51
|
Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 2016; 17:207-23. [PMID: 26948815 DOI: 10.1038/nrg.2016.4] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Networks of regulatory enhancers dictate distinct cell identities and cellular responses to diverse signals by instructing precise spatiotemporal patterns of gene expression. However, 35 years after their discovery, enhancer functions and mechanisms remain incompletely understood. Intriguingly, recent evidence suggests that many, if not all, functional enhancers are themselves transcription units, generating non-coding enhancer RNAs. This observation provides a fundamental insight into the inter-regulation between enhancers and promoters, which can both act as transcription units; it also raises crucial questions regarding the potential biological roles of the enhancer transcription process and non-coding enhancer RNAs. Here, we review research progress in this field and discuss several important, unresolved questions regarding the roles and mechanisms of enhancers in gene regulation.
Collapse
Affiliation(s)
- Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Dimple Notani
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| |
Collapse
|
52
|
Abstract
The highly conserved Nus factors of bacteria were discovered as essential host proteins for the growth of temperate phage λ in Escherichia coli. Later, their essentiality and functions in transcription, translation, and, more recently, in DNA repair have been elucidated. Close involvement of these factors in various gene networks and circuits is also emerging from recent genomic studies. We have described a detailed overview of their biochemistry, structures, and various cellular functions, as well as their interactions with other macromolecules. Towards the end, we have envisaged different uncharted areas of studies with these factors, including their participation in pathogenicity.
Collapse
|
53
|
Horn AE, Goodrich JA, Kugel JF. Single molecule studies of RNA polymerase II transcription in vitro. Transcription 2015; 5:e27608. [PMID: 25764112 DOI: 10.4161/trns.27608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic mRNA transcription by RNA polymerase II (RNAP II) is the first step in gene expression and a key determinant of cellular regulation. Elucidating the mechanism by which RNAP II synthesizes RNA is therefore vital to determining how genes are controlled under diverse biological conditions. Significant advances in understanding RNAP II transcription have been achieved using classical biochemical and structural techniques; however, aspects of the transcription mechanism cannot be assessed using these approaches. The application of single-molecule techniques to study RNAP II transcription has provided new insight only obtainable by studying molecules in this complex system one at a time.
Collapse
Affiliation(s)
- Abigail E Horn
- a Department of Chemistry and Biochemistry; University of Colorado; Boulder, CO USA
| | | | | |
Collapse
|
54
|
Derrington IM, Craig JM, Stava E, Laszlo AH, Ross BC, Brinkerhoff H, Nova IC, Doering K, Tickman BI, Ronaghi M, Mandell JG, Gunderson KL, Gundlach JH. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat Biotechnol 2015; 33:1073-5. [PMID: 26414351 PMCID: PMC4915380 DOI: 10.1038/nbt.3357] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
Present techniques for measuring the motion of single motor proteins, such as FRET and optical tweezers, are limited to a resolution of ~300 pm. We use ion current modulation through the protein nanopore MspA to observe translocation of helicase Hel308 on DNA with up to ~40 picometer sensitivity. This approach should be applicable to any protein that translocates on DNA or RNA, including helicases, polymerases, recombinases and DNA repair enzymes.
Collapse
Affiliation(s)
- Ian M Derrington
- Department of Physics, University of Washington, Seattle, Washington, USA
| | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, Washington, USA
| | - Eric Stava
- Illumina Inc., San Diego, California, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, Seattle, Washington, USA
| | - Brian C Ross
- Department of Physics, University of Washington, Seattle, Washington, USA
| | - Henry Brinkerhoff
- Department of Physics, University of Washington, Seattle, Washington, USA
| | - Ian C Nova
- Department of Physics, University of Washington, Seattle, Washington, USA
| | - Kenji Doering
- Department of Physics, University of Washington, Seattle, Washington, USA
| | - Benjamin I Tickman
- Department of Physics, University of Washington, Seattle, Washington, USA
| | | | | | | | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
55
|
Scheidegger A, Nechaev S. RNA polymerase II pausing as a context-dependent reader of the genome. Biochem Cell Biol 2015; 94:82-92. [PMID: 26555214 DOI: 10.1139/bcb-2015-0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Sergei Nechaev
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| |
Collapse
|
56
|
Walder R, Paik DH, Bull MS, Sauer C, Perkins TT. Ultrastable measurement platform: sub-nm drift over hours in 3D at room temperature. OPTICS EXPRESS 2015; 23:16554-16564. [PMID: 26191667 DOI: 10.1364/oe.23.016554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Advanced optical traps can probe single molecules with Ångstrom-scale precision, but drift limits the utility of these instruments. To achieve Å-scale stability, a differential measurement scheme between a pair of laser foci was introduced that substantially exceeds the inherent mechanical stability of various types of microscopes at room temperature. By using lock-in detection to measure both lasers with a single quadrant photodiode, we enhanced the differential stability of this optical reference frame and thereby stabilized an optical-trapping microscope to 0.2 Å laterally over 100 s based on the Allan deviation. In three dimensions, we achieved stabilities of 1 Å over 1,000 s and 1 nm over 15 h. This stability was complemented by high measurement bandwidth (100 kHz). Overall, our compact back-scattered detection enables an ultrastable measurement platform compatible with optical traps, atomic force microscopy, and optical microscopy, including super-resolution techniques.
