51
|
Li J, Hua X, Haubrock M, Wang J, Wingender E. The architecture of the gene regulatory networks of different tissues. ACTA ACUST UNITED AC 2013; 28:i509-i514. [PMID: 22962474 PMCID: PMC3436814 DOI: 10.1093/bioinformatics/bts387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Summary: The great variety of human cell types in morphology and function is due to the diverse gene expression profiles that are governed by the distinctive regulatory networks in different cell types. It is still a challenging task to explain how the regulatory networks achieve the diversity of different cell types. Here, we report on our studies of the design principles of the tissue regulatory system by constructing the regulatory networks of eight human tissues, which subsume the regulatory interactions between transcription factors (TFs), microRNAs (miRNAs) and non-TF target genes. The results show that there are in-/out-hubs of high in-/out-degrees in tissue networks. Some hubs (strong hubs) maintain the hub status in all the tissues where they are expressed, whereas others (weak hubs), in spite of their ubiquitous expression, are hubs only in some tissues. The network motifs are mostly feed-forward loops. Some of them having no miRNAs are the common motifs shared by all tissues, whereas the others containing miRNAs are the tissue-specific ones owned by one or several tissues, indicating that the transcriptional regulation is more conserved across tissues than the post-transcriptional regulation. In particular, a common bow-tie framework was found that underlies the motif instances and shows diverse patterns in different tissues. Such bow-tie framework reflects the utilization efficiency of the regulatory system as well as its high variability in different tissues, and could serve as the model to further understand the structural adaptation of the regulatory system to the specific requirements of different cell functions. Contact:edgar.wingender@bioinf.med.uni-goettingen.de; jwang@nju.edu.cn Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jie Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Göttingen, Germany
| | | | | | | | | |
Collapse
|
52
|
Wunderlich Z, Bragdon MD, Eckenrode KB, Lydiard-Martin T, Pearl-Waserman S, DePace AH. Dissecting sources of quantitative gene expression pattern divergence between Drosophila species. Mol Syst Biol 2013; 8:604. [PMID: 22893002 PMCID: PMC3435502 DOI: 10.1038/msb.2012.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/12/2012] [Indexed: 12/21/2022] Open
Abstract
Gene expression patterns can diverge between species due to changes in a gene's regulatory DNA or changes in the proteins, e.g., transcription factors (TFs), that regulate the gene. We developed a modeling framework to uncover the sources of expression differences in blastoderm embryos of three Drosophila species, focusing on the regulatory circuit controlling expression of the hunchback (hb) posterior stripe. Using this framework and cellular-resolution expression measurements of hb and its regulating TFs, we found that changes in the expression patterns of hb's TFs account for much of the expression divergence. We confirmed our predictions using transgenic D. melanogaster lines, which demonstrate that this set of orthologous cis-regulatory elements (CREs) direct similar, but not identical, expression patterns. We related expression pattern differences to sequence changes in the CRE using a calculation of the CRE's TF binding site content. By applying this calculation in both the transgenic and endogenous contexts, we found that changes in binding site content affect sensitivity to regulating TFs and that compensatory evolution may occur in circuit components other than the CRE.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
53
|
Röttinger E, Dahlin P, Martindale MQ. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling. PLoS Genet 2012; 8:e1003164. [PMID: 23300467 PMCID: PMC3531958 DOI: 10.1371/journal.pgen.1003164] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/27/2012] [Indexed: 12/03/2022] Open
Abstract
Understanding the functional relationship between intracellular factors and
extracellular signals is required for reconstructing gene regulatory networks
(GRN) involved in complex biological processes. One of the best-studied
bilaterian GRNs describes endomesoderm specification and predicts that both
mesoderm and endoderm arose from a common GRN early in animal evolution.
Compelling molecular, genomic, developmental, and evolutionary evidence supports
the hypothesis that the bifunctional gastrodermis of the cnidarian-bilaterian
ancestor is derived from the same evolutionary precursor of both endodermal and
mesodermal germ layers in all other triploblastic bilaterian animals. We have
begun to establish the framework of a provisional cnidarian
“endomesodermal” gene regulatory network in the sea anemone,
Nematostella vectensis, by using a genome-wide microarray
analysis on embryos in which the canonical Wnt/ß-catenin pathway was
ectopically targeted for activation by two distinct pharmaceutical agents
(lithium chloride and 1-azakenpaullone) to identify potential targets of
endomesoderm specification. We characterized 51 endomesodermally expressed
transcription factors and signaling molecule genes (including 18 newly
identified) with fine-scale temporal (qPCR) and spatial (in
situ) analysis to define distinct co-expression domains within the
animal plate of the embryo and clustered genes based on their earliest zygotic
expression. Finally, we determined the input of the canonical
Wnt/ß-catenin pathway into the cnidarian endomesodermal GRN using
morpholino and mRNA overexpression experiments to show that NvTcf/canonical Wnt
signaling is required to pattern both the future endomesodermal and ectodermal
domains prior to gastrulation, and that both BMP and FGF (but not Notch)
pathways play important roles in germ layer specification in this animal. We
show both evolutionary conserved as well as profound differences in
endomesodermal GRN structure compared to bilaterians that may provide
fundamental insight into how GRN subcircuits have been adopted, rewired, or
co-opted in various animal lineages that give rise to specialized endomesodermal
cell types. Cnidarians (anemones, corals, and “jellyfish”) are an animal group
whose adults possess derivatives of only two germ layers: ectoderm and a
bifunctional (absorptive and contractile) gastrodermal (gut) layer. Cnidarians
are the closest living relatives to bilaterally symmetrical animals that possess
all three germ layers (ecto, meso, and endoderm); and compelling molecular,
genomic, developmental, and evolutionary evidence exists to demonstrate that the
cnidarian gastrodermis is evolutionarily related to both endodermal and
mesodermal germ layers in all other triploblastic bilaterian animals. Little is
known about endomesoderm specification in cnidarians. In this study, we
constructed the framework of a cnidarian endomesodermal gene regulatory network
in the sea anemone, Nematostella vectensis, using a combination
of experimental approaches. We identified and characterized by both qPCR and
in situ hybridization 51 genes expressed in defined domains
within the presumptive endomesoderm. In addition, we functionally demonstrate
that Wnt/Tcf signaling is crucial for regionalized expression of a defined
subset of these genes prior to gut formation and endomesoderm maintenance. Our
results support the idea of an ancient gene regulatory network underlying
endomesoderm specification that involves inputs from multiple signaling pathways
(Wnt, FGF, BMP, but not Notch) early in development, that are temporarily
uncoupled in bilaterian animals.
