51
|
Clonality and non-linearity drive facultative-cooperation allele diversity. ISME JOURNAL 2018; 13:824-835. [PMID: 30464316 PMCID: PMC6461992 DOI: 10.1038/s41396-018-0310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
Abstract
Kin discrimination describes the differential interaction of organisms with kin versus non-kin. In microorganisms, many genetic loci act as effective kin-discrimination systems, such as kin-directed help and non-kin-directed harm. Another important example is facultative cooperation, where cooperators increase their investment in group-directed cooperation with the abundance of their kin in the group. Many of these kin-discrimination loci are highly diversified, yet it remains unclear what evolutionary mechanisms maintain this diversity, and how it is affected by population structure. Here, we demonstrate the unique dependence of kin-discriminative interactions on population structure, and how this could explain facultative-cooperation allele-diversity. We show mathematically that low relatedness between microbes in non-clonal social groups is needed to maintain the diversity of facultative-cooperation alleles, while high clonality is needed to stabilize this diversity against cheating. Interestingly, we demonstrate with simulations that such population structure occurs naturally in expanding microbial colonies. Finally, analysis of experimental data of quorum-sensing mediated facultative cooperation, in Bacillus subtilis, demonstrates the relevance of our results to realistic microbial interactions, due to their intrinsic non-linear frequency dependence. Our analysis therefore stresses the impact of clonality on the interplay between exploitation and kin discrimination and portrays a way for the evolution of facultative cooperation.
Collapse
|
52
|
Engineering Pseudochelin Production in Myxococcus xanthus. Appl Environ Microbiol 2018; 84:AEM.01789-18. [PMID: 30217842 DOI: 10.1128/aem.01789-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
Myxobacteria utilize the catechol natural products myxochelin A and B in order to maintain their iron homeostasis. Recently, the production of these siderophores, along with a new myxochelin derivative named pseudochelin A, was reported for the marine bacterium Pseudoalteromonas piscicida S2040. The latter derivative features a characteristic imidazoline moiety, which was proposed to originate from an intramolecular condensation reaction of the β-aminoethyl amide group in myxochelin B. To identify the enzyme catalyzing this conversion, we compared the myxochelin regulons of two myxobacterial strains that produce solely myxochelin A and B with those of P. piscicida S2040. This approach revealed a gene exclusive to the myxochelin regulon in P. piscicida S2040, coding for an enzyme of the amidohydrolase superfamily. To prove that this enzyme is indeed responsible for the postulated conversion, the reaction was reconstituted in vitro using a hexahistidine-tagged recombinant protein made in Escherichia coli, with myxochelin B as the substrate. To test the production of pseudochelin A under in vivo conditions, the amidohydrolase gene was cloned into the myxobacterial plasmid pZJY156 and placed under the control of a copper-inducible promoter. The resulting vector was introduced into the myxobacterium Myxococcus xanthus DSM 16526, a native producer of myxochelin A and B. Following induction with copper, the myxobacterial expression strain was found to synthesize small quantities of pseudochelin A. Replacement of the copper-inducible promoter with the constitutive pilA promoter led to increased production levels in M. xanthus, which facilitated the isolation and subsequent structural verification of the heterologously produced compound.IMPORTANCE In this study, an enzyme for imidazoline formation in pseudochelin biosynthesis was identified. Evidence for the involvement of this enzyme in the postulated reaction was obtained after in vitro reconstitution. Furthermore, the function of this enzyme was demonstrated in vivo by transferring the corresponding gene into the bacterium Myxococcus xanthus, which thereby became a producer of pseudochelin A. In addition to clarifying the molecular basis of imidazoline formation in siderophore biosynthesis, we describe the heterologous expression of a gene in a myxobacterium without chromosomal integration. Due to its metabolic proficiency, M. xanthus represents an interesting alternative to established host systems for the reconstitution and manipulation of biosynthetic pathways. Since the plasmid used in this study is easily adaptable for the expression of other enzymes as well, we expand the conventional expression strategy for myxobacteria, which is based on the integration of biosynthetic genes into the host genome.
Collapse
|
53
|
In silico characterization of a novel putative aerotaxis chemosensory system in the myxobacterium, Corallococcus coralloides. BMC Genomics 2018; 19:757. [PMID: 30340510 PMCID: PMC6194562 DOI: 10.1186/s12864-018-5151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
Background An efficient signal transduction system allows a bacterium to sense environmental cues and then to respond positively or negatively to those signals; this process is referred to as taxis. In addition to external cues, the internal metabolic state of any bacterium plays a major role in determining its ability to reside and thrive in its current environment. Similar to external signaling molecules, cytoplasmic signals are also sensed by methyl-accepting chemotaxis proteins (MCPs) via diverse ligand binding domains. Myxobacteria are complex soil-dwelling social microbes that can perform a variety of physiologic and metabolic activities ranging from gliding motility, sporulation, biofilm formation, carotenoid and secondary metabolite biosynthesis, predation, and slime secretion. To live such complex lifestyles, they have evolved efficient signal transduction systems with numerous one- and two-component regulatory system along with a large array of chemosensory systems to perceive and integrate both external and internal cues. Results Here we report the in silico characterization of a putative energy taxis cluster, Cc-5, which is present in only one amongst 34 known and sequenced myxobacterial genomes, Corallococcus coralloides. In addition, we propose that this energy taxis cluster is involved in oxygen sensing, suggesting that C. coralloides can sense (either directly or indirectly) and then respond to changing concentrations of molecular oxygen. Conclusions This hypothesis is based on the presence of a unique MCP encoded in this gene cluster that contains two different oxygen-binding sensor domains, PAS and globin. In addition, the two monooxygenases encoded in this cluster may contribute to aerobic respiration via ubiquinone biosynthesis, which is part of the cytochrome bc1 complex. Finally, we suggest that this cluster was acquired from Actinobacteria, Gammaproteobacteria or Cyanobacteria. Overall, this in silico study has identified a potentially innovative and evolved mechanism of energy taxis in only one of the myxobacteria, C. coralloides. Electronic supplementary material The online version of this article (10.1186/s12864-018-5151-6) contains supplementary material, which is available to authorized users.
Collapse
|
54
|
Gong Y, Zhang Z, Liu Y, Zhou X, Anwar MN, Li Z, Hu W, Li Y. A nuclease‐toxin and immunity system for kin discrimination inMyxococcus xanthus. Environ Microbiol 2018; 20:2552-2567. [DOI: 10.1111/1462-2920.14282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Ya Gong
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Ya Liu
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Xiu‐Wen Zhou
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Mian Nabeel Anwar
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Ze‐Shuo Li
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Yue‐Zhong Li
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| |
Collapse
|
55
|
Shu L, Zhang B, Queller DC, Strassmann JE. Burkholderia bacteria use chemotaxis to find social amoeba Dictyostelium discoideum hosts. THE ISME JOURNAL 2018; 12:1977-1993. [PMID: 29795447 PMCID: PMC6052080 DOI: 10.1038/s41396-018-0147-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/05/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
A key question in cooperation is how to find the right partners and maintain cooperative relationships. This is especially challenging for horizontally transferred bacterial symbionts where relationships must be repeatedly established anew. In the social amoeba Dictyostelium discoideum farming symbiosis, two species of inedible Burkholderia bacteria (Burkholderia agricolaris and Burkholderia hayleyella) initiate stable associations with naive D. discoideum hosts and cause carriage of additional bacterial species. However, it is not clear how the association between D. discoideum and its carried Burkholderia is formed and maintained. Here, we look at precisely how Burkholderia finds its hosts. We found that both species of Burkholderia clones isolated from D. discoideum, but not other tested Burkholderia species, are attracted to D. discoideum supernatant, showing that the association is not simply the result of haphazard engulfment by the amoebas. The chemotactic responses are affected by both partners. We find evidence that B. hayleyella prefers D. discoideum clones that currently or previously carried Burkholderia, while B. agricolaris does not show this preference. However, we find no evidence of Burkholderia preference for their own host clone or for other hosts of their own species. We further investigate the chemical differences of D. discoideum supernatants that might explain the patterns shown above using a mass spectrometry based metabolomics approach. These results show that these bacterial symbionts are able to preferentially find and to some extent choose their unicellular partners. In addition, this study also suggests that bacteria can actively search for and target phagocytic cells, which may help us better understand how bacteria interact with immune systems.
