, Van de Wiele T. Future prospects for dissecting inter-individual variability in the absorption, distribution and elimination of plant bioactives of relevance for cardiometabolic endpoints. Eur J Nutr 2019; 58:21-36. [PMID: 31642982 PMCID: PMC6851035 DOI: 10.1007/s00394-019-02095-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE The health-promoting potential of food-derived plant bioactive compounds is evident but not always consistent across studies. Large inter-individual variability may originate from differences in digestion, absorption, distribution, metabolism and excretion (ADME). ADME can be modulated by age, sex, dietary habits, microbiome composition, genetic variation, drug exposure and many other factors. Within the recent COST Action POSITIVe, large-scale literature surveys were undertaken to identify the reasons and extent of inter-individual variability in ADME of selected plant bioactive compounds of importance to cardiometabolic health. The aim of the present review is to summarize the findings and suggest a framework for future studies designed to investigate the etiology of inter-individual variability in plant bioactive ADME and bioefficacy. RESULTS Few studies have reported individual data on the ADME of bioactive compounds and on determinants such as age, diet, lifestyle, health status and medication, thereby limiting a mechanistic understanding of the main drivers of variation in ADME processes observed across individuals. Metabolomics represent crucial techniques to decipher inter-individual variability and to stratify individuals according to metabotypes reflecting the intrinsic capacity to absorb and metabolize bioactive compounds. CONCLUSION A methodological framework was developed to decipher how the contribution from genetic variants or microbiome variants to ADME of bioactive compounds can be predicted. Future study design should include (1) a larger number of study participants, (2) individual and full profiling of all possible determinants of internal exposure, (3) the presentation of individual ADME data and (4) incorporation of omics platforms, such as genomics, microbiomics and metabolomics in ADME and efficacy studies.
Collapse
Affiliation(s)
- Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Claudine Manach
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne-Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Rasha Noureldin M Saleh
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Baukje De Roos
- University of Aberdeen, the Rowett Institute, Aberdeen, UK
| | - Francisco Tomas-Barberan
- Food and Health Laboratory, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Christine Morand
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
55
|
de Roos B, Aura AM, Bronze M, Cassidy A, Conesa MTG, Gibney ER, Greyling A, Kaput J, Kerem Z, Knežević N, Kroon P, Landberg R, Manach C, Milenkovic D, Rodriguez-Mateos A, Tomás-Barberán FA, van de Wiele T, Morand C. Targeting the delivery of dietary plant bioactives to those who would benefit most: from science to practical applications. Eur J Nutr 2019; 58:65-73. [PMID: 31637468 PMCID: PMC6851046 DOI: 10.1007/s00394-019-02075-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/02/2019] [Indexed: 03/19/2023]
Abstract
Background A healthy diet and optimal lifestyle choices are amongst the most important actions for the prevention of cardiometabolic diseases. Despite this, it appears difficult to convince consumers to select more nutritious foods. Furthermore, the development and production of healthier foods do not always lead to economic profits for the agro-food sector. Most dietary recommendations for the general population represent a “one-size-fits-all approach” which does not necessarily ensure that everyone has adequate exposure to health-promoting constituents of foods. Indeed, we now know that individuals show a high variability in responses when exposed to specific nutrients, foods, or diets. Purpose This review aims to highlight our current understanding of inter-individual variability in response to dietary bioactives, based on the integration of findings of the COST Action POSITIVe. We also evaluate opportunities for translation of scientific knowledge on inter-individual variability in response to dietary bioactives, once it becomes available, into practical applications for stakeholders, such as the agro-food industry. The potential impact from such applications will form an important impetus for the food industry to develop and market new high quality and healthy foods for specific groups of consumers in the future. This may contribute to a decrease in the burden of diet-related chronic diseases. Individual differences in ADME (Absorption, Digestion, Metabolism and Excretion) is believed to underpin much of the inter-individual variation in responses. Recent developments in the area of food metabolome databases and fast improvements in innovative metabotyping technologies hold great promise for improved profiling of dietary intake, exposure to individual ingredients, foods and dietary patterns, as well as our ability to identify individual responsiveness. The food industry needs well-defined population clusters or targets in order to be able to design “personalized products”. There are indeed excellent industrial opportunities for foods that modulate gut microbiota, and thereby enable the delivery of food bioactive metabolites. It is currently not clear whether knowledge on individual nutrient needs, based on genetic or metagenomic data, would affect long-term dietary and health behaviours. Data to support the development of dietary recommendations may need to be generated by new n-of-1-based study designs in the future.