Collapse
Affiliation(s)
- Eric Röttinger
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
| | - Paul Dahlin
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
- * E-mail:
| |
Collapse
|
54
|
Ben-Tabou de-Leon S, Su YH, Lin KT, Li E, Davidson EH. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev Biol 2012; 374:245-54. [PMID: 23211652 DOI: 10.1016/j.ydbio.2012.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/10/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
The regulation of oral-aboral ectoderm specification in the sea urchin embryo has been extensively studied in recent years. The oral-aboral polarity is initially imposed downstream of a redox gradient induced by asymmetric maternal distribution of mitochondria. Two TGF-β signaling pathways, Nodal and BMP, are then respectively utilized in the generation of oral and aboral regulatory states. However, a causal understanding of the regulation of aboral ectoderm specification has been lacking. In this work control of aboral ectoderm regulatory state specification was revealed by combining detailed regulatory gene expression studies, perturbation and cis-regulatory analyses. Our analysis illuminates a dynamic system where different factors dominate at different developmental times. We found that the initial activation of aboral genes depends directly on the redox sensitive transcription factor, hypoxia inducible factor 1α (HIF-1α). Two BMP ligands, BMP2/4 and BMP5/8, then significantly enhance aboral regulatory gene transcription. Ultimately, encoded feedback wiring lockdown the aboral ectoderm regulatory state. Our study elucidates the different regulatory mechanisms that sequentially dominate the spatial localization of aboral regulatory states.
Collapse
Affiliation(s)
- Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel.
| | | | | | | | | |
Collapse
|
55
|
Luo Y, Lim CL, Nichols J, Martinez-Arias A, Wernisch L. Cell signalling regulates dynamics of Nanog distribution in embryonic stem cell populations. J R Soc Interface 2012; 10:20120525. [PMID: 23054952 PMCID: PMC3565777 DOI: 10.1098/rsif.2012.0525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A population of mouse embryonic stem (ES) cells is characterized by a distribution of Nanog, a gene whose expression is associated with the degree of pluripotency. Cells exhibiting high levels of Nanog maintain a state of pluripotency, while those with low levels are more likely to undergo differentiation. Using a cell line with a fluorescence tag for Nanog enables measurements of the distribution of Nanog in an ES cell culture in a stationary state or after a perturbation. In order to model the dynamics of the system, we assume that the distribution of Nanog-GFP for single cells shows distinct attractor steady states of Nanog levels, with individual cells moving between these states stochastically. The addition of synthetic inhibitors of signal transduction induces strong shifts in the distribution of Nanog. In particular, the addition of Chiron and PD03, inhibitors for the ERK and GSK3 signalling pathways, induces a high level of Nanog. In this study, we placed ES cells in different culture conditions, including the above inhibitors, and recorded the change in Nanog-GFP distribution over several days. In order to interpret the measurements of Nanog levels, we propose a new stochastic modelling strategy for the dynamics of the system not requiring detailed knowledge of regulatory or signalling mechanisms, while still capturing the stochastic and the deterministic components of the stochastic dynamical system. Despite its relative simplicity, the model provides an insight into key features of the cell population under various conditions, including the level of noise and occupancy and location of attractor steady states, without the need for strong assumptions about the underlying cellular mechanisms. By applying the model to our experimental data, we infer the existence of three stable steady states for Nanog levels, which are the same in all the different conditions of the cell-culture medium. Noise, on the other hand, and the proportion of cells in each steady state are subject to large shifts. Surprisingly, the isolated effects of PD03 and Chiron on noise and dynamics of the system are quite different from their combined effect. Our results show that signalling determines the occupancy of each state, with a particular role for GSK3 in the regulation of the noise across the population.
Collapse
Affiliation(s)
- Yang Luo
- Biostatistics Unit, Medical Research Council, Cambridge, UK
| | | | | | | | | |
Collapse
|
56
|
Rakar J, Lönnqvist S, Sommar P, Junker J, Kratz G. Interpreted gene expression of human dermal fibroblasts after adipo-, chondro- and osteogenic phenotype shifts. Differentiation 2012; 84:305-13. [DOI: 10.1016/j.diff.2012.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 07/30/2012] [Accepted: 08/19/2012] [Indexed: 11/27/2022]
|
57
|
Hao H, Kim DS, Klocke B, Johnson KR, Cui K, Gotoh N, Zang C, Gregorski J, Gieser L, Peng W, Fann Y, Seifert M, Zhao K, Swaroop A. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis. PLoS Genet 2012; 8:e1002649. [PMID: 22511886 PMCID: PMC3325202 DOI: 10.1371/journal.pgen.1002649] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/23/2012] [Indexed: 11/18/2022] Open
Abstract
A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.
Collapse
Affiliation(s)
- Hong Hao
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Douglas S. Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Kory R. Johnson
- Information Technology and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kairong Cui
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Norimoto Gotoh
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chongzhi Zang
- Department of Physics, The George Washington University, Washington, D.C., United States of America
| | - Janina Gregorski
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Linn Gieser
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, D.C., United States of America
| | - Yang Fann
- Information Technology and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Keji Zhao
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
58
|
|
59
|
Serotonergic transcriptional networks and potential importance to mental health. Nat Neurosci 2012; 15:519-27. [PMID: 22366757 DOI: 10.1038/nn.3039] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription regulatory networks governing the genesis, maturation and maintenance of vertebrate brain serotonin (5-HT) neurons determine the level of serotonergic gene expression and signaling throughout an animal's lifespan. Recent studies suggest that alterations in these networks can cause behavioral and physiological pathogenesis in mice. Here, we synthesize findings from vertebrate loss-of-function and gain-of-function studies to build a new model of the transcriptional regulatory networks that specify 5-HT neurons during fetal life, integrate them into CNS circuitry in early postnatal life and maintain them in adulthood. We then describe findings from animal and human genetic studies that support possible alterations in the activity of serotonergic regulatory networks in the etiology of mental illness. We conclude with a discussion of the potential utility of our model, as an experimentally well-defined molecular pathway, to predict and interpret the biological effect of genetic variation that may be discovered in the orthologous human network.
Collapse
|
60
|
Tsanov KM, Nishi Y, Peterson KA, Liu J, Baetscher M, McMahon AP. An embryonic stem cell-based system for rapid analysis of transcriptional enhancers. Genesis 2012; 50:443-50. [PMID: 22083581 DOI: 10.1002/dvg.20820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 11/07/2022]
Abstract
With the growing use of genome-wide screens for cis-regulatory elements, there is a pressing need for platforms that enable fast and cost-effective experimental validation of identified hits in relevant developmental and tissue contexts. Here, we describe a murine embryonic stem cell (ESC)-based system that facilitates rapid analysis of putative transcriptional enhancers. Candidate enhancers are targeted with high efficiency to a defined genomic locus via recombinase-mediated cassette exchange. Targeted ESCs are subsequently differentiated in vitro into desired cell types, where enhancer activity is monitored by reporter gene expression. As a proof of principle, we analyzed a previously characterized, Sonic hedgehog (Shh)-dependent, V3 interneuron progenitor (pV3)-specific enhancer for the Nkx2.2 gene, and observed highly specific enhancer activity. Given the broad potential of ESCs to generate a spectrum of cell types, this system can serve as an effective platform for the characterization of gene regulatory networks controlling cell fate specification and cell function.