Collapse
Affiliation(s)
- Longfei Shu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
56
|
Sharma G, Burrows LL, Singer M. Diversity and Evolution of Myxobacterial Type IV Pilus Systems. Front Microbiol 2018; 9:1630. [PMID: 30072980 PMCID: PMC6060248 DOI: 10.3389/fmicb.2018.01630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
Type IV pili (T4P) are surface-exposed protein fibers that play key roles in the bacterial life cycle via surface attachment/adhesion, biofilm formation, motility, and development. The order Myxococcales (myxobacteria) are members of the class Deltaproteobacteria and known for their large genome size and complex social behaviors, including gliding motility, fruiting body formation, biofilm production, and prey hunting. Myxococcus xanthus, the best-characterized member of the order, relies on the appropriate expression of 17 type IVa (T4aP) genes organized in a single cluster plus additional genes (distributed throughout the genome) for social motility and development. Here, we compared T4aP genes organization within the myxobacteria to understand their evolutionary origins and diversity. We found that T4aP genes are organized as large clusters in suborder Cystobacterineae, whereas in other two suborders Sorangiineae and Nannocystineae, these genes are dispersed throughout the genome. Based on the genomic organization, the phylogeny of conserved proteins, and synteny studies among 28 myxobacterial and 66 Proteobacterial genomes, we propose an evolutionary model for the origin of myxobacterial T4aP genes independently from other orders in class Deltaproteobacteria. Considering a major role for T4P, this study further proposes the origins and evolution of social motility in myxobacteria and provides a foundation for understanding how complex-behavioral traits, such as gliding motility, multicellular development, etc., might have evolved in this diverse group of complex organisms.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| |
Collapse
|
57
|
Bacteriophages of Myxococcus xanthus, a Social Bacterium. Viruses 2018; 10:v10070374. [PMID: 30021959 PMCID: PMC6070905 DOI: 10.3390/v10070374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages have been used as molecular tools in fundamental biology investigations for decades. Beyond this, however, they play a crucial role in the eco-evolutionary dynamics of bacterial communities through their demographic impact and the source of genetic information they represent. The increasing interest in describing ecological and evolutionary aspects of bacteria–phage interactions has led to major insights into their fundamental characteristics, including arms race dynamics and acquired bacterial immunity. Here, we review knowledge on the phages of the myxobacteria with a major focus on phages infecting Myxococcus xanthus, a bacterial model system widely used to study developmental biology and social evolution. In particular, we focus upon the isolation of myxophages from natural sources and describe the morphology and life cycle parameters, as well as the molecular genetics and genomics of the major groups of myxophages. Finally, we propose several interesting research directions which focus on the interplay between myxobacterial host sociality and bacteria–phage interactions.
Collapse
|
58
|
Wielgoss S, Fiegna F, Rendueles O, Yu YTN, Velicer GJ. Kin discrimination and outer membrane exchange in Myxococcus xanthus: A comparative analysis among natural isolates. Mol Ecol 2018; 27:3146-3158. [PMID: 29924883 DOI: 10.1111/mec.14773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 01/05/2023]
Abstract
Genetically similar cells of the soil bacterium Myxococcus xanthus cooperate at multiple social behaviours, including motility and multicellular development. Another social interaction in this species is outer membrane exchange (OME), a behaviour of unknown primary benefit in which cells displaying closely related variants of the outer membrane protein TraA transiently fuse and exchange membrane contents. Functionally incompatible TraA variants do not mediate OME, which led to the proposal that TraA incompatibilities determine patterns of intercellular cooperation in nature, but how this might occur remains unclear. Using natural isolates from a centimetre-scale patch of soil, we analyse patterns of TraA diversity and ask whether relatedness at TraA is causally related to patterns of kin discrimination in the form of both colony-merger incompatibilities (CMIs) and interstrain antagonisms. A large proportion of TraA functional diversity documented among global isolates is predicted to be contained within this cm-scale population. We find evidence of balancing selection on the highly variable PA14-portion of TraA and extensive transfer of traA alleles across genomic backgrounds. CMIs are shown to be common among strains identical at TraA, suggesting that CMIs are not generally caused by TraA dissimilarity. Finally, it has been proposed that interstrain antagonisms might be caused by OME-mediated toxin transfer. However, we predict that most strain pairs previously shown to exhibit strong antagonisms are incapable of OME due to TraA dissimilarity. Overall, our results suggest that most documented patterns of kin discrimination in a natural population of M. xanthus are not causally related to the TraA sequences of interactants.
Collapse
Affiliation(s)
| | - Francesca Fiegna
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Olaya Rendueles
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Microbial Evolutionary Genomics Unit, Institut Pasteur, Paris, France
| | - Yuen-Tsu N Yu
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
59
|
Gong Y, Zhang Z, Zhou XW, Anwar MN, Hu XZ, Li ZS, Chen XJ, Li YZ. Competitive Interactions Between Incompatible Mutants of the Social Bacterium Myxococcus xanthus DK1622. Front Microbiol 2018; 9:1200. [PMID: 29922269 PMCID: PMC5996272 DOI: 10.3389/fmicb.2018.01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 05/16/2018] [Indexed: 01/03/2023] Open
Abstract
Due to the high similarity in their requirements for space and food, close bacterial relatives may be each other's strongest competitors. Close bacterial relatives often form visible boundaries to separate their swarming colonies, a phenomenon termed colony-merger incompatibility. While bacterial species are known to have many incompatible strains, it is largely unclear which traits lead to multiple incompatibilities and the interactions between multiple incompatible siblings. To investigate the competitive interactions of closely related incompatible strains, we mutated Myxococcus xanthus DK1622, a predatory bacterium with complex social behavior. From 3392 random transposon mutations, we obtained 11 self-identification (SI) deficient mutants that formed unmerged colony boundaries with the ancestral strain. The mutations were at nine loci with unknown functions and formed nine independent SI mutants. Compared with their ancestral strain, most of the SI mutants showed reduced growth, swarming and development abilities, but some remained unchanged from their monocultures. When pairwise mixed with their ancestral strain for co-cultivation, these mutants exhibited improved, reduced or unchanged competitive abilities compared with the ancestral strain. The sporulation efficiencies were affected by the DK1622 partner, ranging from almost complete inhibition to 360% stimulation. The differences in competitive growth between the SI mutants and DK1622 were highly correlated with the differences in their sporulation efficiencies. However, the competitive efficiencies of the mutants in mixture were inconsistent with their growth or sporulation abilities in monocultures. We propose that the colony-merger incompatibility in M. xanthus is associated with multiple independent genetic loci, and the incompatible strains hold competitive interaction abilities, which probably determine the complex relationships between multiple incompatible M. xanthus strains and their co-existence strategies.
Collapse
Affiliation(s)
- Ya Gong
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiu-Wen Zhou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Mian N Anwar
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiao-Zhuang Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Ze-Shuo Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiao-Jing Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| |
Collapse
|
60
|
Amherd M, Velicer GJ, Rendueles O. Spontaneous nongenetic variation of group size creates cheater-free groups of social microbes. Behav Ecol 2018. [DOI: 10.1093/beheco/arx184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Amherd
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Olaya Rendueles
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| |
Collapse
|
61
|
Muraille E. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis. Front Microbiol 2018; 9:223. [PMID: 29487592 PMCID: PMC5816788 DOI: 10.3389/fmicb.2018.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG) mechanisms share common functional properties. They (i) contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii) favor robustness and collectivism among populations and (iii) operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size) has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and the intensity of selective pressure. The ubiquity of DGs also suggests that regulated auto-generation of diversity is a fundamental property of life.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
62
|
Dolinšek J, Goldschmidt F, Johnson DR. Synthetic microbial ecology and the dynamic interplay between microbial genotypes. FEMS Microbiol Rev 2018; 40:961-979. [PMID: 28201744 DOI: 10.1093/femsre/fuw024] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/27/2016] [Accepted: 07/04/2016] [Indexed: 01/27/2023] Open
Abstract
Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.