Collapse
|
57
|
Morin JA, Cao FJ, Lázaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B. Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Res 2015; 43:3643-52. [PMID: 25800740 PMCID: PMC4402526 DOI: 10.1093/nar/gkv204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/14/2015] [Accepted: 02/27/2015] [Indexed: 11/25/2022] Open
Abstract
During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN).
Collapse
Affiliation(s)
- José A Morin
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain
| | - Francisco J Cao
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - José M Lázaro
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| | - José M Valpuesta
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - José L Carrascosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| |
Collapse
|
58
|
Yu J, Da LT, Huang X. Constructing kinetic models to elucidate structural dynamics of a complete RNA polymerase II elongation cycle. Phys Biol 2014; 12:016004. [DOI: 10.1088/1478-3975/12/1/016004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
59
|
Accessory Replicative Helicases and the Replication of Protein-Bound DNA. J Mol Biol 2014; 426:3917-3928. [DOI: 10.1016/j.jmb.2014.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022]
|
60
|
|
61
|
Chong S, Chen C, Ge H, Xie XS. Mechanism of transcriptional bursting in bacteria. Cell 2014; 158:314-326. [PMID: 25036631 DOI: 10.1016/j.cell.2014.05.038] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/17/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022]
Abstract
Transcription of highly expressed genes has been shown to occur in stochastic bursts. But the origin of such ubiquitous phenomenon has not been understood. Here, we present the mechanism in bacteria. We developed a high-throughput, in vitro, single-molecule assay to follow transcription on individual DNA templates in real time. We showed that positive supercoiling buildup on a DNA segment by transcription slows down transcription elongation and eventually stops transcription initiation. Transcription can be resumed upon gyrase binding to the DNA segment. Furthermore, using single-cell mRNA counting fluorescence in situ hybridization (FISH), we found that duty cycles of transcriptional bursting depend on the intracellular gyrase concentration. Together, these findings prove that transcriptional bursting of highly expressed genes in bacteria is primarily caused by reversible gyrase dissociation from and rebinding to a DNA segment, changing the supercoiling level of the segment.
Collapse
Affiliation(s)
- Shasha Chong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chongyi Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hao Ge
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China; Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing 100871, China
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China.
| |
Collapse
|
62
|
Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles. Nat Protoc 2014; 9:2206-23. [PMID: 25144271 DOI: 10.1038/nprot.2014.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This protocol describes how to monitor individual naturally supercoiled circular DNA plasmids bound via peptide nucleic acid (PNA) handles between a bead and a surface. The protocol was developed for single-molecule investigation of the dynamics of supercoiled DNA, and it allows the investigation of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti-digoxigenin-coated glass cover slide, and one conjugated with biotin for attachment to a submicron-sized streptavidin-coated polystyrene bead. Plasmids are constructed, purified and incubated with the PNA handles. The dynamics of the construct is analyzed by tracking the tethered bead using video microscopy: less supercoiling results in more movement, and more supercoiling results in less movement. In contrast to other single-molecule methodologies, the current methodology allows for studying DNA in its naturally supercoiled state with constant linking number and constant writhe. The protocol has potential for use in studying the influence of supercoils on the dynamics of DNA and its associated proteins, e.g., topoisomerase. The procedure takes ~4 weeks.
Collapse
|
63
|
Abstract
Comparative genome analyses reveal that organismal complexity scales not with gene number but with gene regulation. Recent efforts indicate that the human genome likely contains hundreds of thousands of enhancers, with a typical gene embedded in a milieu of tens of enhancers. Proliferation of cis-regulatory DNAs is accompanied by increased complexity and functional diversification of transcriptional machineries recognizing distal enhancers and core promoters and by the high-order spatial organization of genetic elements. We review progress in unraveling one of the outstanding mysteries of modern biology: the dynamic communication of remote enhancers with target promoters in the specification of cellular identity.