Collapse
Affiliation(s)
- Kaloyan M Tsanov
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
61
|
Garcia HG, Lee HJ, Boedicker JQ, Phillips R. Comparison and calibration of different reporters for quantitative analysis of gene expression. Biophys J 2011; 101:535-44. [PMID: 21806921 DOI: 10.1016/j.bpj.2011.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/11/2011] [Accepted: 06/09/2011] [Indexed: 01/05/2023] Open
Abstract
Absolute levels of gene expression in bacteria are observed to vary over as much as six orders of magnitude. Thermodynamic models have been proposed as a tool to describe the expression levels of a given transcriptional circuit. In this context, it is essential to understand both the limitations and linear range of the different methods for measuring gene expression and to determine to what extent measurements from different reporters can be directly compared with one aim being the stringent testing of theoretical descriptions of gene expression. In this article, we compare two protein reporters by measuring both the absolute level of expression and fold-change in expression using the fluorescent protein EYFP and the enzymatic reporter β-galactosidase. We determine their dynamic and linear range and show that they are interchangeable for measuring mean levels of expression over four orders of magnitude. By calibrating these reporters such that they can be interpreted in terms of absolute molecular counts, we establish limits for their applicability: autofluorescence on the lower end of expression for EYFP (at ∼10 molecules per cell) and interference with cellular growth on the high end for β-galactosidase (at ∼20,000 molecules per cell). These qualities make the reporters complementary and necessary when trying to experimentally verify the predictions from the theoretical models.
Collapse
Affiliation(s)
- Hernan G Garcia
- Department of Physics, California Institute of Technology, Pasadena, California, USA
| | | | | | | |
Collapse
|
62
|
Quantitative dissection of the simple repression input-output function. Proc Natl Acad Sci U S A 2011; 108:12173-8. [PMID: 21730194 DOI: 10.1073/pnas.1015616108] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a quantitative case study of transcriptional regulation in which we carry out a systematic dialogue between theory and measurement for an important and ubiquitous regulatory motif in bacteria, namely, that of simple repression. This architecture is realized by a single repressor binding site overlapping the promoter. From the theory point of view, this motif is described by a single gene regulation function based upon only a few parameters that are convenient theoretically and accessible experimentally. The usual approach is turned on its side by using the mathematical description of these regulatory motifs as a predictive tool to determine the number of repressors in a collection of strains with a large variation in repressor copy number. The predictions and corresponding measurements are carried out over a large dynamic range in both expression fold change (spanning nearly four orders of magnitude) and repressor copy number (spanning about two orders of magnitude). The predictions are tested by measuring the resulting level of gene expression and are then validated by using quantitative immunoblots. The key outcomes of this study include a systematic quantitative analysis of the limits and validity of the input-output relation for simple repression, a precise determination of the in vivo binding energies for DNA-repressor interactions for several distinct repressor binding sites, and a repressor census for Lac repressor in Escherichia coli.
Collapse
|
63
|
Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:331-40. [PMID: 21742050 DOI: 10.1016/j.cbpa.2011.06.022] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022]
Abstract
Anthropogenic CO(2) emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO(2) (129 Pa, 1271 μatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of +100% under elevated pCO(2), while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO(2) spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters.
Collapse
Affiliation(s)
- M Stumpp
- Biological Oceanography, Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel, Germany
| | | | | | | | | |
Collapse
|
64
|
Ben-Tabou de-Leon S, Davidson EH. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:237-246. [PMID: 20228891 DOI: 10.1002/wsbm.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene regulatory networks for development underlie cell fate specification and differentiation. Network topology, logic and dynamics can be obtained by thorough experimental analysis. Our understanding of the gene regulatory network controlling endomesoderm specification in the sea urchin embryo has attained an advanced level such that it explains developmental phenomenology. Here we review how the network explains the mechanisms utilized in development to control the formation of dynamic expression patterns of transcription factors and signaling molecules. The network represents the genomic program controlling timely activation of specification and differentiation genes in the correct embryonic lineages. It can also be used to study evolution of body plans. We demonstrate how comparing the sea urchin gene regulatory network to that of the sea star and to that of later developmental stages in the sea urchin, reveals mechanisms underlying the origin of evolutionary novelty. The experimentally based gene regulatory network for endomesoderm specification in the sea urchin embryo provides unique insights into the system level properties of cell fate specification and its evolution.
Collapse
Affiliation(s)
| | - Eric H Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
65
|
New Insights into the Mechanisms and Roles of Cell–Cell Fusion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:149-209. [DOI: 10.1016/b978-0-12-386039-2.00005-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
66
|
Munding EM, Igel AH, Shiue L, Dorighi KM, Treviño LR, Ares M. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae. Genes Dev 2010; 24:2693-704. [PMID: 21123654 DOI: 10.1101/gad.1977410] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Splicing regulatory networks are essential components of eukaryotic gene expression programs, yet little is known about how they are integrated with transcriptional regulatory networks into coherent gene expression programs. Here we define the MER1 splicing regulatory network and examine its role in the gene expression program during meiosis in budding yeast. Mer1p splicing factor promotes splicing of just four pre-mRNAs. All four Mer1p-responsive genes also require Nam8p for splicing activation by Mer1p; however, other genes require Nam8p but not Mer1p, exposing an overlapping meiotic splicing network controlled by Nam8p. MER1 mRNA and three of the four Mer1p substrate pre-mRNAs are induced by the transcriptional regulator Ume6p. This unusual arrangement delays expression of Mer1p-responsive genes relative to other genes under Ume6p control. Products of Mer1p-responsive genes are required for initiating and completing recombination and for activation of Ndt80p, the activator of the transcriptional network required for subsequent steps in the program. Thus, the MER1 splicing regulatory network mediates the dependent relationship between the UME6 and NDT80 transcriptional regulatory networks in the meiotic gene expression program. This study reveals how splicing regulatory networks can be interlaced with transcriptional regulatory networks in eukaryotic gene expression programs.
Collapse
Affiliation(s)
- Elizabeth M Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, 95064, USA
| | | | | | | | | | | |
Collapse
|
67
|
The conserved role and divergent regulation of foxa, a pan-eumetazoan developmental regulatory gene. Dev Biol 2010; 357:21-6. [PMID: 21130759 DOI: 10.1016/j.ydbio.2010.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 11/23/2022]
Abstract
Foxa is a forkhead transcription factor that is expressed in the endoderm lineage across metazoans. Orthologs of foxa are expressed in cells that intercalate, polarize, and form tight junctions in the digestive tracts of the mouse, the sea urchin, and the nematode and in the chordate notochord. The loss of foxa expression eliminates these morphogenetic processes. The remarkable similarity in foxa phenotypes in these diverse organisms raises the following questions: why is the developmental role of Foxa so highly conserved? Is foxa transcriptional regulation as conserved as its developmental role? Comparison of the regulation of foxa orthologs in sea urchin and in Caenorhabditis elegans shows that foxa transcriptional regulation has diverged significantly between these two organisms, particularly in the cells that contribute to the C. elegans pharynx formation. We suggest that the similarity of foxa phenotype is due to its role in an ancestral gene regulatory network that controlled intercalation followed by mesenchymal-to-epithelial transition. foxa transcriptional regulation had evolved to support the developmental program in each species so foxa would play its role controlling morphogenesis at the necessary embryonic address.