Collapse
Affiliation(s)
- Jan Dolinšek
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Felix Goldschmidt
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
63
|
Chimeric Synergy in Natural Social Groups of a Cooperative Microbe. Curr Biol 2018; 28:262-267.e3. [PMID: 29337077 DOI: 10.1016/j.cub.2017.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Many cooperative species form internally diverse social groups in which individual fitness depends significantly on group-level productivity from cooperation [1-4]. For such species, selection is expected to often disfavor within-group diversity that reduces cooperative productivity [5, 6]. While diversity within social groups is known to enhance productivity in some animals [7-9], diversity within natural groups of social microbes is largely unexamined in this regard. Cells of the soil bacterium Myxococcus xanthus respond to starvation by constructing multicellular fruiting bodies within each of which a subpopulation of cells transforms into stress-resistant spores [10]. Fruiting bodies isolated from soil often harbor substantial endemic diversity [11] that is, nonetheless, lower than between-group diversity, which increases with distance from millimeter to global scales [12-14]. We show that M. xanthus clones isolated from the same fruiting body often collectively produce more viable spores in chimeric groups than expected from sporulation in genetically homogeneous groups. In contrast, chimerism among clones derived from different fruiting bodies tends to reduce group productivity, and it does so increasingly as a function of spatial distance between fruiting-body sample sites. For one fruiting body examined in detail, chimeric synergy-a positive quantitative effect of chimerism on group productivity-is distributed broadly across an interaction network rather than limited to a few interactions. We propose that these results strengthen the plausibility of the hypothesis that selection may operate not only within Myxococcus groups, but also between kin groups to disfavor within-group variation that reduces productivity while allowing some forms of diversity that generate chimeric synergy to persist.
Collapse
|
64
|
Comparative Genomics of Myxobacterial Chemosensory Systems. J Bacteriol 2018; 200:JB.00620-17. [PMID: 29158239 DOI: 10.1128/jb.00620-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022] Open
Abstract
Chemosensory systems (CSS) are among the most complex organizations of proteins functioning cooperatively to regulate bacterial motility and other cellular activities. These systems have been studied extensively in bacteria, and usually, they are present as a single system. Eight CSS, the highest number in bacteria, have been reported in Myxococcus xanthus DK1622 and are involved in coordinating diverse functions. Here, we have explored and compared the CSS in all available genomes of order Myxococcales. Myxococcales members contain 97 to 476 two-component system (TCS) proteins, which assist the bacteria in surviving and adapting to varying environmental conditions. The number of myxobacterial CSS ranges between 1 and 12, with the largest number in family Cystobacteraceae and the smallest in Nannocystaceae CheA protein was used as a phylogenetic marker to infer evolutionary relatedness between different CSS, and six novel CSS ("extra CSS" [ECSS]) were thus identified in the myxobacteria besides the previously reported Che1 to Che8 systems from M. xanthus Che1 to Che8 systems are monophyletic to deltaproteobacteria, whereas the newly identified ECSS form separate clades with different bacterial classes. The comparative modular organization was concordant with the phylogeny. Four clusters lacking CheA proteins were also identified via CheB-based phylogenetic analysis and were categorized as accessory CSS (ACSS). In Archangium, an orphan CSS was identified, in which both CheA and CheB were absent. The novel, accessory, and orphan multimodular CSS identified here suggest the emergence of myxobacterial CSS and could assist in further characterizing their roles.IMPORTANCE This study is focused on chemosensory systems (CSS), which help the bacterium in directing its movement toward or away from chemical gradients. CSS are present as a single system in most of the bacteria except in some groups, including Myxococcus xanthus, which has 8 CSS, the highest number reported to date. This is the first comprehensive study carrying out a comparative analysis of the 22 available myxobacterial genomes, which suggests the evolutionary diversity of these systems. We are interested in understanding the distribution of CSS within all known myxobacteria and their probable evolution.
Collapse
|
65
|
Patra P, Vassallo CN, Wall D, Igoshin OA. Mechanism of Kin-Discriminatory Demarcation Line Formation between Colonies of Swarming Bacteria. Biophys J 2018; 113:2477-2486. [PMID: 29212001 DOI: 10.1016/j.bpj.2017.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/09/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022] Open
Abstract
Swarming bacteria use kin discrimination to preferentially associate with their clonemates for certain cooperative behaviors. Kin discrimination can manifest as an apparent demarcation line (a region lacking cells or with much lower cell density) between antagonist strains swarming toward each other. In contrast, two identical strains merge with no demarcation. Experimental studies suggest contact-dependent killing between different strains as a mechanism of kin discrimination, but it is not clear whether this killing is sufficient to explain the observed patterns. Here, we investigate the formation of demarcation line with a mathematical model. First, using data from competition experiments between kin discriminating strains of Myxococcus xanthus and Proteus mirabilis, we found the rates of killing between the strains to be highly asymmetric, i.e., one strain kills another at a much higher rate. Then, to investigate how such asymmetric interactions can lead to a stable demarcation line, we construct reaction-diffusion models for colony expansion of kin-discriminatory strains. Our results demonstrate that a stable demarcation line can form when both cell movement and cell growth cease at low nutrient levels. Further, our study suggests that, depending on the initial separation between the inoculated colonies, the demarcation line may move transiently before stabilizing. We validated these model predictions by observing dynamics of merger between two M. xanthus strains, where one strain expresses a toxin protein that kills a second strain lacking the corresponding antitoxin. Our study therefore provides a theoretical understanding of demarcation line formation between kin-discriminatory populations, and can be used for analyzing and designing future experiments.
Collapse
Affiliation(s)
- Pintu Patra
- Center for Theoretical Biological Physics and Department of Bioengineering, Rice University, Houston, Texas
| | | | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics and Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|
66
|
Griffin EA, Carson WP. Tree Endophytes: Cryptic Drivers of Tropical Forest Diversity. ENDOPHYTES OF FOREST TREES 2018. [DOI: 10.1007/978-3-319-89833-9_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
67
|
Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. An Evo-Devo Perspective on Multicellular Development of Myxobacteria. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:165-178. [PMID: 28217903 DOI: 10.1002/jez.b.22727] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 12/12/2016] [Accepted: 12/25/2016] [Indexed: 11/07/2022]
Abstract
The transition to multicellularity, recognized as one the major transitions in evolution, has occurred independently several times. While multicellular development has been extensively studied in zygotic organisms including plant and animal groups, just a few aggregative multicellular organisms have been employed as model organisms for the study of multicellularity. Studying different evolutionary origins and modes of multicellularity enables comparative analyses that can help identifying lineage-specific aspects of multicellular evolution and generic factors and mechanisms involved in the transition to multicellularity. Among aggregative multicellular organisms, myxobacteria are a valuable system to explore the particularities that aggregation confers to the evolution of multicellularity and mechanisms shared with clonal organisms. Moreover, myxobacteria species develop fruiting bodies displaying a range of morphological diversity. In this review, we aim to synthesize diverse lines of evidence regarding myxobacteria development and discuss them in the context of Evo-Devo concepts and approaches. First, we briefly describe the developmental processes in myxobacteria, present an updated comparative analysis of the genes involved in their developmental processes and discuss these and other lines of evidence in terms of co-option and developmental system drift, two concepts key to Evo-Devo studies. Next, as has been suggested from Evo-Devo approaches, we discuss how broad comparative studies and integration of diverse genetic, physicochemical, and environmental factors into experimental and theoretical models can further our understanding of myxobacterial development, phenotypic variation, and evolution.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana E Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - León Patricio Martínez-Castilla
- Departamento de Bioquímica, Facultad de Quiímica, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
68
|
Tecon R, Or D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev 2017; 41:599-623. [PMID: 28961933 PMCID: PMC5812502 DOI: 10.1093/femsre/fux039] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Soil, the living terrestrial skin of the Earth, plays a central role in supporting life and is home to an unimaginable diversity of microorganisms. This review explores key drivers for microbial life in soils under different climates and land-use practices at scales ranging from soil pores to landscapes. We delineate special features of soil as a microbial habitat (focusing on bacteria) and the consequences for microbial communities. This review covers recent modeling advances that link soil physical processes with microbial life (termed biophysical processes). Readers are introduced to concepts governing water organization in soil pores and associated transport properties and microbial dispersion ranges often determined by the spatial organization of a highly dynamic soil aqueous phase. The narrow hydrological windows of wetting and aqueous phase connectedness are crucial for resource distribution and longer range transport of microorganisms. Feedbacks between microbial activity and their immediate environment are responsible for emergence and stabilization of soil structure-the scaffolding for soil ecological functioning. We synthesize insights from historical and contemporary studies to provide an outlook for the challenges and opportunities for developing a quantitative ecological framework to delineate and predict the microbial component of soil functioning.