Collapse
|
64
|
Affiliation(s)
- Thomas T. Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309;
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
65
|
Dangkulwanich M, Ishibashi T, Bintu L, Bustamante C. Molecular mechanisms of transcription through single-molecule experiments. Chem Rev 2014; 114:3203-23. [PMID: 24502198 PMCID: PMC3983126 DOI: 10.1021/cr400730x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Manchuta Dangkulwanich
- Jason L. Choy Laboratory of Single-Molecule
Biophysics, Department of Chemistry, California Institute
for Quantitative Biosciences, Department of Physics, and Department of Molecular and Cell
Biology, Howard Hughes Medical Institute,
and Kavli Energy NanoSciences Institute, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Toyotaka Ishibashi
- Jason L. Choy Laboratory of Single-Molecule
Biophysics, Department of Chemistry, California Institute
for Quantitative Biosciences, Department of Physics, and Department of Molecular and Cell
Biology, Howard Hughes Medical Institute,
and Kavli Energy NanoSciences Institute, University of California,
Berkeley, Berkeley, California 94720, United States
- Division
of Life Science, Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Lacramioara Bintu
- Jason L. Choy Laboratory of Single-Molecule
Biophysics, Department of Chemistry, California Institute
for Quantitative Biosciences, Department of Physics, and Department of Molecular and Cell
Biology, Howard Hughes Medical Institute,
and Kavli Energy NanoSciences Institute, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Bioengineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule
Biophysics, Department of Chemistry, California Institute
for Quantitative Biosciences, Department of Physics, and Department of Molecular and Cell
Biology, Howard Hughes Medical Institute,
and Kavli Energy NanoSciences Institute, University of California,
Berkeley, Berkeley, California 94720, United States
- Physical
Biosciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
66
|
Affiliation(s)
- Daniel Duzdevich
- Department of Biological Sciences, Department of Chemistry, and Department of
Biochemistry and Molecular
Biophysics and the Howard Hughes Medical Institute, Columbia University, 650 West 168th Street, New York, New York 10032, United
States
| | - Sy Redding
- Department of Biological Sciences, Department of Chemistry, and Department of
Biochemistry and Molecular
Biophysics and the Howard Hughes Medical Institute, Columbia University, 650 West 168th Street, New York, New York 10032, United
States
| | - Eric C. Greene
- Department of Biological Sciences, Department of Chemistry, and Department of
Biochemistry and Molecular
Biophysics and the Howard Hughes Medical Institute, Columbia University, 650 West 168th Street, New York, New York 10032, United
States
| |
Collapse
|
67
|
Silverstein TD, Gibb B, Greene EC. Visualizing protein movement on DNA at the single-molecule level using DNA curtains. DNA Repair (Amst) 2014; 20:94-109. [PMID: 24598576 DOI: 10.1016/j.dnarep.2014.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/18/2022]
Abstract
A fundamental feature of many nucleic-acid binding proteins is their ability to move along DNA either by diffusion-based mechanisms or by ATP-hydrolysis driven translocation. For example, most site-specific DNA-binding proteins must diffuse to some extent along DNA to either find their target sites, or to otherwise fulfill their biological roles. Similarly, nucleic-acid translocases such as helicases and polymerases must move along DNA to fulfill their functions. In both instances, the proteins must also be capable of moving in crowded environments while navigating through DNA-bound obstacles. These types of behaviors can be challenging to analyze by bulk biochemical methods because of the transient nature of the interactions, and/or heterogeneity of the reaction intermediates. The advent of single-molecule methodologies has overcome some of these problems, and has led to many new insights into the mechanisms that contribute to protein motion along DNA. We have developed DNA curtains as a tool to facilitate single molecule observations of protein-nucleic acid interactions, and we have applied these new research tools to systems involving both diffusive-based motion as well as ATP directed translocation. Here we highlight these studies by first discussing how diffusion contributes to target searches by proteins involved in post-replicative mismatch repair. We then discuss DNA curtain assays of two different DNA translocases, RecBCD and FtsK, which participate in homologous DNA recombination and site-specific DNA recombination, respectively.
Collapse
Affiliation(s)
- Timothy D Silverstein
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Bryan Gibb
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
68
|
Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL. Optical tweezers analysis of DNA-protein complexes. Chem Rev 2014; 114:3087-119. [PMID: 24443844 DOI: 10.1021/cr4003006] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Iddo Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, VU University Amsterdam , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
69
|
Chowdhury D. Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules. Biophys J 2014; 104:2331-41. [PMID: 23746505 DOI: 10.1016/j.bpj.2013.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 01/14/2023] Open
Abstract
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here.
Collapse
|
70
|
Abel GR, Cao BH, Hein JE, Ye T. Covalent, sequence-specific attachment of long DNA molecules to a surface using DNA-templated click chemistry. Chem Commun (Camb) 2014; 50:8131-3. [DOI: 10.1039/c4cc02900c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a novel method that covalently and sequence-specifically attaches long DNA molecules to a surface that is compatible with high-resolution atomic force microscopy (AFM) imaging.
