51
|
Distinguishing the roles of Topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol Cell Biol 2010; 31:482-94. [PMID: 21098118 DOI: 10.1128/mcb.00589-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To better understand the role of topoisomerase activity in relieving transcription-induced supercoiling, yeast genes encoding rRNA were visualized in cells deficient for either or both of the two major topoisomerases. In the absence of both topoisomerase I (Top1) and topoisomerase II (Top2) activity, processivity was severely impaired and polymerases were unable to transcribe through the 6.7-kb gene. Loss of Top1 resulted in increased negative superhelical density (two to six times the normal value) in a significant subset of rRNA genes, as manifested by regions of DNA template melting. The observed DNA bubbles were not R-loops and did not block polymerase movement, since genes with DNA template melting showed no evidence of slowed elongation. Inactivation of Top2, however, resulted in characteristic signs of slowed elongation in rRNA genes, suggesting that Top2 alleviates transcription-induced positive supercoiling. Together, the data indicate that torsion in front of and behind transcribing polymerase I has different consequences and different resolution. Positive torsion in front of the polymerase induces supercoiling (writhe) and is largely resolved by Top2. Negative torsion behind the polymerase induces DNA strand separation and is largely resolved by Top1.
Collapse
|
52
|
Cheng W, Hou X, Ye F. Use of tapered amplifier diode laser for biological-friendly high-resolution optical trapping. OPTICS LETTERS 2010; 35:2988-90. [PMID: 20808392 DOI: 10.1364/ol.35.002988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A 1064 nm laser is commonly used for biological optical trapping. However, it has the problem of generating reactive oxygen species in the presence of a sensitizer, which leads to photo damage in biological samples. Here we constructed optical tweezers using a tapered amplifier diode laser that operates at 830 nm. Compared to a 1064 nm laser, this laser is friendly to live cells, eliminates photo damage associated with reactive oxygen species, and allows simultaneous two-photon fluorescence imaging of green fluorescent proteins in live mammalian cells. All these advantages could significantly benefit future application of this single molecule technique in biological studies.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
53
|
Promoter melting triggered by bacterial RNA polymerase occurs in three steps. Proc Natl Acad Sci U S A 2010; 107:12523-8. [PMID: 20615963 DOI: 10.1073/pnas.1003533107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA synthesis, carried out by DNA-dependent RNA polymerase (RNAP) in a process called transcription, involves several stages. In bacteria, transcription initiation starts with promoter recognition and binding of RNAP holoenzyme, resulting in the formation of the closed (R.P(c)) RNAP-promoter DNA complex. Subsequently, a transition to the open R.P(o) complex occurs, characterized by separation of the promoter DNA strands in an approximately 12 base-pair region to form the transcription bubble. Using coarse-grained self-organized polymer models of Thermus aquatics RNAP holoenzyme and promoter DNA complexes, we performed Brownian dynamics simulations of the R.P(c) --> R.P(o) transition. In the fast trajectories, unwinding of the promoter DNA begins by local melting around the -10 element, which is followed by sequential unzipping of DNA till the +2 site. The R.P(c) --> R.P(o) transition occurs in three steps. In step I, dsDNA melts and the nontemplate strand makes stable interactions with RNAP. In step II, DNA scrunches into RNA polymerase and the downstream base pairs sequentially open to form the transcription bubble, which results in strain build up. Subsequently, downstream dsDNA bending relieves the strain as R.P(o) forms. Entry of the dsDNA into the active-site channel of RNAP requires widening of the channel, which occurs by a swing mechanism involving transient movements of a subdomain of the beta subunit caused by steric repulsion with the DNA template strand. If premature local melting away from the -10 element occurs first then the transcription bubble formation is slow involving reformation of the opened base pairs and subsequent sequential unzipping as in the fast trajectories.
Collapse
|
54
|
Klopper AV, Bois JS, Grill SW. Influence of secondary structure on recovery from pauses during early stages of RNA transcription. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:030904. [PMID: 20365690 DOI: 10.1103/physreve.81.030904] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/29/2009] [Indexed: 05/29/2023]
Abstract
The initial stages of transcription by RNA polymerase are frequently marked by pausing and stalling events. These events have been linked to an inactive backtracked state in which the polymerase diffuses along the template DNA. We investigate theoretically the influence of RNA secondary structure in confining this diffusion. The effective confinement length peaks at transcript lengths commensurate with early stalling. This finite-size effect accounts for slow progress at the beginning of transcription, which we illustrate via stochastic hopping models for backtracking polymerases.