Collapse
Affiliation(s)
- Robin Tecon
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Dani Or
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
69
|
Cavaliere M, Feng S, Soyer OS, Jiménez JI. Cooperation in microbial communities and their biotechnological applications. Environ Microbiol 2017; 19:2949-2963. [PMID: 28447371 PMCID: PMC5575505 DOI: 10.1111/1462-2920.13767] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
Microbial communities are increasingly utilized in biotechnology. Efficiency and productivity in many of these applications depends on the presence of cooperative interactions between members of the community. Two key processes underlying these interactions are the production of public goods and metabolic cross-feeding, which can be understood in the general framework of ecological and evolutionary (eco-evo) dynamics. In this review, we illustrate the relevance of cooperative interactions in microbial biotechnological processes, discuss their mechanistic origins and analyse their evolutionary resilience. Cooperative behaviours can be damaged by the emergence of 'cheating' cells that benefit from the cooperative interactions but do not contribute to them. Despite this, cooperative interactions can be stabilized by spatial segregation, by the presence of feedbacks between the evolutionary dynamics and the ecology of the community, by the role of regulatory systems coupled to the environmental conditions and by the action of horizontal gene transfer. Cooperative interactions enrich microbial communities with a higher degree of robustness against environmental stress and can facilitate the evolution of more complex traits. Therefore, the evolutionary resilience of microbial communities and their ability to constraint detrimental mutants should be considered to design robust biotechnological applications.
Collapse
Affiliation(s)
- Matteo Cavaliere
- School of Informatics, BBSRC/EPSRC/MRC Synthetic Biology Research CentreUniversity of EdinburghEdinburghEH8 9ABUK
| | - Song Feng
- Center for Nonlinear StudiesTheoretical Division (T‐6), Los Alamos National LaboratoryLos AlamosNM 87545USA
| | - Orkun S. Soyer
- School of Life Sciences, BBSRC/EPSRC Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - José I. Jiménez
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| |
Collapse
|
70
|
Self-identity reprogrammed by a single residue switch in a cell surface receptor of a social bacterium. Proc Natl Acad Sci U S A 2017; 114:3732-3737. [PMID: 28320967 DOI: 10.1073/pnas.1700315114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ability to recognize close kin confers survival benefits on single-celled microbes that live in complex and changing environments. Microbial kinship detection relies on perceptible cues that reflect relatedness between individuals, although the mechanisms underlying recognition in natural populations remain poorly understood. In myxobacteria, cells identify related individuals through a polymorphic cell surface receptor, TraA. Recognition of compatible receptors leads to outer membrane exchange among clonemates and fitness consequences. Here, we investigated how a single receptor creates a diversity in recognition across myxobacterial populations. We first show that TraA requires its partner protein TraB to function in cell-cell adhesion. Recognition is shown to be traA allele-specific, where polymorphisms within TraA dictate binding selectivity. We reveal the malleability of TraA recognition, and seemingly minor changes to its variable region reprogram recognition outcomes. Strikingly, we identify a single residue (A/P205) as a molecular switch for TraA recognition. Substitutions at this position change the specificity of a diverse panel of environmental TraA receptors. In addition, we engineered a receptor with unique specificity by simply creating an A205P substitution, suggesting that modest changes in TraA can lead to diversification of new recognition groups in nature. We hypothesize that the malleable property of TraA has allowed it to evolve and create social barriers between myxobacterial populations and in turn avoid adverse interactions with relatives.
Collapse
|
71
|
Zee PC, Velicer GJ. Parallel emergence of negative epistasis across experimental lineages. Evolution 2017; 71:1088-1095. [PMID: 28128449 DOI: 10.1111/evo.13190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023]
Abstract
Epistatic interactions can greatly impact evolutionary phenomena, particularly the process of adaptation. Here, we leverage four parallel experimentally evolved lineages to study the emergence and trajectories of epistatic interactions in the social bacterium Myxococcus xanthus. A social gene (pilA) necessary for effective group swarming on soft agar had been deleted from the common ancestor of these lineages. During selection for competitiveness at the leading edge of growing colonies, two lineages evolved qualitatively novel mechanisms for greatly increased swarming on soft agar, whereas the other two lineages evolved relatively small increases in swarming. By reintroducing pilA into different genetic backgrounds along the four lineages, we tested whether parallel lineages showed similar patterns of epistasis. In particular, we tested whether a pattern of negative epistasis between accumulating mutations and pilA previously found in the fastest lineage would be found only in the two evolved lineages with the fastest and most striking swarming phenotypes, or rather was due to common epistatic structure across all lineages arising from the generic fixation of adaptive mutations. Our analysis reveals the emergence of negative epistasis across all four independent lineages. Further, we present results showing that the observed negative epistasis is not due exclusively to evolving populations approaching a maximum phenotypic value that inherently limits positive effects of pilA reintroduction, but rather involves direct antagonistic interactions between accumulating mutations and the reintroduced social gene.
Collapse
Affiliation(s)
- Peter C Zee
- Department of Biology, California State University, Northridge, California.,Department of Biology, Indiana University, Bloomington, Indiana
| | - Gregory J Velicer
- Department of Biology, Indiana University, Bloomington, Indiana.,Department of Environmental Systems Sciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
72
|
Vassallo CN, Cao P, Conklin A, Finkelstein H, Hayes CS, Wall D. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. eLife 2017; 6:29397. [PMID: 28820387 PMCID: PMC5562445 DOI: 10.7554/elife.29397] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 01/07/2023] Open
Abstract
Myxobacteria are known for complex social behaviors including outer membrane exchange (OME), in which cells exchange large amounts of outer membrane lipids and proteins upon contact. The TraA cell surface receptor selects OME partners based on a variable domain. However, traA polymorphism alone is not sufficient to precisely discriminate kin. Here, we report a novel family of OME-delivered toxins that promote kin discrimination of OME partners. These SitA lipoprotein toxins are polymorphic and widespread in myxobacteria. Each sitA is associated with a cognate sitI immunity gene, and in some cases a sitB accessory gene. Remarkably, we show that SitA is transferred serially between target cells, allowing the toxins to move cell-to-cell like an infectious agent. Consequently, SitA toxins define strong identity barriers between strains and likely contribute to population structure, maintenance of cooperation, and strain diversification. Moreover, these results highlight the diversity of systems evolved to deliver toxins between bacteria.
Collapse
Affiliation(s)
| | - Pengbo Cao
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Austin Conklin
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Hayley Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, United States
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, United States
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, United States,
| |
Collapse
|
73
|
Abstract
ABSTRACT
Cooperation has been studied extensively across the tree of life, from eusociality in insects to social behavior in humans, but it is only recently that a social dimension has been recognized and extensively explored for microbes. Research into microbial cooperation has accelerated dramatically and microbes have become a favorite system because of their fast evolution, their convenience as lab study systems and the opportunity for molecular investigations. However, the study of microbes also poses significant challenges, such as a lack of knowledge and an inaccessibility of the ecological context (used here to include both the abiotic and the biotic environment) under which the trait deemed cooperative has evolved and is maintained. I review the experimental and theoretical evidence in support of the limitations of the study of social behavior in microbes in the absence of an ecological context. I discuss both the need and the opportunities for experimental investigations that can inform a theoretical framework able to reframe the general questions of social behavior in a clear ecological context and to account for eco-evolutionary feedback.