Collapse
|
68
|
Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal 2010; 13:833-75. [PMID: 20367257 DOI: 10.1089/ars.2009.3044] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an embryo constitutes a complex choreography of regulatory events that underlies precise temporal and spatial control. Throughout this process the embryo encounters ever changing environments, which challenge its metabolism. Oxygen is required for embryogenesis but it also poses a potential hazard via formation of reactive oxygen and reactive nitrogen species (ROS/RNS). These metabolites are capable of modifying macromolecules (lipids, proteins, nucleic acids) and altering their biological functions. On one hand, such modifications may have deleterious consequences and must be counteracted by antioxidant defense systems. On the other hand, ROS/RNS function as essential signal transducers regulating the cellular phenotype. In this context the combined maternal/embryonic redox homeostasis is of major importance and dysregulations in the equilibrium of pro- and antioxidative processes retard embryo development, leading to organ malformation and embryo lethality. Silencing the in vivo expression of pro- and antioxidative enzymes provided deeper insights into the role of the embryonic redox equilibrium. Moreover, novel mechanisms linking the cellular redox homeostasis to gene expression regulation have recently been discovered (oxygen sensing DNA demethylases and protein phosphatases, redox-sensitive microRNAs and transcription factors, moonlighting enzymes of the cellular redox homeostasis) and their contribution to embryo development is critically reviewed.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Berlin, FR Germany
| | | | | | | | | |
Collapse
|
69
|
Ben-Tabou de-Leon S. Perturbation analysis analyzed--athematical modeling of intact and perturbed gene regulatory circuits for animal development. Dev Biol 2010; 344:1110-8. [PMID: 20599898 DOI: 10.1016/j.ydbio.2010.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/29/2010] [Accepted: 06/15/2010] [Indexed: 01/06/2023]
Abstract
Gene regulatory networks for animal development are the underlying mechanisms controlling cell fate specification and differentiation. The architecture of gene regulatory circuits determines their information processing properties and their developmental function. It is a major task to derive realistic network models from exceedingly advanced high throughput experimental data. Here we use mathematical modeling to study the dynamics of gene regulatory circuits to advance the ability to infer regulatory connections and logic function from experimental data. This study is guided by experimental methodologies that are commonly used to study gene regulatory networks that control cell fate specification. We study the effect of a perturbation of an input on the level of its downstream genes and compare between the cis-regulatory execution of OR and AND logics. Circuits that initiate gene activation and circuits that lock on the expression of genes are analyzed. The model improves our ability to analyze experimental data and construct from it the network topology. The model also illuminates information processing properties of gene regulatory circuits for animal development.
Collapse
|
70
|
Armstrong KR, Chamberlin HM. Coordinate regulation of gene expression in the C. elegans excretory cell by the POU domain protein CEH-6. Mol Genet Genomics 2009; 283:73-87. [PMID: 19921263 DOI: 10.1007/s00438-009-0497-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 10/23/2009] [Indexed: 11/24/2022]
Abstract
Excretory renal organs are critical in animals for osmoregulation and the elimination of waste. Renal organs across a range of species exhibit cellular and molecular similarities. For example, class III POU-homeodomain transcription factors are expressed in the renal organs of many invertebrates and vertebrates. However, the functional role for these factors is not well characterized. To better understand the role of class III POU-homeodomain proteins in animal excretory systems, we have characterized a set of genes expressed in the Caenorhabditis elegans excretory cell, and determined their regulation by the POU-III transcription factor CEH-6. Our molecular and biochemical studies show that CEH-6 regulates a subset of genes expressed in the excretory cell. Additionally, we find that the CEH-6-dependent genes share two molecular features: they contain at least one octamer regulatory element and they encode for transport and channel proteins. This work suggests that a role for POU-III factors in renal organs is to coordinate the expression of a set of functionally related genes.
Collapse
Affiliation(s)
- Kristin R Armstrong
- Department of Molecular Genetics, Ohio State University, 938 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
71
|
Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring. Proc Natl Acad Sci U S A 2009; 106:18291-6. [PMID: 19822764 DOI: 10.1073/pnas.0910007106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Design features that ensure reproducible and invariant embryonic processes are major characteristics of current gene regulatory network models. New cis-regulatory studies on a gene regulatory network subcircuit activated early in the development of the sea urchin embryo reveal a sequence of encoded "fail-safe" regulatory devices. These ensure the maintenance of fate separation between skeletogenic and nonskeletogenic mesoderm lineages. An unexpected consequence of the network design revealed in the course of these experiments is that it enables the embryo to "recover" from regulatory interference that has catastrophic effects if this feature is disarmed. A reengineered regulatory system inserted into the embryo was used to prove how this system operates in vivo. Genomically encoded backup control circuitry thus provides the mechanism underlying a specific example of the regulative development for which the sea urchin embryo has long been famous.
Collapse
|
72
|
High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol 2009; 10:R101. [PMID: 19778439 PMCID: PMC2768976 DOI: 10.1186/gb-2009-10-9-r101] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/11/2009] [Accepted: 09/24/2009] [Indexed: 11/12/2022] Open
Abstract
The high-resolution transcriptome of wild-type and nonsense-mediated decay (NMD) defective C. elegans during development reveals insights into the NMD pathway and it’s role in development. Background While many genome sequences are complete, transcriptomes are less well characterized. We used both genome-scale tiling arrays and massively parallel sequencing to map the Caenorhabditis elegans transcriptome across development. We utilized this framework to identify transcriptome changes in animals lacking the nonsense-mediated decay (NMD) pathway. Results We find that while the majority of detectable transcripts map to known gene structures, >5% of transcribed regions fall outside current gene annotations. We show that >40% of these are novel exons. Using both technologies to assess isoform complexity, we estimate that >17% of genes change isoform across development. Next we examined how the transcriptome is perturbed in animals lacking NMD. NMD prevents expression of truncated proteins by degrading transcripts containing premature termination codons. We find that approximately 20% of genes produce transcripts that appear to be NMD targets. While most of these arise from splicing errors, NMD targets are enriched for transcripts containing open reading frames upstream of the predicted translational start (uORFs). We identify a relationship between the Kozak consensus surrounding the true start codon and the degree to which uORF-containing transcripts are targeted by NMD and speculate that translational efficiency may be coupled to transcript turnover via the NMD pathway for some transcripts. Conclusions We generated a high-resolution transcriptome map for C. elegans and used it to identify endogenous targets of NMD. We find that these transcripts arise principally through splicing errors, strengthening the prevailing view that splicing and NMD are highly interlinked processes.
Collapse
|
73
|
Abstract
Animal development is an elaborate process programmed by genomic regulatory instructions. Regulatory genes encode transcription factors and signal molecules, and their expression is under the control of cis-regulatory modules that define the logic of transcriptional responses to the inputs of other regulatory genes. The functional linkages among regulatory genes constitute the gene regulatory networks (GRNs) that govern cell specification and patterning in development. Constructing such networks requires identification of the regulatory genes involved and characterization of their temporal and spatial expression patterns. Interactions (activation/repression) among transcription factors or signals can be investigated by large-scale perturbation analysis, in which the function of each gene is specifically blocked. Resultant expression changes are then integrated to identify direct linkages, and to reveal the structure of the GRN. Predicted GRN linkages can be tested and verified by cis-regulatory analysis. The explanatory power of the GRN was shown in the lineage specification of sea urchin endomesoderm. Acquiring such networks is essential for a systematic and mechanistic understanding of the developmental process.