Collapse
Affiliation(s)
- A V Klopper
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | | | | |
Collapse
|
55
|
Feig M, Burton ZF. RNA polymerase II flexibility during translocation from normal mode analysis. Proteins 2010; 78:434-46. [PMID: 19714773 DOI: 10.1002/prot.22560] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The structural dynamics in eukaryotic RNA polymerase II (RNAPII) is described from computational normal mode analysis based on a series of crystal structures of pre- and post-translocated states with open and closed trigger loops. Conserved modes are identified that involve translocation of the nucleic acid complex coupled to motions of the enzyme, in particular in the clamp and jaw domains of RNAPII. A combination of these modes is hypothesized to be involved during active transcription. The NMA modes indicate furthermore that downstream DNA translocation may occur separately from DNA:RNA hybrid translocation. A comparison of the modes between different states of RNAPII suggests that productive translocation requires an open trigger loop and is inhibited by the presence of an NTP in the active site. This conclusion is also supported by a comparison of the overall flexibility in terms of root mean square fluctuations.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
56
|
Kireeva M, Kashlev M, Burton ZF. Translocation by multi-subunit RNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:389-401. [PMID: 20097318 DOI: 10.1016/j.bbagrm.2010.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/30/2022]
Abstract
DNA template and RNA/DNA hybrid movement through RNA polymerase (RNAP) is referred to as "translocation". Because nucleic acid movement is coupled to NTP loading, pyrophosphate release, and conformational changes, the precise ordering of events during bond addition is consequential. Moreover, based on several lines of experimental evidence, translocation, pyrophosphate release or an associated conformational change may determine the transcription elongation rate. In this review we discuss various models of translocation, the data supporting the hypothesis that translocation rate determines transcription elongation rate and also data that may be inconsistent with this point of view. A model of the nucleotide addition cycle accommodating available experimental data is proposed. On the basis of this model, the molecular mechanisms regulating translocation and potential routes for NTP entry are discussed.
Collapse
Affiliation(s)
- Maria Kireeva
- National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
57
|
Stochastic and delayed stochastic models of gene expression and regulation. Math Biosci 2010; 223:1-11. [DOI: 10.1016/j.mbs.2009.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 11/22/2022]
|
58
|
Ehrenberg M, Dennis PP, Bremer H. Maximum rrn promoter activity in Escherichia coli at saturating concentrations of free RNA polymerase. Biochimie 2009; 92:12-20. [PMID: 19835927 DOI: 10.1016/j.biochi.2009.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
During fast growth, the rrn P1 promoters of Escherichia coli operate at their maximum strength, but below their maximum activity (V(max)), since they are not saturated with RNA polymerase. Since higher concentrations of free RNA polymerase are expected to be found in strains carrying rrn deletions, we have analyzed reported electron micrographs of rrn operons from rrn deletion strains growing at maximal rates (at 37 degrees C) in LB medium [1]. We conclude that, in a strain with four of the seven rrn operons inactivated by partial deletions, transcripts are initiated at rrn P1 promoters 1.6-fold more rapidly than in the wild-type strain and the entirety of the rrn operon is transcribed at a 1.5-fold higher average elongation rate due to shortened pauses in the 16S and 23S regions. Under this condition, traffic congestion occurs in front of a pause site in the 5' leader region of the rrn operon near the beginning of the 16S gene; the congestion extends all the way back to the promoter, impedes promoter clearance and limits the promoter activity to one initiation per 0.56 s. This corresponds to a promoter activity of 107 transcripts/min and is assumed to be close to the V(max) of rrn P1 promoters.
Collapse
Affiliation(s)
- M Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Sweden.
| | | | | |
Collapse
|
59
|
Biochemical analyses of nuclear receptor-dependent transcription with chromatin templates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:137-92. [PMID: 20374704 DOI: 10.1016/s1877-1173(09)87005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Chromatin, the physiological template for transcription, plays important roles in gene regulation by nuclear receptors (NRs). It can (1) restrict the binding of NRs or the transcriptional machinery to their genomic targets, (2) serve as a target of regulatory posttranslational modifications by NR coregulator proteins with histone-directed enzymatic activities, and (3) function as a binding scaffold for a variety of transcription-related proteins. The advent of in vitro or "cell-free" systems that accurately recapitulate ligand-dependent transcription by NRs with chromatin templates has allowed detailed analyses of these processes. Biochemical studies have advanced our understanding of the mechanisms of gene regulation, including the role of ligands, coregulators, and nucleosome remodeling. In addition, they have provided new insights about the dynamics of NR-mediated transcription. This chapter reviews the current methodologies for assembling, transcribing, and analyzing chromatin in vitro, as well as the new information that has been gained from these studies.