Collapse
Affiliation(s)
- Gary R. Abel
- Chemistry and Chemical Biology
- School of Natural Sciences
- University of California
- Merced, USA
| | - Blessing Huynh Cao
- Chemistry and Chemical Biology
- School of Natural Sciences
- University of California
- Merced, USA
| | - Jason E. Hein
- Chemistry and Chemical Biology
- School of Natural Sciences
- University of California
- Merced, USA
| | - Tao Ye
- Chemistry and Chemical Biology
- School of Natural Sciences
- University of California
- Merced, USA
| |
Collapse
|
71
|
Affiliation(s)
- Sanghwa Lee
- Department
of Physics and Astronomy, Department of Biophysics and Chemical Biology,
and National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Sungchul Hohng
- Department
of Physics and Astronomy, Department of Biophysics and Chemical Biology,
and National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
72
|
Jin DJ, Cagliero C, Zhou YN. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 2013; 113:8662-82. [PMID: 23941620 PMCID: PMC3830623 DOI: 10.1021/cr4001429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Yan Ning Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
73
|
Dangkulwanich M, Ishibashi T, Liu S, Kireeva ML, Lubkowska L, Kashlev M, Bustamante CJ. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife 2013; 2:e00971. [PMID: 24066225 PMCID: PMC3778554 DOI: 10.7554/elife.00971] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/13/2013] [Indexed: 12/31/2022] Open
Abstract
During transcription elongation, RNA polymerase has been assumed to attain equilibrium between pre- and post-translocated states rapidly relative to the subsequent catalysis. Under this assumption, recent single-molecule studies proposed a branched Brownian ratchet mechanism that necessitates a putative secondary nucleotide binding site on the enzyme. By challenging individual yeast RNA polymerase II with a nucleosomal barrier, we separately measured the forward and reverse translocation rates. Surprisingly, we found that the forward translocation rate is comparable to the catalysis rate. This finding reveals a linear, non-branched ratchet mechanism for the nucleotide addition cycle in which translocation is one of the rate-limiting steps. We further determined all the major on- and off-pathway kinetic parameters in the elongation cycle. The resulting translocation energy landscape shows that the off-pathway states are favored thermodynamically but not kinetically over the on-pathway states, conferring the enzyme its propensity to pause and furnishing the physical basis for transcriptional regulation. DOI:http://dx.doi.org/10.7554/eLife.00971.001.
Collapse
Affiliation(s)
- Manchuta Dangkulwanich
- Jason L Choy Laboratory of Single-Molecule Biophysics , University of California, Berkeley , Berkeley , United States ; Department of Chemistry , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | |
Collapse
|
74
|
Huang HH, Lindblad P. Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng 2013; 7:10. [PMID: 23607865 PMCID: PMC3724501 DOI: 10.1186/1754-1611-7-10] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/05/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cyanobacteria, prokaryotic cells with oxygenic photosynthesis, are excellent bioengineering targets to convert solar energy into solar fuels. Tremendous genetic engineering approaches and tools have been and still are being developed for prokaryotes. However, the progress for cyanobacteria is far behind with a specific lack of non-native inducible promoters. RESULTS We report the development of engineered TetR-regulated promoters with a wide dynamic range of transcriptional regulation. An optimal 239 (±16) fold induction in darkness (white-light-activated heterotrophic growth, 24 h) and an optimal 290 (±93) fold induction in red light (photoautotrophic growth, 48 h) were observed with the L03 promoter in cells of the unicellular cyanobacterium Synechocystis sp. strain ATCC27184 (i.e. glucose-tolerant Synechocystis sp. strain PCC 6803). By altering only few bases of the promoter in the narrow region between the -10 element and transcription start site significant changes in the promoter strengths, and consequently in the range of regulations, were observed. CONCLUSIONS The non-native inducible promoters developed in the present study are ready to be used to further explore the notion of custom designed cyanobacterial cells in the complementary frameworks of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hsin-Ho Huang
- Microbial Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, P,O, Box 523, SE-75120, Uppsala, Sweden.
| | | |
Collapse
|
75
|
Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev 2013; 113:8683-705. [PMID: 23597155 DOI: 10.1021/cr300513p] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
76
|
Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Nat Rev Microbiol 2013; 11:303-15. [DOI: 10.1038/nrmicro2994] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
77
|
Abstract
All aspects of DNA metabolism-including transcription, replication, and repair-involve motor enzymes that move along genomic DNA. These processes must all take place on chromosomes that are occupied by a large number of other proteins. However, very little is known regarding how nucleic acid motor proteins move along the crowded DNA substrates that are likely to exist in physiological settings. This review summarizes recent progress in understanding how DNA-binding motor proteins respond to the presence of other proteins that lie in their paths. We highlight recent single-molecule biophysical experiments aimed at addressing this question, with an emphasis placed on analyzing the single-molecule, ensemble biochemical, and in vivo data from a mechanistic perspective.