Collapse
Affiliation(s)
- Enhu Li
- Division of Biology, California Institute of Technology, Pasadena, California 911025, USA
| | | |
Collapse
|
74
|
Geard N, Willadsen K. Dynamical approaches to modeling developmental gene regulatory networks. ACTA ACUST UNITED AC 2009; 87:131-42. [PMID: 19530129 DOI: 10.1002/bdrc.20150] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The network of interacting regulatory signals within a cell comprises one of the most complex and powerful computational systems in biology. Gene regulatory networks (GRNs) play a key role in transforming the information encoded in a genome into morphological form. To achieve this feat, GRNs must respond to and integrate environmental signals with their internal dynamics in a robust and coordinated fashion. The highly dynamic nature of this process lends itself to interpretation and analysis in the language of dynamical models. Modeling provides a means of systematically untangling the complicated structure of GRNs, a framework within which to simulate the behavior of reconstructed systems and, in some cases, suites of analytic tools for exploring that behavior and its implications. This review provides a general background to the idea of treating a regulatory network as a dynamical system, and describes a variety of different approaches that have been taken to the dynamical modeling of GRNs.
Collapse
Affiliation(s)
- Nicholas Geard
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| | | |
Collapse
|
75
|
Peter IS, Davidson EH. Genomic control of patterning. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:707-16. [PMID: 19378258 DOI: 10.1387/ijdb.072495ip] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The development of multicellular organisms involves the partitioning of the organism into territories of cells of specific structure and function. The information for spatial patterning processes is directly encoded in the genome. The genome determines its own usage depending on stage and position, by means of interactions that constitute gene regulatory networks (GRNs). The GRN driving endomesoderm development in sea urchin embryos illustrates different regulatory strategies by which developmental programs are initiated, orchestrated, stabilized or excluded to define the pattern of specified territories in the developing embryo.
Collapse
|
76
|
Pérez-Pérez JM, Candela H, Micol JL. Understanding synergy in genetic interactions. Trends Genet 2009; 25:368-76. [PMID: 19665253 DOI: 10.1016/j.tig.2009.06.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Synergy occurs when the contribution of two mutations to the phenotype of a double mutant exceeds the expectations from the additive effects of the individual mutations. The molecular characterization of genes involved in synergistic interactions has revealed that synergy mainly results from mutations in functionally related genes. Recent research in Arabidopsis thaliana has advanced our understanding of the scenarios resulting in synergistic phenotypes. Those involving homologous loci usually result from various levels of functional redundancy. Some of these loci fail to complement each other or become dose-dependent in certain multiple mutant combinations, suggesting that the effects of haploinsufficiency and redundancy can combine. Synergy involving non-homologous genes probably reflects the topology of the regulatory or metabolic networks and can arise when pathways that converge at a node are disrupted. The Hub genes provide a remarkable example, these genes have an extraordinary number of connections and mutations that interact with many unrelated pathways.
Collapse
Affiliation(s)
- José Manuel Pérez-Pérez
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
77
|
Jeziorska DM, Jordan KW, Vance KW. A systems biology approach to understanding cis-regulatory module function. Semin Cell Dev Biol 2009; 20:856-62. [PMID: 19660565 DOI: 10.1016/j.semcdb.2009.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/29/2009] [Indexed: 12/27/2022]
Abstract
The genomic instructions used to regulate development are encoded within a set of functional DNA elements called cis-regulatory modules (CRMs). These elements determine the precise patterns of temporal and spatial gene expression. Here we summarize recent progress made towards cataloguing and characterizing the complete repertoire of CRMs. We describe CRMs as genomic information processing devices containing clusters of transcription factor binding sites and we position CRMs as nodes within large gene regulatory networks. We define CRM architecture and describe how these genomic elements process the information they encode to their target genes. Furthermore, we present an overview describing high-throughput techniques to identify CRMs genome wide and experimental methodologies to validate their function on a large scale. This review emphasizes the advantages and power of a systems biology approach which integrates computational and experimental technologies to further our understanding of CRM function.
Collapse
Affiliation(s)
- Danuta M Jeziorska
- Departments of Systems Biology and Biological Sciences, University of Warwick, Biomedical Research Institute, Gibbet Hill, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
78
|
Palasingam P, Jauch R, Ng CKL, Kolatkar PR. The structure of Sox17 bound to DNA reveals a conserved bending topology but selective protein interaction platforms. J Mol Biol 2009; 388:619-30. [PMID: 19328208 DOI: 10.1016/j.jmb.2009.03.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/17/2009] [Accepted: 03/20/2009] [Indexed: 11/28/2022]
Abstract
Sox17 regulates endodermal lineage commitment and is thought to function antagonistically to the pluripotency determinant Sox2. To investigate the biochemical basis for the distinct functions of Sox2 and Sox17, we solved the crystal structure of the high mobility group domain of Sox17 bound to a DNA element derived from the Lama1 enhancer using crystals diffracting to 2.7 A resolution. Sox17 targets the minor groove and bends the DNA by approximately 80 degrees . The DNA architecture closely resembles the one seen for Sox2/DNA structures, suggesting that the degree of bending is conserved between both proteins and nucleotide substitutions have only marginal effects on the bending topology. Accordingly, affinities of Sox2 and Sox17 for the Lama1 element were found to be identical. However, when the Oct1 contact interface of Sox2 is compared with the corresponding region of Sox17, a significantly altered charge distribution is observed, suggesting differential co-factor recruitment that may explain their biological distinctiveness.
Collapse
Affiliation(s)
- Paaventhan Palasingam
- Laboratory of Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, Singapore, Singapore
| | | | | | | |
Collapse
|
79
|
Ettensohn CA. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 2009; 136:11-21. [PMID: 19060330 DOI: 10.1242/dev.023564] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Significant new insights have emerged from the analysis of a gene regulatory network (GRN) that underlies the development of the endoskeleton of the sea urchin embryo. Comparative studies have revealed ways in which this GRN has been modified (and conserved) during echinoderm evolution, and point to mechanisms associated with the evolution of a new cell lineage. The skeletogenic GRN has also recently been used to study the long-standing problem of developmental plasticity. Other recent findings have linked this transcriptional GRN to morphoregulatory proteins that control skeletal anatomy. These new studies highlight powerful new ways in which GRNs can be used to dissect development and the evolution of morphogenesis.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
80
|
Sethi AJ, Angerer RC, Angerer LM. Gene regulatory network interactions in sea urchin endomesoderm induction. PLoS Biol 2009; 7:e1000029. [PMID: 19192949 PMCID: PMC2634790 DOI: 10.1371/journal.pbio.1000029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/17/2008] [Indexed: 12/18/2022] Open
Abstract
A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm-gene regulatory network (EM-GRN) provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell-GRN (PMC-GRN) that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFbeta cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification.