Collapse
Affiliation(s)
- Corina E. Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
74
|
Zhang Z, Claessen D, Rozen DE. Understanding Microbial Divisions of Labor. Front Microbiol 2016; 7:2070. [PMID: 28066387 PMCID: PMC5174093 DOI: 10.3389/fmicb.2016.02070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022] Open
Abstract
Divisions of labor are ubiquitous in nature and can be found at nearly every level of biological organization, from the individuals of a shared society to the cells of a single multicellular organism. Many different types of microbes have also evolved a division of labor among its colony members. Here we review several examples of microbial divisions of labor, including cases from both multicellular and unicellular microbes. We first discuss evolutionary arguments, derived from kin selection, that allow divisions of labor to be maintained in the face of non-cooperative cheater cells. Next we examine the widespread natural variation within species in their expression of divisions of labor and compare this to the idea of optimal caste ratios in social insects. We highlight gaps in our understanding of microbial caste ratios and argue for a shift in emphasis from understanding the maintenance of divisions of labor, generally, to instead focusing on its specific ecological benefits for microbial genotypes and colonies. Thus, in addition to the canonical divisions of labor between, e.g., reproductive and vegetative tasks, we may also anticipate divisions of labor to evolve to reduce the costly production of secondary metabolites or secreted enzymes, ideas we consider in the context of streptomycetes. The study of microbial divisions of labor offers opportunities for new experimental and molecular insights across both well-studied and novel model systems.
Collapse
Affiliation(s)
- Zheren Zhang
- Institute of Biology, Leiden University Leiden, Netherlands
| | | | - Daniel E Rozen
- Institute of Biology, Leiden University Leiden, Netherlands
| |
Collapse
|
75
|
Allee effect: the story behind the stabilization or extinction of microbial ecosystem. Arch Microbiol 2016; 199:185-190. [PMID: 27888322 DOI: 10.1007/s00203-016-1323-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
A population exhibiting Allee effect shows a positive correlation between population fitness and population size or density. Allee effect decides the extinction or conservation of a microbial population and thus appears to be an important criterion in population ecology. The underlying factor of Allee effect that decides the stabilization and extinction of a particular population density is the threshold or the critical density of their abundance. According to Allee, microbial populations exhibit a definite, critical or threshold density, beyond which the population fitness of a particular population increases with the rise in population density and below it, the population fitness goes down with the decrease in population density. In particular, microbial population displays advantageous traits such as biofilm formation, expression of virulence genes, spore formation and many more only at a high population density. It has also been observed that microorganisms exhibiting a lower population density undergo complete extinction from the residual microbial ecosystem. In reference to Allee effect, decrease in population density or size introduces deleterious mutations among the population density through genetic drift. Mutations are carried forward to successive generations resulting in its accumulation among the population density thus reducing its microbial fitness and thereby increasing the risk of extinction of a particular microbial population. However, when the microbial load is high, the chance of genetic drift is less, and through the process of biofilm formation, the cooperation existing among the microbial population increases that increases the microbial fitness. Thus, the high microbial population through the formation of microbial biofilm stabilizes the ecosystem by increasing fitness. Taken together, microbial fitness shows positive correlation with the ecosystem conservation and negative correlation with ecosystem extinction.
Collapse
|
76
|
Affiliation(s)
- Silke C. Wenzel
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
77
|
Zee PC, Liu J, Velicer GJ. Pervasive, yet idiosyncratic, epistatic pleiotropy during adaptation in a behaviourally complex microbe. J Evol Biol 2016; 30:257-269. [PMID: 27862537 DOI: 10.1111/jeb.12999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 01/14/2023]
Abstract
Understanding how multiple mutations interact to jointly impact multiple ecologically important traits is critical for creating a robust picture of organismal fitness and the process of adaptation. However, this is complicated by both environmental heterogeneity and the complexity of genotype-to-phenotype relationships generated by pleiotropy and epistasis. Moreover, little is known about how pleiotropic and epistatic relationships themselves change over evolutionary time. The soil bacterium Myxococcus xanthus employs several distinct social traits across a range of environments. Here, we use an experimental lineage of M. xanthus that evolved a novel form of social motility to address how interactions between epistasis and pleiotropy evolve. Specifically, we test how mutations accumulated during selection on soft agar pleiotropically affect several other social traits (hard agar motility, predation and spore production). Relationships between changes in swarming rate in the selective environment and the four other traits varied greatly over time in both direction and magnitude, both across timescales of the entire evolutionary lineage and individual evolutionary time steps. We also tested how a previously defined epistatic interaction is pleiotropically expressed across these traits. We found that phenotypic effects of this epistatic interaction were highly correlated between soft and hard agar motility, but were uncorrelated between soft agar motility and predation, and inversely correlated between soft agar motility and spore production. Our results show that 'epistatic pleiotropy' varied greatly in magnitude, and often even in sign, across traits and over time, highlighting the necessity of simultaneously considering the interacting complexities of pleiotropy and epistasis when studying the process of adaptation.
Collapse
Affiliation(s)
- P C Zee
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - J Liu
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - G J Velicer
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
78
|
Rendueles O, Velicer GJ. Evolution by flight and fight: diverse mechanisms of adaptation by actively motile microbes. ISME JOURNAL 2016; 11:555-568. [PMID: 27662568 PMCID: PMC5270557 DOI: 10.1038/ismej.2016.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/19/2016] [Accepted: 07/03/2016] [Indexed: 01/16/2023]
Abstract
Evolutionary adaptation can be achieved by mechanisms accessible to all organisms, including faster growth and interference competition, but self-generated motility offers additional possibilities. We tested whether 55 populations of the bacterium Myxococcus xanthus that underwent selection for increased fitness at the leading edge of swarming colonies adapted by swarming faster toward unused resources or by other means. Populations adapted greatly but diversified markedly in both swarming phenotypes and apparent mechanisms of adaptation. Intriguingly, although many adapted populations swarm intrinsically faster than their ancestors, numerous others do not. Some populations evolved interference competition toward their ancestors, whereas others gained the ability to facultatively increase swarming rate specifically upon direct interaction with ancestral competitors. Our results both highlight the diverse range of mechanisms by which actively motile organisms can adapt evolutionarily and help to explain the high levels of swarming-phenotype diversity found in local soil populations of M. xanthus.
Collapse
Affiliation(s)
- Olaya Rendueles
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich, Switzerland
| |
Collapse
|
79
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
80
|
Co-action provides rational basis for the evolutionary success of Pavlovian strategies. Sci Rep 2016; 6:30831. [PMID: 27476604 PMCID: PMC4967866 DOI: 10.1038/srep30831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/11/2016] [Indexed: 11/08/2022] Open
Abstract
Strategies incorporating direct reciprocity, e.g., Tit-for-Tat and Pavlov, have been shown to be successful for playing the Iterated Prisoners Dilemma (IPD), a paradigmatic problem for studying the evolution of cooperation among non-kin individuals. However it is an open question whether such reciprocal strategies can emerge as the rational outcome of repeated interactions between selfish agents. Here we show that adopting a co-action perspective, which takes into account the symmetry between agents - a relevant consideration in biological and social contexts - naturally leads to such a strategy. For a 2-player IPD, we show that the co-action solution corresponds to the Pavlov strategy, thereby providing a rational basis for it. For an IPD involving many players, an instance of the Public Goods game where cooperation is generally considered to be harder to achieve, we show that the cooperators always outnumber defectors in the co-action equilibrium. This can be seen as a generalization of Pavlov to contests involving many players. In general, repeated interactions allow rational agents to become aware of the inherent symmetry of their situation, enabling them to achieve robust cooperation through co-action strategies - which, in the case of IPD, is a reciprocal Pavlovian one.