Collapse
|
60
|
Dennis PP, Ehrenberg M, Fange D, Bremer H. Varying rate of RNA chain elongation during rrn transcription in Escherichia coli. J Bacteriol 2009; 191:3740-6. [PMID: 19329648 PMCID: PMC2681913 DOI: 10.1128/jb.00128-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/17/2009] [Indexed: 11/20/2022] Open
Abstract
The value of the rRNA chain elongation rate in bacteria is an important physiological parameter, as it affects not only the rRNA promoter activity but also the free-RNA polymerase concentration and thereby the transcription of all genes. On average, rRNA chains elongate at a rate of 80 to 90 nucleotides (nt) per s, and the transcription of an entire rrn operon takes about 60 s (at 37 degrees C). Here we have analyzed a reported distribution obtained from electron micrographs of RNA polymerase molecules along rrn operons in E. coli growing at 2.5 doublings per hour (S. Quan, N. Zhang, S. French, and C. L. Squires, J. Bacteriol. 187:1632-1638, 2005). The distribution exhibits two peaks of higher polymerase density centered within the 16S and 23S rRNA genes. An evaluation of this distribution indicates that RNA polymerase transcribes the 5' leader region at speeds up to or greater than 250 nt/s. Once past the leader, transcription slows down to about 65 nt/s within the 16S gene, speeds up in the spacer region between the 16S and 23S genes, slows again to about 65 nt/s in the 23S region, and finally speeds up to a rate greater than 400 nt/s near the end of the operon. We suggest that the slowing of transcript elongation in the 16S and 23S sections is the result of transcriptional pauses, possibly caused by temporary interactions of the RNA polymerase with secondary structures in the nascent rRNA.
Collapse
Affiliation(s)
- P P Dennis
- National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, USA.
| | | | | | | |
Collapse
|
61
|
Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys J 2009; 96:2371-81. [PMID: 19289062 DOI: 10.1016/j.bpj.2008.11.061] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 11/12/2008] [Accepted: 11/17/2008] [Indexed: 01/12/2023] Open
Abstract
Organic fluorophores common to fluorescence-based investigations suffer from unwanted photophysical properties, including blinking and photobleaching, which limit their overall experimental performance. Methods to control such processes are particularly important for single-molecule fluorescence and fluorescence resonance energy transfer imaging where uninterrupted, stable fluorescence is paramount. Fluorescence and FRET-based assays have been carried out on dye-labeled DNA and RNA-based systems to quantify the effect of including small-molecule solution additives on the fluorescence and FRET behaviors of both cyanine and Alexa fluorophores. A detailed dwell time analysis of the fluorescence and FRET trajectories of more than 200,000 individual molecules showed that two compounds identified previously as triplet state quenchers, cyclooctatetraene, and Trolox, as well as 4-nitrobenzyl alcohol, act to favorably attenuate blinking, photobleaching, and influence the rate of photoresurrection in a concentration-dependent and context-dependent manner. In both biochemical systems examined, a unique cocktail of compounds was shown to be optimal for imaging performance. By simultaneously providing the most rapid and direct access to multiple photophysical kinetic parameters, smFRET imaging provides a powerful avenue for future investigations aimed at discovering new compounds, and effective combinations thereof. These efforts may ultimately facilitate tuning organic dye molecule performance according to each specific experimental demand.
Collapse
|
62
|
Minchin SD, Busby SJ. Analysis of mechanisms of activation and repression at bacterial promoters. Methods 2009; 47:6-12. [DOI: 10.1016/j.ymeth.2008.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 11/30/2022] Open
|
63
|
Jenkins DJ, Stekel DJ. A new model for investigating the evolution of transcription control networks. ARTIFICIAL LIFE 2009; 15:259-291. [PMID: 19254178 DOI: 10.1162/artl.2009.stekel.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biological systems show unbounded capacity for complex behaviors and responses to their environments. This principally arises from their genetic networks. The processes governing transcription, translation, and gene regulation are well understood, as are the mechanisms of network evolution, such as gene duplication and horizontal gene transfer. However, the evolved networks arising from these simple processes are much more difficult to understand, and it is difficult to perform experiments on the evolution of these networks in living organisms because of the timescales involved. We propose a new framework for modeling and investigating the evolution of transcription networks in realistic, varied environments. The model we introduce contains novel, important, and lifelike features that allow the evolution of arbitrarily complex transcription networks. Molecular interactions are not specified; instead they are determined dynamically based on shape, allowing protein function to freely evolve. Transcriptional logic provides a flexible mechanism for defining genetic regulatory activity. Simulations demonstrate a realistic life cycle as an emergent property, and that even in simple environments lifelike and complex regulation mechanisms are evolved, including stable proteins, unstable mRNA, and repressor activity. This study also highlights the importance of using in silico genetics techniques to investigate evolved model robustness.