Collapse
|
81
|
de-Leon SBT, Davidson EH. Modeling the dynamics of transcriptional gene regulatory networks for animal development. Dev Biol 2009; 325:317-28. [PMID: 19028486 PMCID: PMC4100934 DOI: 10.1016/j.ydbio.2008.10.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 10/14/2008] [Accepted: 10/21/2008] [Indexed: 01/04/2023]
Abstract
The dynamic process of cell fate specification is regulated by networks of regulatory genes. The architecture of the network defines the temporal order of specification events. To understand the dynamic control of the developmental process, the kinetics of mRNA and protein synthesis and the response of the cis-regulatory modules to transcription factor concentration must be considered. Here we review mathematical models for mRNA and protein synthesis kinetics which are based on experimental measurements of the rates of the relevant processes. The model comprises the response functions of cis-regulatory modules to their transcription factor inputs, by incorporating binding site occupancy and its dependence on biologically measurable quantities. We use this model to simulate gene expression, to distinguish between cis-regulatory execution of "AND" and "OR" logic functions, rationalize the oscillatory behavior of certain transcriptional auto-repressors and to show how linked subcircuits can be dealt with. Model simulations display the effects of mutation of binding sites, or perturbation of upstream gene expression. The model is a generally useful tool for understanding gene regulation and the dynamics of cell fate specification.
Collapse
Affiliation(s)
| | - Eric H. Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
82
|
|
83
|
Borenstein E, Krakauer DC. An end to endless forms: epistasis, phenotype distribution bias, and nonuniform evolution. PLoS Comput Biol 2008; 4:e1000202. [PMID: 18949026 PMCID: PMC2562988 DOI: 10.1371/journal.pcbi.1000202] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/09/2008] [Indexed: 11/29/2022] Open
Abstract
Studies of the evolution of development characterize the way in which gene
regulatory dynamics during ontogeny constructs and channels phenotypic
variation. These studies have identified a number of evolutionary regularities:
(1) phenotypes occupy only a small subspace of possible phenotypes, (2) the
influence of mutation is not uniform and is often canalized, and (3) a great
deal of morphological variation evolved early in the history of multicellular
life. An important implication of these studies is that diversity is largely the
outcome of the evolution of gene regulation rather than the emergence of new,
structural genes. Using a simple model that considers a generic property of
developmental maps—the interaction between multiple genetic elements
and the nonlinearity of gene interaction in shaping phenotypic
traits—we are able to recover many of these empirical regularities. We
show that visible phenotypes represent only a small fraction of possibilities.
Epistasis ensures that phenotypes are highly clustered in morphospace and that
the most frequent phenotypes are the most similar. We perform phylogenetic
analyses on an evolving, developmental model and find that species become more
alike through time, whereas higher-level grades have a tendency to diverge.
Ancestral phenotypes, produced by early developmental programs with a low level
of gene interaction, are found to span a significantly greater volume of the
total phenotypic space than derived taxa. We suggest that early and late
evolution have a different character that we classify into micro- and
macroevolutionary configurations. These findings complement the view of
development as a key component in the production of endless forms and highlight
the crucial role of development in constraining biotic diversity and
evolutionary trajectories. At the very end of his On the Origin of Species, Charles Darwin
wrote, “from so simple a beginning endless forms most beautiful and
most wonderful have been, and are being, evolved.” Nature truly
displays a bewildering variety of shapes and forms. Yet, with all its
magnificence, this diversity still represents only a tiny fraction of the
endless “space” of possibilities; research on the evolution
of development has revealed that observed common morphologies and body plans
(or, more generally, phenotypes) occupy only small, dense patches in the
abstract phenotypic space. In this paper, we introduce a simple model of
evolving gene regulation and show that these empirically identified patterns can
be attributed, at least in part, to interaction between genes (epistasis) in the
developmental network. Our model further predicts that early developmental
programs with low levels of interaction would span most of the variation found
in extant species. The theory presented in our paper complements the view of
development as a key component in the production of endless forms and highlights
the crucial role of development in constraining (as well as generating) biotic
diversity.
Collapse
Affiliation(s)
- Elhanan Borenstein
- Department of Biological Sciences, Stanford University, Stanford, California, United States of America.
| | | |
Collapse
|
84
|
Mao CA, Wang SW, Pan P, Klein WH. Rewiring the retinal ganglion cell gene regulatory network: Neurod1 promotes retinal ganglion cell fate in the absence of Math5. Development 2008; 135:3379-88. [DOI: 10.1242/dev.024612] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Retinal progenitor cells (RPCs) express basic helix-loop-helix (bHLH)factors in a strikingly mosaic spatiotemporal pattern, which is thought to contribute to the establishment of individual retinal cell identity. Here, we ask whether this tightly regulated pattern is essential for the orderly differentiation of the early retinal cell types and whether different bHLH genes have distinct functions that are adapted for each RPC. To address these issues, we replaced one bHLH gene with another. Math5 is a bHLH gene that is essential for establishing retinal ganglion cell (RGC) fate. We analyzed the retinas of mice in which Math5 was replaced with Neurod1 or Math3, bHLH genes that are expressed in another RPC and are required to establish amacrine cell fate. In the absence of Math5, Math5Neurod1-KI was able to specify RGCs, activate RGC genes and restore the optic nerve, although not as effectively as Math5. By contrast, Math5Math3-KI was much less effective than Math5Neurod1-KI in replacing Math5. In addition, expression of Neurod1 and Math3 from the Math5Neurod1-KI/Math3-KIallele did not result in enhanced amacrine cell production. These results were unexpected because they indicated that bHLH genes, which are currently thought to have evolved highly specialized functions, are nonetheless able to adjust their functions by interpreting the local positional information that is programmed into the RPC lineages. We conclude that, although Neurod1 and Math3 have evolved specialized functions for establishing amacrine cell fate, they are nevertheless capable of alternative functions when expressed in foreign environments.
Collapse
Affiliation(s)
- Chai-An Mao
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven W. Wang
- Department of Ophthalmology and Visual Science, The University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Ping Pan
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - William H. Klein
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Training Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
85
|
Posta F, Shvartsman SY, Muratov CB. Compensated optimal grids for elliptic boundary-value problems. JOURNAL OF COMPUTATIONAL PHYSICS 2008; 227:8622-8635. [PMID: 19802366 PMCID: PMC2717561 DOI: 10.1016/j.jcp.2008.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A method is proposed which allows to efficiently treat elliptic problems on unbounded domains in two and three spatial dimensions in which one is only interested in obtaining accurate solutions at the domain boundary. The method is an extension of the optimal grid approach for elliptic problems, based on optimal rational approximation of the associated Neumann-to-Dirichlet map in Fourier space. It is shown that, using certain types of boundary discretization, one can go from second-order accurate schemes to essentially spectrally accurate schemes in two-dimensional problems, and to fourth-order accurate schemes in three-dimensional problems without any increase in the computational complexity. The main idea of the method is to modify the impedance function being approximated to compensate for the numerical dispersion introduced by a small finite-difference stencil discretizing the differential operator on the boundary. We illustrate how the method can be efficiently applied to nonlinear problems arising in modeling of cell communication.