Collapse
|
81
|
Higher reproductive success for chimeras than solitary individuals in the kelp Lessonia spicata but no benefit for individual genotypes. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9849-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
82
|
Abstract
The study of natural products is entering a renaissance, driven by the discovery that the majority of bacterial secondary metabolites are not produced under standard laboratory conditions. Understanding the ecological role of natural products is key to efficiently directing our screening efforts, and to ensuring that each screen efficiently captures the full biosynthetic repertoire of the producing organisms. Myxobacteria represent one of the most common and diverse groups of bacteria, with roughly 2500 strains publically available. Fed largely through predation, the myxobacteria have developed a large repertoire of natural products that target other microorganisms, including bacteria and fungi. Many of these interactions can be observed in predation assays, providing direct evidence for environmental interactions. With a focus on Myxococcus xanthus, this review will highlight how recent advances in myxobacteria are revealing the chemical ecology of bacterial natural products.
Collapse
Affiliation(s)
- Brandon L. Findlay
- Department of Chemistry and
Biochemistry, Faculty of Arts and Science, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
83
|
Abstract
The ability of bacteria to recognize kin provides a means to form social groups. In turn these groups can lead to cooperative behaviors that surpass the ability of the individual. Kin recognition involves specific biochemical interactions between a receptor(s) and an identification molecule(s). Recognition specificity, ensuring that nonkin are excluded and kin are included, is critical and depends on the number of loci and polymorphisms involved. After recognition and biochemical perception, the common ensuing cooperative behaviors include biofilm formation, quorum responses, development, and swarming motility. Although kin recognition is a fundamental mechanism through which cells might interact, microbiologists are only beginning to explore the topic. This review considers both molecular and theoretical aspects of bacterial kin recognition. Consideration is also given to bacterial diversity, genetic relatedness, kin selection theory, and mechanisms of recognition.
Collapse
Affiliation(s)
- Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071;
| |
Collapse
|
84
|
Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: Moving, Killing, Feeding, and Surviving Together. Front Microbiol 2016; 7:781. [PMID: 27303375 PMCID: PMC4880591 DOI: 10.3389/fmicb.2016.00781] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Myxococcus xanthus, like other myxobacteria, is a social bacterium that moves and feeds cooperatively in predatory groups. On surfaces, rod-shaped vegetative cells move in search of the prey in a coordinated manner, forming dynamic multicellular groups referred to as swarms. Within the swarms, cells interact with one another and use two separate locomotion systems. Adventurous motility, which drives the movement of individual cells, is associated with the secretion of slime that forms trails at the leading edge of the swarms. It has been proposed that cellular traffic along these trails contributes to M. xanthus social behavior via stigmergic regulation. However, most of the cells travel in groups by using social motility, which is cell contact-dependent and requires a large number of individuals. Exopolysaccharides and the retraction of type IV pili at alternate poles of the cells are the engines associated with social motility. When the swarms encounter prey, the population of M. xanthus lyses and takes up nutrients from nearby cells. This cooperative and highly density-dependent feeding behavior has the advantage that the pool of hydrolytic enzymes and other secondary metabolites secreted by the entire group is shared by the community to optimize the use of the degradation products. This multicellular behavior is especially observed in the absence of nutrients. In this condition, M. xanthus swarms have the ability to organize the gliding movements of 1000s of rods, synchronizing rippling waves of oscillating cells, to form macroscopic fruiting bodies, with three subpopulations of cells showing division of labor. A small fraction of cells either develop into resistant myxospores or remain as peripheral rods, while the majority of cells die, probably to provide nutrients to allow aggregation and spore differentiation. Sporulation within multicellular fruiting bodies has the benefit of enabling survival in hostile environments, and increases germination and growth rates when cells encounter favorable conditions. Herein, we review how these social bacteria cooperate and review the main cell–cell signaling systems used for communication to maintain multicellularity.
Collapse
Affiliation(s)
- José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| | | | - Elena García-Bravo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| |
Collapse
|
85
|
Velicer GJ, Plucain J. Evolution: Bacterial Territoriality as a Byproduct of Kin Discriminatory Warfare. Curr Biol 2016; 26:R364-6. [PMID: 27166695 DOI: 10.1016/j.cub.2016.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent work suggests that the inability of genetically distinct colonies of the bacterium Bacillus subtilis to freely merge is often a byproduct of microbial warfare mediated by divergent suites of chemical weaponry. Any effects of such kin-discriminatory antagonisms on levels of within-group cooperation at other traits remain unclear.
Collapse
Affiliation(s)
- Gregory J Velicer
- ETH Zurich, Institute of Integrative Biology, 8092 Zurich, Switzerland.
| | - Jessica Plucain
- ETH Zurich, Institute of Integrative Biology, 8092 Zurich, Switzerland
| |
Collapse
|
86
|
Biernaskie JM, West SA. Cooperation, clumping and the evolution of multicellularity. Proc Biol Sci 2016; 282:20151075. [PMID: 26246549 DOI: 10.1098/rspb.2015.1075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The evolution of multicellular organisms represents one of the major evolutionary transitions in the history of life. A potential advantage of forming multicellular clumps is that it provides an efficiency benefit to pre-existing cooperation, such as the production of extracellular 'public goods'. However, this is complicated by the fact that cooperation could jointly evolve with clumping, and clumping could have multiple consequences for the evolution of cooperation. We model the evolution of clumping and a cooperative public good, showing that (i) when considered separately, both clumping and public goods production gradually increase with increasing genetic relatedness; (ii) in contrast, when the traits evolve jointly, a small increase in relatedness can lead to a major shift in evolutionary outcome—from a non-clumping state with low public goods production to a cooperative clumping state with high values of both traits; (iii) high relatedness makes it easier to get to the cooperative clumping state and (iv) clumping can be inhibited when it increases the number of cells that the benefits of cooperation must be shared with, but promoted when it increases relatedness between those cells. Overall, our results suggest that public goods sharing can facilitate the formation of well-integrated cooperative clumps as a first step in the evolution of multicellularity.
Collapse
Affiliation(s)
- Jay M Biernaskie
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Stuart A West
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
87
|
Abstract
Outer membrane vesicles (OMVs) are produced from the outer membrane (OM) of myxobacterial cells and are found in large quantities within myxobacterial biofilms. It has been proposed that OMVs are involved in several of the social behaviors exhibited by the myxobacteria, including motility and predation. Proteomic data suggest that specific proteins are either selectively incorporated into or excluded from myxobacterial OMVs, as observed for OMVs of other organisms. Hydrolases are found in large numbers in OMVs, which then transport them to target bacteria. Fusion of OMVs with the OM of Gram-negative cells, or lysis of OMVs next to Gram-positive bacteria, is thought to deliver hydrolases to target cells, causing their lysis. The model myxobacterium Myxococcus xanthus is a predator of other bacteria, and OMVs are likely employed as predatory agents by this organism. The transfer of motility proteins between cells of M. xanthus has been documented, and OMV-mediated transfer provides a convenient mechanism to explain this phenomenon. This review describes the general principles of OMV biology, provides an overview of myxobacterial behavior, summarizes what is currently known about myxobacterial OMVs, and discusses the potential involvement of OMVs in many features of the myxobacterial life-cycle.
Collapse
Affiliation(s)
- David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom.
| |
Collapse
|
88
|
A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus. ISME JOURNAL 2016; 10:2468-77. [PMID: 27046334 PMCID: PMC5030687 DOI: 10.1038/ismej.2016.34] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 01/05/2016] [Accepted: 02/02/2016] [Indexed: 12/12/2022]
Abstract
The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies. M. xanthus strains isolated from a 16 × 16-cm-scale patch of soil were previously shown to have diversified into many distinct compatibility types that are distinguished by the failure of swarming colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace patterns of incipient genomic divergence, specifically related to social divergence. Although homologous recombination occurs frequently within the two MLST clades, we find an almost complete absence of recombination events between them. As the two clades are very closely related and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid substitution in the core genome. We identify a large genomic tract that consistently differs between isolates that do not freely merge and therefore is a candidate region for harbouring gene(s) responsible for self/non-self discrimination.