Collapse
Affiliation(s)
- Ilya J Finkelstein
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
78
|
Cooperative RNA polymerase molecules behavior on a stochastic sequence-dependent model for transcription elongation. PLoS One 2013; 8:e57328. [PMID: 23437369 PMCID: PMC3578854 DOI: 10.1371/journal.pone.0057328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/21/2013] [Indexed: 12/02/2022] Open
Abstract
The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites.
Collapse
|
79
|
Abstract
A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. Recently, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods and its application to the study of viruses and viral molecules.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), c/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain,
| |
Collapse
|
80
|
The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nat Struct Mol Biol 2012; 20:174-81. [PMID: 23262491 PMCID: PMC3565103 DOI: 10.1038/nsmb.2472] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/20/2012] [Indexed: 11/08/2022]
Abstract
Gene expression, DNA replication and genome maintenance are all initiated by proteins that must recognize specific targets from among a vast excess of nonspecific DNA. For example, to initiate transcription, Escherichia coli RNA polymerase (RNAP) must locate promoter sequences, which compose <2% of the bacterial genome. This search problem remains one of the least understood aspects of gene expression, largely owing to the transient nature of search intermediates. Here we visualize RNAP in real time as it searches for promoters, and we develop a theoretical framework for analyzing target searches at the submicroscopic scale on the basis of single-molecule target-association rates. We demonstrate that, contrary to long-held assumptions, the promoter search is dominated by three-dimensional diffusion at both the microscopic and submicroscopic scales in vitro, which has direct implications for understanding how promoters are located within physiological settings.
Collapse
|
81
|
Abstract
There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes.
Collapse
Affiliation(s)
- Dietmar Rieder
- Division of Bioinformatics, Biocenter, Innsbruck Medical University Innsbruck, Austria
| | | | | |
Collapse
|
82
|
Liu X, Bushnell DA, Kornberg RD. RNA polymerase II transcription: structure and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:2-8. [PMID: 23000482 DOI: 10.1016/j.bbagrm.2012.09.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
Abstract
A minimal RNA polymerase II (pol II) transcription system comprises the polymerase and five general transcription factors (GTFs) TFIIB, -D, -E, -F, and -H. The addition of Mediator enables a response to regulatory factors. The GTFs are required for promoter recognition and the initiation of transcription. Following initiation, pol II alone is capable of RNA transcript elongation and of proofreading. Structural studies reviewed here reveal roles of GTFs in the initiation process and shed light on the transcription elongation mechanism. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
83
|
Zhou J, Schweikhard V, Block SM. Single-molecule studies of RNAPII elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:29-38. [PMID: 22982192 DOI: 10.1016/j.bbagrm.2012.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 01/22/2023]
Abstract
Elongation, the transcriptional phase in which RNA polymerase (RNAP) moves processively along a DNA template, occurs via a fundamental enzymatic mechanism that is thought to be universally conserved among multi-subunit polymerases in all kingdoms of life. Beyond this basic mechanism, a multitude of processes are integrated into transcript elongation, among them fidelity control, gene regulatory interactions involving elongation factors, RNA splicing or processing factors, and regulatory mechanisms associated with chromatin structure. Many kinetic and molecular details of the mechanism of the nucleotide addition cycle and its regulation, however, remain elusive and generate continued interest and even controversy. Recently, single-molecule approaches have emerged as powerful tools for the study of transcription in eukaryotic organisms. Here, we review recent progress and discuss some of the unresolved questions and ongoing debates, while anticipating future developments in the field. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
84
|
Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev 2012; 26:1691-702. [PMID: 22810624 DOI: 10.1101/gad.194936.112] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Forty years of classical biochemical analysis have identified the molecular players involved in initiation of transcription by eukaryotic RNA polymerase II (Pol II) and largely assigned their functions. However, a dynamic picture of Pol II transcription initiation and an understanding of the mechanisms of its regulation have remained elusive due in part to inherent limitations of conventional ensemble biochemistry. Here we have begun to dissect promoter-specific transcription initiation directed by a reconstituted human Pol II system at single-molecule resolution using fluorescence video-microscopy. We detected several stochastic rounds of human Pol II transcription from individual DNA templates, observed attenuation of transcription by promoter mutations, observed enhancement of transcription by activator Sp1, and correlated the transcription signals with real-time interactions of holo-TFIID molecules at individual DNA templates. This integrated single-molecule methodology should be applicable to studying other complex biological processes.