Collapse
Affiliation(s)
- Dafyd J Jenkins
- Centre for Systems Biology, School of Biosciences, University of Birmingham, Edgbaston, UK.
| | | |
Collapse
|
64
|
Sushko ML. Nanomechanics of organic/inorganic interfaces: a theoretical insight. Faraday Discuss 2009; 143:63-80; discussion 81-93. [DOI: 10.1039/b900861f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
65
|
Woo HJ, Liu Y, Sousa R. Molecular dynamics studies of the energetics of translocation in model T7 RNA polymerase elongation complexes. Proteins 2008; 73:1021-36. [PMID: 18536012 DOI: 10.1002/prot.22134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Translocation in the single subunit T7 RNA polymerase elongation complex was studied by molecular dynamics simulations using the posttranslocated crystal structure with the fingers domain open, an intermediate stable in the absence of pyrophosphate, magnesium ions, and nucleotide substrate. Unconstrained and umbrella sampling simulations were performed to examine the energetics of translocations. The extent of translocation was quantified using reaction coordinates representing the average and individual displacements of the RNA-DNA hybrid base pairs with respect to a reference structure. In addition, an unconstrained simulation was also performed for the product complex with the fingers domain closed, but with the pyrophosphate and magnesium removed, in order to examine the local stability of the pretranslocated closed state after the pyrophosphate release. The average spatial movement of the entire hybrid was found to be energetically costly in the post- to pretranslocated direction in the open state, while the pretranslocated state was stable in the closed complex, supporting the notion that the conformational state dictates the global stability of translocation states. However, spatial fluctuations of the RNA 3'-end in the open conformation were extensive, with the typical range reaching 3-4 A. Our results suggest that thermal fluctuations play more important roles in the translocation of individual nucleotides than in the movement of large sections of nucleotide strands: RNA 3'-end can move into and out of the active site within a single conformational state, while a global movement of the hybrid may be thermodynamically unfavorable without the conformational change.
Collapse
Affiliation(s)
- Hyung-June Woo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, USA
| | | | | |
Collapse
|
66
|
Finkelstein IJ, Greene EC. Single molecule studies of homologous recombination. MOLECULAR BIOSYSTEMS 2008; 4:1094-104. [PMID: 18931785 DOI: 10.1039/b811681b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Single molecule methods offer an unprecedented opportunity to examine complex macromolecular reactions that are obfuscated by ensemble averaging. The application of single molecule techniques to study DNA processing enzymes has revealed new mechanistic details that are unobtainable from bulk biochemical studies. Homologous DNA recombination is a multi-step pathway that is facilitated by numerous enzymes that must precisely and rapidly manipulate diverse DNA substrates to repair potentially lethal breaks in the DNA duplex. In this review, we present an overview of single molecule assays that have been developed to study key aspects of homologous recombination and discuss the unique information gleaned from these experiments.
Collapse
Affiliation(s)
- Ilya J Finkelstein
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
67
|
Abstract
Understanding how RNA folds and what causes it to unfold has become more important as knowledge of the diverse functions of RNA has increased. Here we review the contributions of single-molecule experiments to providing answers to questions such as: How much energy is required to unfold a secondary or tertiary structure? How fast is the process? How do helicases unwind double helices? Are the unwinding activities of RNA-dependent RNA polymerases and of ribosomes different from other helicases? We discuss the use of optical tweezers to monitor the unfolding activities of helicases, polymerases, and ribosomes, and to apply force to unfold RNAs directly. We also review the applications of fluorescence and fluorescence resonance energy transfer to measure RNA dynamics.
Collapse
Affiliation(s)
- Pan T X Li
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| | | | | |
Collapse
|
68
|
Abstract
Decades of studies have established translation as a multistep, multicomponent process that requires intricate communication to achieve high levels of speed, accuracy, and regulation. A crucial next step in understanding translation is to reveal the functional significance of the large-scale motions implied by static ribosome structures. This requires determining the trajectories, timescales, forces, and biochemical signals that underlie these dynamic conformational changes. Single-molecule methods have emerged as important tools for the characterization of motion in complex systems, including translation. In this review, we chronicle the key discoveries in this nascent field, which have demonstrated the power and promise of single-molecule techniques in the study of translation.