Collapse
|
89
|
Abstract
The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental conditions, but they also differentiate into cell types that interact with each other. This allows for task differentiation and, hence, the division of labor. In this article, we focus on cell differentiation and the division of labor in three bacterial species: Myxococcus xanthus, Bacillus subtilis, and Pseudomonas aeruginosa. During biofilm formation each of these species differentiates into distinct cell types, in some cases leading to cooperative interactions. The division of labor and the cooperative interactions between cell types are assumed to yield an emergent ecological benefit. Yet in most cases the ecological benefits have yet to be elucidated. A notable exception is M. xanthus, in which cell differentiation within fruiting bodies facilitates the dispersal of spores. We argue that the ecological benefits of the division of labor might best be understood when we consider the dynamic nature of both biofilm formation and degradation.
Collapse
|
90
|
Sharma G, Narwani T, Subramanian S. Complete Genome Sequence and Comparative Genomics of a Novel Myxobacterium Myxococcus hansupus. PLoS One 2016; 11:e0148593. [PMID: 26900859 PMCID: PMC4765838 DOI: 10.1371/journal.pone.0148593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022] Open
Abstract
Myxobacteria, a group of Gram-negative aerobes, belong to the class δ-proteobacteria and order Myxococcales. Unlike anaerobic δ-proteobacteria, they exhibit several unusual physiogenomic properties like gliding motility, desiccation-resistant myxospores and large genomes with high coding density. Here we report a 9.5 Mbp complete genome of Myxococcus hansupus that encodes 7,753 proteins. Phylogenomic and genome-genome distance based analysis suggest that Myxococcus hansupus is a novel member of the genus Myxococcus. Comparative genome analysis with other members of the genus Myxococcus was performed to explore their genome diversity. The variation in number of unique proteins observed across different species is suggestive of diversity at the genus level while the overrepresentation of several Pfam families indicates the extent and mode of genome expansion as compared to non-Myxococcales δ-proteobacteria.
Collapse
Affiliation(s)
- Gaurav Sharma
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Tarun Narwani
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | | |
Collapse
|
91
|
van Gestel J, Nowak MA. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles. PLoS Comput Biol 2016; 12:e1004764. [PMID: 26894881 PMCID: PMC4760940 DOI: 10.1371/journal.pcbi.1004764] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/20/2016] [Indexed: 11/21/2022] Open
Abstract
Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles. In nature, most bacteria occur in surface-attached colonies. Inside these colonies, cells often express many different phenotypes. The significance of these phenotypes often remains unknown. We study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is needed for surface attachment. We show that the sticky cell type readily evolves and escapes from competition in the liquid by attaching to the surface. In most cases, surface colonization is accompanied by phenotypic heterogeneity, in which sticky and non-sticky cell co-occupy the surface. The non-sticky cells hitchhike with the sticky cells, thereby profiting from surface attachment without paying the cost of being sticky. In the presence of regulation, cell differentiation leads to the evolution of intricate bacterial life cycles in which cells alternate between living in surface-attached colonies and living in the liquid. The bacterial life cycles are orchestrated by temporal and spatial pattern formation of cell types. Our model illustrates how cell differentiation can be of key importance for the evolution of bacterial life cycles.
Collapse
Affiliation(s)
- Jordi van Gestel
- Program for Evolutionary Dynamics, Departments of Organismic and Evolutionary Biology and Mathematics, Harvard University, Boston, Massachusetts, United States of America
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
- * E-mail:
| | - Martin A. Nowak
- Program for Evolutionary Dynamics, Departments of Organismic and Evolutionary Biology and Mathematics, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
92
|
Rapid radiation in bacteria leads to a division of labour. Nat Commun 2016; 7:10508. [PMID: 26852925 PMCID: PMC4748119 DOI: 10.1038/ncomms10508] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/12/2015] [Indexed: 12/24/2022] Open
Abstract
The division of labour is a central feature of the most sophisticated biological systems, including genomes, multicellular organisms and societies, which took millions of years to evolve. Here we show that a well-organized and robust division of labour can evolve in a matter of days. Mutants emerge within bacterial colonies and work with the parent strain to gain new territory. The two strains self-organize in space: one provides a wetting polymer at the colony edge, whereas the other sits behind and pushes them both along. The emergence of the interaction is repeatable, bidirectional and only requires a single mutation to alter production of the intracellular messenger, cyclic-di-GMP. Our work demonstrates the power of the division of labour to rapidly solve biological problems without the need for long-term evolution or derived sociality. We predict that the division of labour will evolve frequently in microbial populations, where rapid genetic diversification is common.
Collapse
|
93
|
Kümmerli R, Santorelli LA, Granato ET, Dumas Z, Dobay A, Griffin AS, West SA. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J Evol Biol 2015; 28:2264-74. [PMID: 26348785 DOI: 10.1111/jeb.12751] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023]
Abstract
The production of beneficial public goods is common in the microbial world, and so is cheating--the exploitation of public goods by nonproducing mutants. Here, we examine co-evolutionary dynamics between cooperators and cheats and ask whether cooperators can evolve strategies to reduce the burden of exploitation, and whether cheats in turn can improve their exploitation abilities. We evolved cooperators of the bacterium Pseudomonas aeruginosa, producing the shareable iron-scavenging siderophore pyoverdine, together with cheats, defective in pyoverdine production but proficient in uptake. We found that cooperators managed to co-exist with cheats in 56% of all replicates over approximately 150 generations of experimental evolution. Growth and competition assays revealed that co-existence was fostered by a combination of general adaptions to the media and specific adaptions to the co-evolving opponent. Phenotypic screening and whole-genome resequencing of evolved clones confirmed this pattern, and suggest that cooperators became less exploitable by cheats because they significantly reduced their pyoverdine investment. Cheats, meanwhile, improved exploitation efficiency through mutations blocking the costly pyoverdine-signalling pathway. Moreover, cooperators and cheats evolved reduced motility, a pattern that likely represents adaptation to laboratory conditions, but at the same time also affects social interactions by reducing strain mixing and pyoverdine sharing. Overall, we observed parallel evolution, where co-existence of cooperators and cheats was enabled by a combination of adaptations to the abiotic and social environment and their interactions.
Collapse
Affiliation(s)
- R Kümmerli
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich, Zürich, Switzerland.,Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | | | - E T Granato
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich, Zürich, Switzerland
| | - Z Dumas
- Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - A Dobay
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - A S Griffin
- Department of Zoology, University of Oxford, Oxford, UK
| | - S A West
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
94
|
O'Malley MA, Travisano M, Velicer GJ, Bolker JA. How Do Microbial Populations and Communities Function as Model Systems? QUARTERLY REVIEW OF BIOLOGY 2015; 90:269-93. [DOI: 10.1086/682588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
95
|
Du Q, Kawabe Y, Schilde C, Chen ZH, Schaap P. The Evolution of Aggregative Multicellularity and Cell-Cell Communication in the Dictyostelia. J Mol Biol 2015; 427:3722-33. [PMID: 26284972 PMCID: PMC5055082 DOI: 10.1016/j.jmb.2015.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/30/2015] [Accepted: 08/03/2015] [Indexed: 10/30/2022]
Abstract
Aggregative multicellularity, resulting in formation of a spore-bearing fruiting body, evolved at least six times independently amongst both eukaryotes and prokaryotes. Amongst eukaryotes, this form of multicellularity is mainly studied in the social amoeba Dictyostelium discoideum. In this review, we summarise trends in the evolution of cell-type specialisation and behavioural complexity in the four major groups of Dictyostelia. We describe the cell-cell communication systems that control the developmental programme of D. discoideum, highlighting the central role of cAMP in the regulation of cell movement and cell differentiation. Comparative genomic studies showed that the proteins involved in cAMP signalling are deeply conserved across Dictyostelia and their unicellular amoebozoan ancestors. Comparative functional analysis revealed that cAMP signalling in D. discoideum originated from a second messenger role in amoebozoan encystation. We highlight some molecular changes in cAMP signalling genes that were responsible for the novel roles of cAMP in multicellular development.