Collapse
Affiliation(s)
- Baukje de Roos
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland, PO Box 1000, Tietotie 2, Espoo, Finland
| | - Maria Bronze
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Aedin Cassidy
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - María-Teresa Garcia Conesa
- Food and Health Laboratory. Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Arno Greyling
- Unilever Research and Development Vlaardingen, Vlaardingen, The Netherlands
| | | | - Zohar Kerem
- R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Paul Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Claudine Manach
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Dragan Milenkovic
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| | - Francisco A Tomás-Barberán
- Food and Health Laboratory. Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Tom van de Wiele
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Christine Morand
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
56
|
Márquez Campos E, Stehle P, Simon MC. Microbial Metabolites of Flavan-3-Ols and Their Biological Activity. Nutrients 2019; 11:nu11102260. [PMID: 31546992 PMCID: PMC6836129 DOI: 10.3390/nu11102260] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Flavan-3-ols are the main contributors to polyphenol intake. Many varying beneficial health effects in humans have been attributed to them, including the prevention of cardiovascular disease and cancer. Nevertheless, the mechanisms by which these flavonoids could exert beneficial functions are not entirely known. Several in vitro studies and in vivo animal models have tried to elucidate the role of the specific colonic metabolites on the health properties that are attributed to the parent compounds since a larger number of ingested flavan-3-ols reach the colon and undergo there microbial metabolism. Many new studies about this topic have been performed over the last few years and, to the best of our knowledge, no scientific literature review regarding the bioactivity of all identified microbial metabolites of flavan-3-ols has been recently published. Therefore, the aim of this review is to present the current status of knowledge on the potential health benefits of flavan-3-ol microbial metabolites in humans while using the latest evidence on their biological activity.
Collapse
Affiliation(s)
- Estefanía Márquez Campos
- Department of Nutrition and Food Sciences, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany.
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany.
| | - Peter Stehle
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany.
| | - Marie-Christine Simon
- Department of Nutrition and Food Sciences, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
57
|
Mayorga-Gross AL, Esquivel P. Impact of Cocoa Products Intake on Plasma and Urine Metabolites: A Review of Targeted and Non-Targeted Studies in Humans. Nutrients 2019; 11:E1163. [PMID: 31137636 PMCID: PMC6566337 DOI: 10.3390/nu11051163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 01/18/2023] Open
Abstract
Cocoa is continuously drawing attention due to growing scientific evidence suggesting its effects on health. Flavanols and methylxanthines are some of the most important bioactive compounds present in cocoa. Other important bioactives, such as phenolic acids and lactones, are derived from microbial metabolism. The identification of the metabolites produced after cocoa intake is a first step to understand the overall effect on human health. In general, after cocoa intake, methylxanthines show high absorption and elimination efficiencies. Catechins are transformed mainly into sulfate and glucuronide conjugates. Metabolism of procyanidins is highly influenced by the polymerization degree, which hinders their absorption. The polymerization degree over three units leads to biotransformation by the colonic microbiota, resulting in valerolactones and phenolic acids, with higher excretion times. Long term intervention studies, as well as untargeted metabolomic approaches, are scarce. Contradictory results have been reported concerning matrix effects and health impact, and there are still scientific gaps that have to be addresed to understand the influence of cocoa intake on health. This review addresses different cocoa clinical studies, summarizes the different methodologies employed as well as the metabolites that have been identified in plasma and urine after cocoa intake.
Collapse
Affiliation(s)
- Ana Lucía Mayorga-Gross
- Centro Nacional de Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica.
| | - Patricia Esquivel
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica.
| |
Collapse
|