Collapse
Affiliation(s)
- F. Posta
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - S. Y. Shvartsman
- Department of Chemical Engineering and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - C. B. Muratov
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
86
|
An integrative view of dynamic genomic elements influencing human brain evolution and individual neurodevelopment. Med Hypotheses 2008; 71:360-73. [DOI: 10.1016/j.mehy.2008.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 03/01/2008] [Accepted: 03/06/2008] [Indexed: 11/23/2022]
|
87
|
Adams MS, Gammill LS, Bronner-Fraser M. Discovery of transcription factors and other candidate regulators of neural crest development. Dev Dyn 2008; 237:1021-33. [PMID: 18351660 DOI: 10.1002/dvdy.21513] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neural crest cells migrate long distances and form divergent derivatives in vertebrate embryos. Despite previous efforts to identify genes up-regulated in neural crest populations, transcription factors have proved to be elusive due to relatively low expression levels and often transient expression. We screened newly induced neural crest cells for early target genes with the aim of identifying transcriptional regulators and other developmentally important genes. This yielded numerous candidate regulators, including 14 transcription factors, many of which were not previously associated with neural crest development. Quantitative real-time polymerase chain reaction confirmed up-regulation of several transcription factors in newly induced neural crest populations in vitro. In a secondary screen by in situ hybridization, we verified the expression of >100 genes in the neural crest. We note that several of the transcription factors and other genes from the screen are expressed in other migratory cell populations and have been implicated in diverse forms of cancer.
Collapse
Affiliation(s)
- Meghan S Adams
- Division of Biology 139-74, California Institute of Technology, Pasadena, California, USA
| | | | | |
Collapse
|
88
|
Regulative differentiation as bifurcation of interacting cell population. J Theor Biol 2008; 253:779-87. [DOI: 10.1016/j.jtbi.2008.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/24/2022]
|
89
|
Lichtman JW, Sanes JR. Ome sweet ome: what can the genome tell us about the connectome? Curr Opin Neurobiol 2008; 18:346-53. [PMID: 18801435 PMCID: PMC2735215 DOI: 10.1016/j.conb.2008.08.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/18/2022]
Abstract
Some neuroscientists argue that detailed maps of synaptic connectivity--wiring diagrams--will be needed if we are to understand how the brain underlies behavior and how brain malfunctions underlie behavioral disorders. Such large-scale circuit reconstruction, which has been called connectomics, may soon be possible, owing to numerous advances in technologies for image acquisition and processing. Yet, the community is divided on the feasibility and value of the enterprise. Remarkably similar objections were voiced when the Human Genome Project, now widely viewed as a success, was first proposed. We revisit that controversy to ask if it holds any lessons for proposals to map the connectome.
Collapse
Affiliation(s)
- Jeff W Lichtman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
90
|
MATERNA STEFANC, CAMERON RANDREW. The sea urchin genome as a window on function. THE BIOLOGICAL BULLETIN 2008; 214:266-73. [PMID: 18574103 PMCID: PMC3981829 DOI: 10.2307/25470668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The emphasis on the sequencing of genomes seems to make this task an end in itself. However, genome sequences and the genes that are predicted from them are really an opportunity to examine the biological function of the organism constructed by that genome. This point is illustrated here by examples in which the newly annotated gene complement reveals surprises about the way Strongylocentrotus purpuratus, the purple sea urchin, goes about its business. The three topics considered here are the nature of the innate immune system; the unexpected complexity of sensory function implied by genes encoding sensory proteins; and the remarkable intricacy of the regulatory gene complement in embryogenesis.
Collapse
Affiliation(s)
- STEFAN C. MATERNA
- Division of Biology 156-29, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - R. ANDREW CAMERON
- Division of Biology 156-29, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| |
Collapse
|
91
|
Kim J, Kim TG, Jung SH, Kim JR, Park T, Heslop-Harrison P, Cho KH. Evolutionary design principles of modules that control cellular differentiation: consequences for hysteresis and multistationarity. ACTA ACUST UNITED AC 2008; 24:1516-22. [PMID: 18467345 DOI: 10.1093/bioinformatics/btn229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Gene regulatory networks (GRNs) govern cellular differentiation processes and enable construction of multicellular organisms from single cells. Although such networks are complex, there must be evolutionary design principles that shape the network to its present form, gaining complexity from simple modules. RESULTS To isolate particular design principles, we have computationally evolved random regulatory networks with a preference to result either in hysteresis (switching threshold depending on current state), or in multistationarity (having multiple steady states), two commonly observed dynamical features of GRNs related to differentiation processes. We have analyzed the resulting evolved networks and compared their structures and characteristics with real GRNs reported from experiments. CONCLUSION We found that the artificially evolved networks have particular topologies and it was notable that these topologies share important features and similarities with the real GRNs, particularly in contrasting properties of positive and negative feedback loops. We conclude that the structures of real GRNs are consistent with selection to favor one or other of the dynamical features of multistationarity or hysteresis. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Junil Kim
- Department of Bio and Brain Engineering and KI for the BioCentury, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
92
|
Acloque H, Thiery JP, Nieto MA. The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep 2008; 9:322-6. [PMID: 18323854 PMCID: PMC2288772 DOI: 10.1038/embor.2008.30] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/07/2008] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias de Alicante, CSIC-UMH, Apartado 18, San Juan de Alicante, 03550 Spain
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673 Singapore
| | - M. Angela Nieto
- Instituto de Neurociencias de Alicante, CSIC-UMH, Apartado 18, San Juan de Alicante, 03550 Spain
| |
Collapse
|
93
|
Bruggeman FJ, Oancea I, van Driel R. Exploring the behavior of small eukaryotic gene networks. J Theor Biol 2008; 252:482-7. [PMID: 18433776 DOI: 10.1016/j.jtbi.2008.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 02/15/2008] [Accepted: 02/18/2008] [Indexed: 11/18/2022]
Abstract
Analysis of the genome organization of higher eukaryotes indicates that it contains many clusters of functionally related genes. In these clusters, the activity of a single gene is regulated hierarchically at a local gene-level and a global cluster-level. Whether a single gene can be activated by a dedicated transcription factor depends on the epigenetic status of the cluster, i.e. whether it is epigenetically permissive or silenced. The consequence of gene clusters for the functioning of gene networks is largely unexplored. The accumulating biological knowledge about mechanisms for epigenetic regulation, signal transduction, and gene clusters makes such explorations a timely challenge. We explore the steady-state behavior of two gene clusters that mutually inhibit each other. This gives rise to multiple steady states in this simple system of interacting clusters. We illustrate that a gene cluster encoding a module composed of a signal transduction network and a transcription factor can generate versatile temporal dynamics that resembles cellular differentiation. The gene cluster can be epigenetically silenced and activated by a dedicated transcription factor. This module displays transient signal sensitivity, and irreversible decisions (commitment; hysteresis) depending on the identity and temporal sequence of external signals.