Collapse
Affiliation(s)
- R Andrew Marshall
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
69
|
Dillingham MS, Wallace MI. Protein modification for single molecule fluorescence microscopy. Org Biomol Chem 2008; 6:3031-7. [PMID: 18698457 DOI: 10.1039/b808552h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single molecule methods have emerged as a powerful new tool for exploring biological phenomena. We provide a brief overview of the scope of current experiments and assess the limitations of both fluorescent labels and the means to achieve protein modification for single molecule microscopy.
Collapse
Affiliation(s)
- Mark S Dillingham
- DNA-protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol, UKBS8 1TD.
| | | |
Collapse
|
70
|
Johnson RS, Strausbauch M, Cooper R, Register JK. Rapid kinetic analysis of transcription elongation by Escherichia coli RNA polymerase. J Mol Biol 2008; 381:1106-13. [PMID: 18638485 DOI: 10.1016/j.jmb.2008.06.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/27/2008] [Accepted: 06/28/2008] [Indexed: 11/28/2022]
Abstract
Nucleotide incorporation during transcription by RNA polymerase is accompanied by pyrophosphate formation. Rapid release of pyrophosphate from the elongation complex at a rate consistent with productive transcription elongation occurs only in the presence of the correct next nucleotide for incorporation into the transcript.
Collapse
Affiliation(s)
- Ronald S Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | | | | | |
Collapse
|
71
|
Yu H, Schwartz DC. Imaging and analysis of transcription on large, surface-mounted single template DNA molecules. Anal Biochem 2008; 380:111-21. [PMID: 18570883 DOI: 10.1016/j.ab.2008.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 01/06/2023]
Abstract
A surface-based approach is described for the transcriptional analysis of large, single DNA molecule templates and their imaged reaction products using RNA polymerase (RNAP). Results demonstrated that surfaces with a charge density supporting stretching of single DNA molecules to 70-80% of their full contour length were ideal for analysis of T7 RNAP transcription complexes on bound single template DNAs. Such DNA molecules were shown to sustain efficient transcription reactions and analysis, which enabled localization of transcription complexes on templates at kilobase resolution. Direct labeling of nascent RNA transcripts by the incorporation of a second fluorochrome into DNA templates promotes more robust and sensitive detection of punctates. Further characterization by RNase digestions, atomic force microscopy studies, and fluoro-immunolabeling revealed a "supercomplex" structure within a punctate where elongation complexes aggregate through entanglement of DNA and RNA strands from individual ternary elongation complexes. We have proposed mechanisms that underlie the supercomplex formation process. Whereas supercomplexes develop naturally in free solution, spatial constraints involved in a topologically limited system where template DNA is bound to the surface may facilitate the assembling process by stalling transcriptional elongation.
Collapse
Affiliation(s)
- Hua Yu
- Department of Chemistry, Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, UW Biotechnology Center, 425 Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
72
|
Xue XC, Liu F, Ou-Yang ZC. A Kinetic Model of Transcription Initiation by RNA Polymerase. J Mol Biol 2008; 378:520-9. [DOI: 10.1016/j.jmb.2008.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/23/2008] [Accepted: 03/05/2008] [Indexed: 12/01/2022]
|
73
|
Borel C, Gagnebin M, Gehrig C, Kriventseva EV, Zdobnov EM, Antonarakis SE. Mapping of small RNAs in the human ENCODE regions. Am J Hum Genet 2008; 82:971-81. [PMID: 18394580 DOI: 10.1016/j.ajhg.2008.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/28/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022] Open
Abstract
The elucidation of the largely unknown transcriptome of small RNAs is crucial for the understanding of genome and cellular function. We report here the results of the analysis of small RNAs (< 50 nt) in the ENCODE regions of the human genome. Size-fractionated RNAs from four different cell lines (HepG2, HelaS3, GM06990, SK-N-SH) were mapped with the forward and reverse ENCODE high-density resolution tiling arrays. The top 1% of hybridization signals are termed SmRfrags (Small RNA fragments). Eight percent of SmRfrags overlap the GENCODE genes (CDS), given that the majority map to intergenic regions (34%), intronic regions (53%), and untranslated regions (UTRs) (5%). In addition, 9.6% and 16.8% of SmRfrags in the 5' UTR regions overlap significantly with His/Pol II/TAF250 binding sites and DNase I Hypersensitive sites, respectively (compared to the 5.3% and 9% expected). Interestingly, 17%-24% (depending on the cell line) of SmRfrags are sense-antisense strand pairs that show evidence of overlapping transcription. Only 3.4% and 7.2% of SmRfrags in intergenic regions overlap transcribed fragments (Txfrags) in HeLa and GM06990 cell lines, respectively. We hypothesized that a fraction of the identified SmRfrags corresponded to microRNAs. We tested by Northern blot a set of 15 high-likelihood predictions of microRNA candidates that overlap with smRfrags and validated three potential microRNAs ( approximately 20 nt length). Notably, most of the remaining candidates showed a larger hybridizing band ( approximately 100 nt) that could be a microRNA precursor. The small RNA transcriptome is emerging as an important and abundant component of the genome function.