Collapse
Affiliation(s)
- Qingyou Du
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Yoshinori Kawabe
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Christina Schilde
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Zhi-Hui Chen
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| |
Collapse
|
96
|
How Myxobacteria Cooperate. J Mol Biol 2015; 427:3709-21. [PMID: 26254571 DOI: 10.1016/j.jmb.2015.07.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/22/2022]
Abstract
Prokaryotes often reside in groups where a high degree of relatedness has allowed the evolution of cooperative behaviors. However, very few bacteria or archaea have made the successful transition from unicellular to obligate multicellular life. A notable exception is the myxobacteria, in which cells cooperate to perform group functions highlighted by fruiting body development, an obligate multicellular function. Like all multicellular organisms, myxobacteria face challenges in how to organize and maintain multicellularity. These challenges include maintaining population homeostasis, carrying out tissue repair and regulating the behavior of non-cooperators. Here, we describe the major cooperative behaviors that myxobacteria use: motility, predation and development. In addition, this review emphasizes recent discoveries in the social behavior of outer membrane exchange, wherein kin share outer membrane contents. Finally, we review evidence that outer membrane exchange may be involved in regulating population homeostasis, thus serving as a social tool for myxobacteria to make the cyclic transitions from unicellular to multicellular states.
Collapse
|
97
|
Whitworth DE, Slade SE, Mironas A. Composition of distinct sub-proteomes in Myxococcus xanthus: metabolic cost and amino acid availability. Amino Acids 2015; 47:2521-31. [PMID: 26162436 DOI: 10.1007/s00726-015-2042-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 01/05/2023]
Abstract
Subsets of proteins involved in distinct functional processes are subject to different selective pressures. We investigated whether there is an amino acid composition bias (AACB) inherent in discrete subsets of proteins, and whether we could identify changing patterns of AACB during the life cycle of the social bacterium Myxococcus xanthus. We quantitatively characterised the cellular, soluble secreted, and outer membrane vesicle (OMV) sub-proteomes of M. xanthus, identifying 315 proteins. The AACB of the cellular proteome differed only slightly from that deduced from the genome, suggesting that genome-inferred proteomes can accurately reflect the AACB of their host. Inferred AA deficiencies arising from prey consumption were exacerbated by the requirements of the 68%GC genome, whose character thus seems to be selected for directly rather than via the proteome. In our analysis, distinct subsets of the proteome (whether segregated spatially or temporally) exhibited distinct AACB, presumably tailored according to the needs of the organism's lifestyle and nutrient availability. Secreted AAs tend to be of lower cost than those retained in the cell, except for the early developmental A-signal, which is a particularly costly sub-proteome. We propose a model of AA reallocation during the M. xanthus life cycle, involving ribophagy during early starvation and sequestration of limiting AAs within cells during development.
Collapse
Affiliation(s)
- David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DD, UK.
| | - Susan E Slade
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Adrian Mironas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DD, UK
| |
Collapse
|
98
|
Melbinger A, Cremer J, Frey E. The emergence of cooperation from a single mutant during microbial life cycles. J R Soc Interface 2015; 12:20150171. [PMID: 26063816 PMCID: PMC4528582 DOI: 10.1098/rsif.2015.0171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/14/2015] [Indexed: 12/23/2022] Open
Abstract
Cooperative behaviour is widespread in nature, even though cooperating individuals always run the risk of being exploited by free-riders. Population structure effectively promotes cooperation given that a threshold in the level of cooperation was already reached. However, the question how cooperation can emerge from a single mutant, which cannot rely on a benefit provided by other cooperators, is still puzzling. Here, we investigate this question for a well-defined but generic situation based on typical life cycles of microbial populations where individuals regularly form new colonies followed by growth phases. We analyse two evolutionary mechanisms favouring cooperative behaviour and study their strength depending on the inoculation size and the length of a life cycle. In particular, we find that population bottlenecks followed by exponential growth phases strongly increase the survival and fixation probabilities of a single cooperator in a free-riding population.
Collapse
Affiliation(s)
- Anna Melbinger
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany Department of Physics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jonas Cremer
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany Department of Physics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
99
|
Fang C, Li Y, Li C, Li B, Ren Y, Zheng H, Zeng X, Shen L, Lin W. Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crus-galli) in response to rice allelopathy. PLANT, CELL & ENVIRONMENT 2015; 38:1368-1381. [PMID: 25438645 DOI: 10.1111/pce.12492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/13/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Rice allelopathy is a hot topic in the field of allelopathy, and behaviour of donor allelopathic rice has been well documented. However, few study addresses response of receiver barnyardgrass (BYG). We found that expression of miRNAs relevant to plant hormone signal transduction, nucleotide excision repair and the peroxisome proliferator-activated receptor and p53 signalling pathways was enhanced in BYG co-cultured with the allelopathic rice cultivar PI312777, the expression levels of these miRNAs in BYG plants were positively correlated with allelopathic potential of the co-cultured rice varieties. Treatment of BYG plants with rice-produced phenolic acids also increased miRNA expression in BYG, while treatment with rice-produced terpenoids had no obvious effect on miRNA expression. In the hydroponic system, the largest number of Myxococcus sp. was found in the growth medium containing rice with the highest allelopathic potential. The addition of phenolic acids in the hydroponic medium also increased the number of Myxococcus sp. More interestingly, inoculation with Myxococcus xanthus significantly increased miRNA expression in the treated BYG. Jointed treatments of ferulic acid and M. xanthus led to strongest growth inhibition of BYG. The results suggest that there exist involvement of Myxococcus sp. and mediation of miRNA expression in rice allelopathy against BYG.
Collapse
Affiliation(s)
- Changxun Fang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Yingzhe Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Chengxun Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Biliang Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Yongjie Ren
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Haiping Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Xiaomei Zeng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Lihua Shen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| |
Collapse
|
100
|
Rendueles O, Amherd M, Velicer GJ. Positively Frequency-Dependent Interference Competition Maintains Diversity and Pervades a Natural Population of Cooperative Microbes. Curr Biol 2015; 25:1673-81. [PMID: 26051889 DOI: 10.1016/j.cub.2015.04.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/31/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
Positively frequency-dependent selection is predicted from theory to promote diversity in patchily structured populations and communities, but empirical support for this prediction has been lacking. Here, we investigate frequency-dependent selection among isolates from a local natural population of the highly social bacterium Myxococcus xanthus. Upon starvation, closely related cells of M. xanthus cooperate to construct multicellular fruiting bodies, yet recently diverged genotypes co-residing in a local soil population often antagonize one another during fruiting-body development in mixed groups. In the experiments reported here, both fitness per se and strong forms of interference competition exhibit pervasive and strong positive frequency dependence (PFD) among many isolates from a centimeter-scale soil population of M. xanthus. All strains that compete poorly at intermediate frequency are shown to be competitively dominant at high frequency in most genotype pairings during both growth and development, and strongly so. Interference competition is often lethal and appears to be contact dependent rather than mediated by diffusible compounds. Finally, we experimentally demonstrate that positively frequency-dependent selection maintains diversity when genotype frequencies vary patchily in structured populations. These results suggest that PFD contributes to the high levels of local diversity found among M. xanthus social groups in natural soil populations by reinforcing social barriers to cross-territory invasion and thereby also promotes high within-group relatedness. More broadly, our results suggest that potential roles of PFD in maintaining patchily distributed diversity should be investigated more extensively in other species.
Collapse
Affiliation(s)
- Olaya Rendueles
- Institute for Integrative Biology, Department of Environmental Sciences, ETH Zürich, 16 Universitätstrasse, 8092 Zürich, Switzerland.
| | - Michaela Amherd
- Institute for Integrative Biology, Department of Environmental Sciences, ETH Zürich, 16 Universitätstrasse, 8092 Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, Department of Environmental Sciences, ETH Zürich, 16 Universitätstrasse, 8092 Zürich, Switzerland
| |
Collapse
|