Collapse
Affiliation(s)
- Frank J Bruggeman
- Molecular Cell Physiology, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
94
|
Abstract
Mesenchymal cells of the sea urchin embryo provide a valuable experimental model for the analysis of cell-cell fusion in vivo. The unsurpassed optical transparency of the sea urchin embryo facilitates analysis of cell fusion in vivo using fluorescent markers and time-lapse three-dimensional imaging. Two populations of mesodermal cells engage in homotypic cell-cell fusion during gastrulation: primary mesenchyme cells and blastocoelar cells. In this chapter, we describe methods for studying the dynamics of cell fusion in living embryos. These methods have been used to analyze the fusion of primary mesenchyme cells and are also applicable to blastocoelar cell fusion. Although the molecular basis of cell fusion in the sea urchin has not been investigated, tools have recently become available that highlight the potential of this experimental model for integrating dynamic morphogenetic behaviors with underlying molecular mechanisms.
Collapse
Affiliation(s)
- Paul G Hodor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | | |
Collapse
|
95
|
Yamazaki A, Kawabata R, Shiomi K, Tsuchimoto J, Kiyomoto M, Amemiya S, Yamaguchi M. Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo. Dev Biol 2007; 314:433-42. [PMID: 18166171 DOI: 10.1016/j.ydbio.2007.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 11/06/2007] [Accepted: 11/20/2007] [Indexed: 11/16/2022]
Abstract
The canonical Wnt pathway plays a central role in specifying vegetal cell fate in sea urchin embryos. SpKrl has been cloned as a direct target of nuclear beta-catenin. Using Hemicentrotus pulcherrimus embryos, here we show that HpKrl controls the specification of secondary mesenchyme cells (SMCs) through both cell-autonomous and non-autonomous means. Like SpKrl, HpKrl was activated in both micromere and macromere progenies. To examine the functions of HpKrl in each blastomere, we constructed chimeric embryos composed of blastomeres from control and morpholino-mediated HpKrl-knockdown embryos and analyzed the phenotypes of the chimeras. Micromere-swapping experiments showed that HpKrl is not involved in micromere specification, while micromere-deprivation assays indicated that macromeres require HpKrl for cell-autonomous specification. Transplantation of normal micromeres into a micromere-less host with morpholino revealed that macromeres are able to receive at least some micromere signals regardless of HpKrl function. From these observations, we propose that two distinct pathways of endomesoderm formation exist in macromeres, a Krl-dependent pathway and a Krl-independent pathway. The Krl-independent pathway may correspond to the Delta/Notch signaling pathway via GataE and Gcm. We suggest that Krl may be a downstream component of nuclear beta-catenin required by macromeres for formation of more vegetal tissues, not as a member of the Delta/Notch pathway, but as a parallel effector of the signaling (Krl-dependent pathway).
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
96
|
Ismagilov RF, Maharbiz MM. Can we build synthetic, multicellular systems by controlling developmental signaling in space and time? Curr Opin Chem Biol 2007; 11:604-11. [PMID: 17967432 DOI: 10.1016/j.cbpa.2007.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 10/01/2007] [Indexed: 02/03/2023]
Abstract
Using biological machinery to make new, functional molecules is an exciting area in chemical biology. Complex molecules containing both 'natural' and 'unnatural' components are made by processes ranging from enzymatic catalysis to the combination of molecular biology with chemical tools. Here, we discuss applying this approach to the next level of biological complexity -- building synthetic, functional biotic systems by manipulating biological machinery responsible for development of multicellular organisms. We describe recent advances enabling this approach, including first, recent developmental biology progress unraveling the pathways and molecules involved in development and pattern formation; second, emergence of microfluidic tools for delivering stimuli to a developing organism with exceptional control in space and time; third, the development of molecular and synthetic biology toolsets for redesigning or de novo engineering of signaling networks; and fourth, biological systems that are especially amendable to this approach.
Collapse
Affiliation(s)
- Rustem F Ismagilov
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
97
|
Mao G, Brody JP. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element. Biochem Biophys Res Commun 2007; 363:153-8. [PMID: 17850763 PMCID: PMC2699948 DOI: 10.1016/j.bbrc.2007.08.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 11/19/2022]
Abstract
Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014s(-1). We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase.
Collapse
Affiliation(s)
- Grace Mao
- Department of Biomedical Engineering, University of California--Irvine, Irvine, CA 92697-2715, USA
| | | |
Collapse
|
98
|
Materna SC, Davidson EH. Logic of gene regulatory networks. Curr Opin Biotechnol 2007; 18:351-4. [PMID: 17689240 PMCID: PMC2031216 DOI: 10.1016/j.copbio.2007.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/12/2007] [Indexed: 11/21/2022]
Abstract
Regulatory networks of transcription factors and signaling molecules lie at the heart of development. Their architecture implements logic functions whose execution propels cells from one regulatory state to the next, thus driving development forward. As an example of a subcircuit that translates transcriptional input into developmental output, we consider a particularly simple case, the regulatory processes underlying pigment cell formation in sea urchin embryos. The regulatory events in this process can be represented as elementary logic functions.
Collapse
Affiliation(s)
- Stefan C Materna
- California Institute of Technology, Division of Biology, m/c 156-29, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | | |
Collapse
|
99
|
Hsiau THC, Diaconu C, Myers CA, Lee J, Cepko CL, Corbo JC. The cis-regulatory logic of the mammalian photoreceptor transcriptional network. PLoS One 2007; 2:e643. [PMID: 17653270 PMCID: PMC1916400 DOI: 10.1371/journal.pone.0000643] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 06/19/2007] [Indexed: 12/28/2022] Open
Abstract
The photoreceptor cells of the retina are subject to a greater number of genetic diseases than any other cell type in the human body. The majority of more than 120 cloned human blindness genes are highly expressed in photoreceptors. In order to establish an integrative framework in which to understand these diseases, we have undertaken an experimental and computational analysis of the network controlled by the mammalian photoreceptor transcription factors, Crx, Nrl, and Nr2e3. Using microarray and in situ hybridization datasets we have produced a model of this network which contains over 600 genes, including numerous retinal disease loci as well as previously uncharacterized photoreceptor transcription factors. To elucidate the connectivity of this network, we devised a computational algorithm to identify the photoreceptor-specific cis-regulatory elements (CREs) mediating the interactions between these transcription factors and their target genes. In vivo validation of our computational predictions resulted in the discovery of 19 novel photoreceptor-specific CREs near retinal disease genes. Examination of these CREs permitted the definition of a simple cis-regulatory grammar rule associated with high-level expression. To test the generality of this rule, we used an expanded form of it as a selection filter to evolve photoreceptor CREs from random DNA sequences in silico. When fused to fluorescent reporters, these evolved CREs drove strong, photoreceptor-specific expression in vivo. This study represents the first systematic identification and in vivo validation of CREs in a mammalian neuronal cell type and lays the groundwork for a systems biology of photoreceptor transcriptional regulation.
Collapse
Affiliation(s)
- Timothy H.-C. Hsiau
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Claudiu Diaconu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Connie A. Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jongwoo Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Constance L. Cepko
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (CC); (JC)
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail: (CC); (JC)
| |
Collapse
|