Collapse
|
74
|
Beyond energy minimization: approaches to the kinetic folding of RNA. MONATSHEFTE FUR CHEMIE 2008. [DOI: 10.1007/s00706-008-0895-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
75
|
|
76
|
Tripathi T, Chowdhury D. Interacting RNA polymerase motors on a DNA track: effects of traffic congestion and intrinsic noise on RNA synthesis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:011921. [PMID: 18351890 DOI: 10.1103/physreve.77.011921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Indexed: 05/26/2023]
Abstract
RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by DNA. In many circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechanochemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also introduce, and compute, two different measures of fluctuations in the synthesis of RNA. Analyzing these fluctuations, we show how the level of intrinsic noise in mRNA synthesis depends on the concentrations of the RNAPs as well as on those of some of the reactants and the products of the enzymatic reactions catalyzed by RNAP. We suggest appropriate experimental systems and techniques for testing our theoretical predictions.
Collapse
Affiliation(s)
- Tripti Tripathi
- Physics Department, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
77
|
Kosuri S, Kelly JR, Endy D. TABASCO: A single molecule, base-pair resolved gene expression simulator. BMC Bioinformatics 2007; 8:480. [PMID: 18093293 PMCID: PMC2242808 DOI: 10.1186/1471-2105-8-480] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 12/19/2007] [Indexed: 11/16/2022] Open
Abstract
Background Experimental studies of gene expression have identified some of the individual molecular components and elementary reactions that comprise and control cellular behavior. Given our current understanding of gene expression, and the goals of biotechnology research, both scientists and engineers would benefit from detailed simulators that can explicitly compute genome-wide expression levels as a function of individual molecular events, including the activities and interactions of molecules on DNA at single base pair resolution. However, for practical reasons including computational tractability, available simulators have not been able to represent genome-scale models of gene expression at this level of detail. Results Here we develop a simulator, TABASCO , which enables the precise representation of individual molecules and events in gene expression for genome-scale systems. We use a single molecule computational engine to track individual molecules interacting with and along nucleic acid polymers at single base resolution. Tabasco uses logical rules to automatically update and delimit the set of species and reactions that comprise a system during simulation, thereby avoiding the need for a priori specification of all possible combinations of molecules and reaction events. We confirm that single molecule, base-pair resolved simulation using TABASCO (Tabasco) can accurately compute gene expression dynamics and, moving beyond previous simulators, provide for the direct representation of intermolecular events such as polymerase collisions and promoter occlusion. We demonstrate the computational capacity of Tabasco by simulating the entirety of gene expression during bacteriophage T7 infection; for reference, the 39,937 base pair T7 genome encodes 56 genes that are transcribed by two types of RNA polymerases active across 22 promoters. Conclusion Tabasco enables genome-scale simulation of transcription and translation at individual molecule and single base-pair resolution. By directly representing the position and activity of individual molecules on DNA, Tabasco can directly test the effects of detailed molecular processes on system-wide gene expression. Tabasco would also be useful for studying the complex regulatory mechanisms controlling eukaryotic gene expression. The computational engine underlying Tabasco could also be adapted to represent other types of processive systems in which individual reaction events are organized across a single spatial dimension (e.g., polysaccharide synthesis).
Collapse
Affiliation(s)
- Sriram Kosuri
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave,, Cambridge, MA 02139 USA.
| | | | | |
Collapse
|
78
|
Visualizing chemical interactions in life sciences with wide-field fluorescence microscopy towards the single-molecule level. Trends Analyt Chem 2007. [DOI: 10.1016/j.trac.2007.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
79
|
An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 2007; 94:1826-35. [PMID: 17921203 DOI: 10.1529/biophysj.107.117689] [Citation(s) in RCA: 588] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of single-molecule fluorescence techniques to complex biological systems places demands on the performance of single fluorophores. We present an enzymatic oxygen scavenging system for improved dye stability in single-molecule experiments. We compared the previously described protocatechuic acid/protocatechuate-3,4-dioxygenase system to the currently employed glucose oxidase/catalase system. Under standardized conditions, we observed lower dissolved oxygen concentrations with the protocatechuic acid/protocatechuate-3,4-dioxygenase system. Furthermore, we observed increased initial lifetimes of single Cy3, Cy5, and Alexa488 fluorophores. We further tested the effects of chemical additives in this system. We found that biological reducing agents increase both the frequency and duration of blinking events of Cy5, an effect that scales with reducing potential. We observed increased stability of Cy3 and Alexa488 in the presence of the antioxidants ascorbic acid and n-propyl gallate. This new O(2)-scavenging system should have wide application for single-molecule fluorescence experiments.