Collapse
|
85
|
Abstract
Transcription by RNA polymerase II is the process that copies DNA into RNA leading to the expression of a specific gene. Averaged estimates of polymerase elongation rates in mammalian cells have been shown to vary between 1 and 4 kilobases per minute. However, recent advances in live cell imaging allowed direct measurements of RNA biogenesis from a single gene exceeded 50 kb·min(-1) . This unexpected finding opens novel and intriguing perspectives on the control of metazoan transcription.
Collapse
Affiliation(s)
- Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|
86
|
Papantonis A, Cook PR. Fixing the model for transcription: the DNA moves, not the polymerase. Transcription 2012; 2:41-4. [PMID: 21326910 DOI: 10.4161/trns.2.1.14275] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
The traditional model for transcription sees active polymerases tracking along their templates. An alternative (controversial) model has active enzymes immobilized in "factories." Recent evidence supports the idea that the DNA moves, not the polymerase, and points to alternative explanations of how regulatory motifs like enhancers and silencers work.
Collapse
|
87
|
Juul S, Ho YP, Stougaard M, Koch J, Andersen FF, Leong KW, Knudsen BR. Microfluidics-mediated isothermal detection of enzyme activity at the single molecule level. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:3258-61. [PMID: 22255034 DOI: 10.1109/iembs.2011.6090885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conventional analysis of enzymatic activity, often carried out on pools of cells, is blind to heterogeneity in the population. Here, we combine microfluidics with a previously developed isothermal rolling circle amplification-based assay to investigate multiple enzymatic activities in down to single cells. This microfluidics-meditated assay performs at very high sensitivity in picoliter incubators with small quantities of biological materials. Furthermore, we demonstrate the assay's capability of multiplexed detection of at least three enzyme activities at the single molecule level.
Collapse
Affiliation(s)
- Sissel Juul
- Department of Molecular Biology and Interdisciplinary Nanoscience Center, iNANO, Aarhus University, Denmark
| | | | | | | | | | | | | |
Collapse
|
88
|
Billingsley DJ, Bonass WA, Crampton N, Kirkham J, Thomson NH. Single-molecule studies of DNA transcription using atomic force microscopy. Phys Biol 2012; 9:021001. [PMID: 22473059 DOI: 10.1088/1478-3975/9/2/021001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA-protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome.
Collapse
Affiliation(s)
- Daniel J Billingsley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire LS2 9JT, UK
| | | | | | | | | |
Collapse
|
89
|
Deng B, Melnik S, Cook PR. Transcription factories, chromatin loops, and the dysregulation of gene expression in malignancy. Semin Cancer Biol 2012; 23:65-71. [PMID: 22285981 DOI: 10.1016/j.semcancer.2012.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/03/2012] [Indexed: 02/02/2023]
Abstract
Pathologists recognize and classify cancers according to nuclear morphology, but there remains little scientific explanation of why malignant nuclei possess their characteristic features, or how those features are related to dysregulated function. This essay will discuss a basic structure-function axis that connects one central architectural motif in the nucleus-the chromatin loop-to the vital nuclear function of transcription. The loop is attached to a "transcription factory" through components of the transcription machinery (either polymerases or transcriptional activators/repressors), and the position of a gene within a loop determines how often that gene is transcribed. Then, dysregulated transcription is tightly coupled to alterations in structure, and vice versa. We also speculate on how the experimental approaches being used to analyze loops and factories might be applied to study the problems of tumour initiation and progression.