Collapse
|
80
|
Voliotis M, Cohen N, Molina-París C, Liverpool TB. Fluctuations, pauses, and backtracking in DNA transcription. Biophys J 2007; 94:334-48. [PMID: 17720732 PMCID: PMC2157217 DOI: 10.1529/biophysj.107.105767] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription is a vital stage in the process of gene expression and a major contributor to fluctuations in gene expression levels for which it is typically modeled as a single-step process with Poisson statistics. However, recent single molecule experiments raise questions about the validity of such a simple single-step picture. We present a molecular multistep model of transcription elongation that demonstrates that transcription times are in general non-Poisson-distributed. In particular, we model transcriptional pauses due to backtracking of the RNA polymerase as a first passage process. By including such pauses, we obtain a broad, heavy-tailed distribution of transcription elongation times, which can be significantly longer than would be otherwise. When transcriptional pauses result in long transcription times, we demonstrate that this naturally leads to bursts of mRNA production and non-Poisson statistics of mRNA levels. These results suggest that transcriptional pauses may be a significant contributor to the variability in transcription rates with direct implications for noise in cellular processes as well as variability between cells.
Collapse
Affiliation(s)
- Margaritis Voliotis
- School of Computing, Department of Applied Mathematics, University of Leeds, Leeds, United Kingdom
| | | | | | | |
Collapse
|
81
|
Abstract
Recent progress in proteomics suggests that the cell can be conceived as a large network of highly refined, nanomachine-like protein complexes. This working hypothesis calls for new methods capable of analyzing individual protein complexes in living cells and tissues at high speed. Here, we examine whether single-molecule fluorescence (SMF) analysis can satisfy that demand. First, recent technical progress in the visualization, localization, tracking, conformational analysis, and true resolution of individual protein complexes is highlighted. Second, results obtained by the SMF analysis of protein complexes are reviewed, focusing on the nuclear pore complex as an instructive example. We conclude that SMF methods provide powerful, indispensable tools for the structural and functional characterization of protein complexes. However, the transition from in vitro systems to living cells is in the initial stages. We discuss how current limitations in the nanoscopic analysis of living cells and tissues can be overcome to create a new paradigm, nanoscopic biomedicine.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics, and Center for Nanotechnology (CeNTech), University of Münster, 48149 Münster, Germany.
| |
Collapse
|
82
|
Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 2007; 8:424-36. [PMID: 17486122 DOI: 10.1038/nrg2026] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealing that most mammalian genes do not conform to the simple model in which a TATA box directs transcription from a single defined nucleotide position. In fact, most genes have multiple promoters, within which there are multiple start sites, and alternative promoter usage generates diversity and complexity in the mammalian transcriptome and proteome. Promoters can be described by their start site usage distribution, which is coupled to the occurrence of cis-regulatory elements, gene function and evolutionary constraints. A comprehensive survey of mammalian promoters is a major step towards describing and understanding transcriptional control networks.
Collapse
Affiliation(s)
- Albin Sandelin
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Bai L, Fulbright RM, Wang MD. Mechanochemical kinetics of transcription elongation. PHYSICAL REVIEW LETTERS 2007; 98:068103. [PMID: 17358986 DOI: 10.1103/physrevlett.98.068103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Indexed: 05/14/2023]
Abstract
The mechanochemical kinetics of transcription elongation was examined with a combination of theoretical and experimental approaches. The predictive power of a sequence-dependent thermal ratchet model for transcription elongation was tested by establishing model parameters based solely on measurements under chemical perturbations and then directly predicting responses under mechanical perturbations without additional model parameters. Agreement between predicted and measured force-velocity curves provides strong support for a simple mechanochemical coupling mechanism.