Collapse
Affiliation(s)
- Binwei Deng
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | |
Collapse
|
90
|
Zhou J, Ha KS, La Porta A, Landick R, Block SM. Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA. Mol Cell 2012; 44:635-46. [PMID: 22099310 DOI: 10.1016/j.molcel.2011.09.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 10/15/2022]
Abstract
Transcriptional pausing by RNA polymerase (RNAP) plays an essential role in gene regulation. Pausing is modified by various elongation factors, including prokaryotic NusA, but the mechanisms underlying pausing and NusA function remain unclear. Alternative models for pausing invoke blockade events that precede translocation (on-pathway), enzyme backtracking (off-pathway), or isomerization to a nonbacktracked, elemental pause state (off-pathway). We employed an optical trapping assay to probe the motions of individual RNAP molecules transcribing a DNA template carrying tandem repeats encoding the his pause, subjecting these enzymes to controlled forces. NusA significantly decreased the pause-free elongation rate of RNAP while increasing the probability of entry into short- and long-lifetime pauses, in a manner equivalent to exerting a ~19 pN force opposing transcription. The effects of force and NusA on pause probabilities and lifetimes support a reaction scheme where nonbacktracked, elemental pauses branch off the elongation pathway from the pretranslocated state of RNAP.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
91
|
Zhou R, Kunzelmann S, Webb MR, Ha T. Detecting intramolecular conformational dynamics of single molecules in short distance range with subnanometer sensitivity. NANO LETTERS 2011; 11:5482-8. [PMID: 22023515 PMCID: PMC3237907 DOI: 10.1021/nl2032876] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Single molecule detection is useful for characterizing nanoscale objects such as biological macromolecules, nanoparticles and nanodevices with nanometer spatial resolution. Fluorescence resonance energy transfer (FRET) is widely used as a single-molecule assay to monitor intramolecular dynamics in the distance range of 3-8 nm. Here we demonstrate that self-quenching of two rhodamine derivatives can be used to detect small conformational dynamics corresponding to subnanometer distance changes in a FRET-insensitive short-range at the single molecule level. A ParM protein mutant labeled with two rhodamines works as a single molecule adenosine 5'-diphosphate (ADP) sensor that has 20 times brighter fluorescence signal in the ADP bound state than the unbound state. Single molecule time trajectories show discrete transitions between fluorescence on and off states that can be directly ascribed to ADP binding and dissociation events. The conformational changes observed with 20:1 contrast are only 0.5 nm in magnitude and are between crystallographic distances of 1.6 and 2.1 nm, demonstrating exquisite sensitivity to short distance scale changes. The systems also allowed us to gain information on the photophysics of self-quenching induced by rhodamine stacking: (1) photobleaching of either of the two rhodamines eliminates quenching of the other rhodamine fluorophore and (2) photobleaching from the highly quenched, stacked state is only 2-fold slower than from the unstacked state.
Collapse
Affiliation(s)
- Ruobo Zhou
- Department of Physics and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | | | | | | |
Collapse
|
92
|
Bochkareva A, Yuzenkova Y, Tadigotla VR, Zenkin N. Factor-independent transcription pausing caused by recognition of the RNA-DNA hybrid sequence. EMBO J 2011; 31:630-9. [PMID: 22124324 PMCID: PMC3273390 DOI: 10.1038/emboj.2011.432] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/07/2011] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase pausing during transcription is implicated in controlling gene expression. This study identifies a new type of pausing mechanism, by which the RNAP core recognizes the shape of base pairs of the RNA–DNA hybrid, which determines the rate of translocation and the nucleotide addition cycle. The expression of a number of viral and bacterial genes is shown to be subject to this mechanism. Pausing of transcription is an important step of regulation of gene expression in bacteria and eukaryotes. Here we uncover a factor-independent mechanism of transcription pausing, which is determined by the ability of the elongating RNA polymerase to recognize the sequence of the RNA–DNA hybrid. We show that, independently of thermodynamic stability of the elongation complex, RNA polymerase directly ‘senses' the shape and/or identity of base pairs of the RNA–DNA hybrid. Recognition of the RNA–DNA hybrid sequence delays translocation by RNA polymerase, and thus slows down the nucleotide addition cycle through ‘in pathway' mechanism. We show that this phenomenon is conserved among bacterial and eukaryotic RNA polymerases, and is involved in regulatory pauses, such as a pause regulating the production of virulence factors in some bacteria and a pause regulating transcription/replication of HIV-1. The results indicate that recognition of RNA–DNA hybrid sequence by multi-subunit RNA polymerases is involved in transcription regulation and may determine the overall rate of transcription elongation.
Collapse
Affiliation(s)
- Aleksandra Bochkareva
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
93
|
Treutlein B, Michaelis J. Direkte Beobachtung einzelner RNA-Polymerasen beim Ablesen eines endogenen Gens in einer lebenden Hefezelle. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
94
|
Peters JM, Vangeloff AD, Landick R. Bacterial transcription terminators: the RNA 3'-end chronicles. J Mol Biol 2011; 412:793-813. [PMID: 21439297 PMCID: PMC3622210 DOI: 10.1016/j.jmb.2011.03.036] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 01/01/2023]
Abstract
The process of transcription termination is essential to proper expression of bacterial genes and, in many cases, to the regulation of bacterial gene expression. Two types of bacterial transcriptional terminators are known to control gene expression. Intrinsic terminators dissociate transcription complexes without the assistance of auxiliary factors. Rho-dependent terminators are sites of dissociation mediated by an RNA helicase called Rho. Despite decades of study, the molecular mechanisms of both intrinsic and Rho-dependent termination remain uncertain in key details. Most knowledge is based on the study of a small number of model terminators. The extent of sequence diversity among functional terminators and the extent of mechanistic variation as a function of sequence diversity are largely unknown. In this review, we consider the current state of knowledge about bacterial termination mechanisms and the relationship between terminator sequence and steps in the termination mechanism.