Collapse
Affiliation(s)
- Lu Bai
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
84
|
Abstract
Single-molecule methods have revolutionized scientific research by rendering the investigation of once-inaccessible biological processes amenable to scientific inquiry. Several of the more established techniques will be emphasized in this Review, including single-molecule fluorescence microscopy, optical tweezers, and atomic force microscopy, which have been applied to many diverse biological processes. Serving as a taste of all the exciting research currently underway, recent examples will be discussed of translocation of RNA polymerase, myosin VI walking, protein folding, and enzyme activity. We will end by providing an assessment of what the future holds, including techniques that are currently in development.
Collapse
Affiliation(s)
- Peter V Cornish
- Department of Physics, University of Illinois, Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
| | | |
Collapse
|
85
|
Abstract
By taking advantage of combinations of the many rich properties of photons, new forms of optical microscopy can now be used to visualize features of samples beyond thickness and density variations. We are now within reach of viewing the motions, orientations, binding kinetics and specific transient associations of previously 'submicroscopic' cellular structures and single molecules.
Collapse
Affiliation(s)
- Daniel Axelrod
- Department of Physics & Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
86
|
Wu T, Schwartz DC. Transchip: single-molecule detection of transcriptional elongation complexes. Anal Biochem 2006; 361:31-46. [PMID: 17187751 PMCID: PMC1945215 DOI: 10.1016/j.ab.2006.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 11/24/2022]
Abstract
A new single-molecule system, Transchip, was developed for analysis of transcription products at their genomic origins. The bacteriophage T7 RNA polymerase and its promoters were used in a model system, and resultant RNAs were imaged and detected at their positions along single template DNA molecules. The Transchip system has drawn from critical aspects of Optical Mapping, a single-molecule system that enables the construction of high-resolution ordered restriction maps of whole genomes from single DNA molecules. Through statistical analysis of hundreds of single-molecule template/transcript complexes, Transchip enables analysis of the locations and strength of promoters, the direction and processivity of transcription reactions, and the termination of transcription. These novel results suggest that the new system may serve as a high-throughput platform to investigate transcriptional events on a large genome-wide scale.
Collapse
Affiliation(s)
- Tian Wu
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
87
|
Tinoco I, Li PTX, Bustamante C. Determination of thermodynamics and kinetics of RNA reactions by force. Q Rev Biophys 2006; 39:325-60. [PMID: 17040613 PMCID: PMC2542947 DOI: 10.1017/s0033583506004446] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Single-molecule methods have made it possible to apply force to an individual RNA molecule. Two beads are attached to the RNA; one is on a micropipette, the other is in a laser trap. The force on the RNA and the distance between the beads are measured. Force can change the equilibrium and the rate of any reaction in which the product has a different extension from the reactant. This review describes use of laser tweezers to measure thermodynamics and kinetics of unfolding/refolding RNA. For a reversible reaction the work directly provides the free energy; for irreversible reactions the free energy is obtained from the distribution of work values. The rate constants for the folding and unfolding reactions can be measured by several methods. The effect of pulling rate on the distribution of force-unfolding values leads to rate constants for unfolding. Hopping of the RNA between folded and unfolded states at constant force provides both unfolding and folding rates. Force-jumps and force-drops, similar to the temperature jump method, provide direct measurement of reaction rates over a wide range of forces. The advantages of applying force and using single-molecule methods are discussed. These methods, for example, allow reactions to be studied in non-denaturing solvents at physiological temperatures; they also simplify analysis of kinetic mechanisms because only one intermediate at a time is present. Unfolding of RNA in biological cells by helicases, or ribosomes, has similarities to unfolding by force.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA.
| | | | | |
Collapse
|
88
|
Woo HJ. Analytical theory of the nonequilibrium spatial distribution of RNA polymerase translocations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:011907. [PMID: 16907127 DOI: 10.1103/physreve.74.011907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Indexed: 05/11/2023]
Abstract
A continuum Fokker-Planck model is considered for the RNA polymerase in the elongation phase, where the topology of a single free energy profile as a function of the translocation variable distinguishes the Brownian ratchet and power stroke mechanisms. The model yields a simple analytical stationary solution for arbitrary functional forms of the free energy. With the translocation potential of mean force estimated by the time-series data of the recent high-resolution single-molecule experiment [Abbondanzieri et al., Nature (London) 438, 460 (2005)], predictions of the model for the mechanical properties agree with experiments quantitatively with reasonable values of parameters. The evolution of the spatial distribution of translocation variable away from equilibrium with increasing nucleoside triphosphate concentration shows qualitatively different behavior in the two alternative scenarios, which could serve as an additional measurable signature of the underlying mechanism.
Collapse
Affiliation(s)
- Hyung-June Woo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
89
|
Affiliation(s)
- R Derike Smiley
- Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|