Collapse
Affiliation(s)
- Jason M. Peters
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Abbey D. Vangeloff
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
95
|
Probing the mechanics of the complete DNA transcription cycle in real-time using optical tweezers. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2011; 778:175-91. [PMID: 21809207 DOI: 10.1007/978-1-61779-261-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
RNA polymerase (RNAP) is a DNA-dependent motor protein that links ribonucleotide polymerization to force generation and DNA translocation through its active site, i.e., mechanical work. Single-molecule studies using optical tweezers have allowed researchers to probe the load-dependent ribonucleotide incorporation rate and processivity of both single-subunit viral and multisubunit prokaryotic and eukaryotic RNAPs engaged in transcription elongation. A single-molecule method is described here, which allows the complete transcription cycle (i.e., promoter binding, initiation, elongation and termination) to be followed in real-time using dual-trap optical tweezers and a unique "three-bead" geometry. This single-molecule transcription assay can be used to probe the mechanics of both stationary and moving RNAP-DNA complexes engaged in different stages of transcription.
Collapse
|
96
|
Treutlein B, Michaelis J. Direct observation of single RNA polymerase processing through a single endogenous gene in a living yeast cell. Angew Chem Int Ed Engl 2011; 50:9788-90. [PMID: 21793146 DOI: 10.1002/anie.201103809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Indexed: 11/11/2022]
Abstract
Rapid advances in live-cell imaging have now enabled direct observation of the transcription of single nascent mRNA molecules from an endogenous yeast gene. A novel quantitative fluctuation analysis of fluorescently labeled mRNA revealed the kinetics of transcription initiation and the dynamics of elongation and termination.
Collapse
|
97
|
Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell 2011; 145:502-11. [PMID: 21565610 DOI: 10.1016/j.cell.2011.04.021] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 04/25/2011] [Indexed: 11/18/2022]
Abstract
The textbook view of gene activation is that the rate-limiting step is the interaction of RNA polymerase II (Pol II) with the gene's promoter. However, studies in a variety of systems, including human embryonic stem cells and the early Drosophila embryo, have begun to challenge this view. There is increasing evidence that differential gene expression often depends on the regulation of transcription elongation via the release of Pol II from the proximal promoter. I review the implications of this mechanism of gene activation with respect to the orderly unfolding of complex gene networks governing animal development.
Collapse
Affiliation(s)
- Michael Levine
- Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, Center for Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
98
|
Hein PP, Palangat M, Landick R. RNA transcript 3'-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 2011; 50:7002-14. [PMID: 21739957 DOI: 10.1021/bi200437q] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translocation of RNA polymerase on DNA is thought to involve oscillations between pretranslocated and posttranslocated states that are rectified by nucleotide addition or pyrophosphorolysis. The pretranslocated register is also a precursor to transcriptional pause states that mediate regulation of transcript elongation. However, the determinants of bias between the pretranslocated and posttranslocated states are incompletely understood. To investigate translocation bias in multisubunit RNA polymerases, we measured rates of pyrophosphorolysis, which occurs in the pretranslocated register, in minimal elongation complexes containing T. thermophilus or E. coli RNA polymerase. Our results suggest that the identity of RNA:DNA nucleotides in the active site are strong determinants of susceptibility to pyrophosphorolysis, and thus translocation bias, with the 3' RNA nucleotide favoring the pretranslocated state in the order U > C > A > G. The preference of 3' U vs G for the pretranslocated register appeared to be universal among both bacterial and eukaryotic RNA polymerases and was confirmed by exonuclease III footprinting of defined elongation complexes. However, the relationship of pyrophosphate concentration to the rate of pyrophosphorolysis of 3' U-containing versus 3' G-containing elongation complexes did not match predictions of a simple mechanism in which 3'-RNA seqeunce affects only translocation bias and pyrophosphate (PPi) binds only to the pretranslocated state.
Collapse
Affiliation(s)
- Pyae P Hein
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
99
|
Single-molecule approach to immunoprecipitated protein complexes: insights into miRNA uridylation. EMBO Rep 2011; 12:690-6. [PMID: 21637296 DOI: 10.1038/embor.2011.100] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 11/09/2022] Open
Abstract
Single-molecule techniques have been used for only a subset of biological problems because of difficulties in studying proteins that require cofactors or post-translational modifications. Here, we present a new method integrating single-molecule fluorescence microscopy and immunopurification to study protein complexes. We used this method to investigate Lin28-mediated microRNA uridylation by TUT4 (terminal uridylyl transferase 4, polyU polymerase), which regulates let-7 microRNA biogenesis. Our real-time analysis of the uridylation by the TUT4 immunoprecipitates suggests that Lin28 functions as a processivity factor of TUT4. Our new technique, SIMPlex (single-molecule approach to immunoprecipitated protein complexes), provides a universal tool to analyse complex proteins at the single-molecule level.
Collapse
|
100
|
Abstract
The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|