51
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
52
|
Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications. Toxins (Basel) 2016; 8:49. [PMID: 26907343 PMCID: PMC4773802 DOI: 10.3390/toxins8020049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
Collapse
|
53
|
Shavit R, Lebendiker M, Pasternak Z, Burdman S, Helman Y. The vapB-vapC Operon of Acidovorax citrulli Functions as a Bona-fide Toxin-Antitoxin Module. Front Microbiol 2016; 6:1499. [PMID: 26779154 PMCID: PMC4701950 DOI: 10.3389/fmicb.2015.01499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
Toxin-antitoxin systems are commonly found on plasmids and chromosomes of bacteria and archaea. These systems appear as biscystronic genes encoding a stable toxin and a labile antitoxin, which protects the cells from the toxin's activity. Under specific, mostly stressful conditions, the unstable antitoxin is degraded, the toxin becomes active and growth is arrested. Using genome analysis we identified a putative toxin-antitoxin encoding system in the genome of the plant pathogen Acidovorax citrulli. The system is homologous to vapB-vapC systems from other bacterial species. PCR and phylogenetic analyses suggested that this locus is unique to group II strains of A. citrulli. Using biochemical and molecular analyses we show that A. citrulli VapBC module is a bona-fide toxin-antitoxin module in which VapC is a toxin with ribonuclease activity that can be counteracted by its cognate VapB antitoxin. We further show that transcription of the A. citrulli vapBC locus is induced by amino acid starvation, chloramphenicol and during plant infection. Due to the possible role of TA systems in both virulence and dormancy of human pathogenic bacteria, studies of these systems are gaining a lot of attention. Conversely, studies characterizing toxin-antitoxin systems in plant pathogenic bacteria are lacking. The study presented here validates the activity of VapB and VapC proteins in A. citrulli and suggests their involvement in stress response and host-pathogen interactions.
Collapse
Affiliation(s)
- Reut Shavit
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Mario Lebendiker
- Protein Purification Facility, Wolfson Centre for Applied Structural Biology, Edmund J. Safra Campus, The Hebrew University of JerusalemJerusalem, Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
54
|
Diverse Bacteriophage Roles in an Aphid-Bacterial Defensive Mutualism. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
55
|
Type II toxin: antitoxin systems. More than small selfish entities? Curr Genet 2015; 62:287-90. [PMID: 26597447 PMCID: PMC4826407 DOI: 10.1007/s00294-015-0541-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 10/25/2022]
Abstract
Toxin-antitoxin (TA) modules regulate metabolism and viability of bacteria and archaea. In type II TA systems these functions are generally thought to be performed by two small proteins. However, evidence is increasing that the toxins are much more diverse and can form multi-domain proteins. Recently, we published a novel type II TA system in which toxin and antitoxin are covalently linked into a single polypeptide chain. In this review we summarize the current knowledge on these elongated toxin homologs and provide perspectives for future study.
Collapse
|
56
|
Yan Z, Li G, Gao Y, Zhai W, Qi Y, Zhai M. The extracellular death factor (EDF) protects Escherichia coli by scavenging hydroxyl radicals induced by bactericidal antibiotics. SPRINGERPLUS 2015; 4:182. [PMID: 25932369 PMCID: PMC4411399 DOI: 10.1186/s40064-015-0968-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/06/2015] [Indexed: 01/17/2023]
Abstract
The newly discovered extracellular death factor (EDF) is a pentapeptide with the sequence NNWNN in Escherichia coli. It was reported that it participated in the cell death process mediated by toxin-antitoxin system mazEF. Reactive oxygen species (ROS) are recently considered as common factors for bactericidal antibiotics-mediated cell death. Previous study indicated that EDF could scavenge hydroxyl radicals and might act as a signal molecule with dual effects, "death" and "survival". But the structure-activity relationship of EDF and the effects of EDF on the activity of antibiotics remain unclear. In the present study, our results indicated that tryptophan could be the key residue to the hydroxyl radicals-scavenging activity of EDF, and EDF could protect Escherichia coli from killing by bactericidal antibiotics, but not by DNA-damaging or bacteriostatic antibiotics. Our results could provide novel evidence to understand the role of EDF in drug-resistance.
Collapse
Affiliation(s)
- Zhongyi Yan
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Mingxia Zhai
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| |
Collapse
|
57
|
Bakar FA, Yeo CC, Harikrishna JA. Expression of the Streptococcus pneumoniae yoeB chromosomal toxin gene causes cell death in the model plant Arabidopsis thaliana. BMC Biotechnol 2015; 15:26. [PMID: 25887501 PMCID: PMC4430920 DOI: 10.1186/s12896-015-0138-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/03/2015] [Indexed: 01/18/2023] Open
Abstract
Background Bacterial toxin-antitoxin systems usually comprise of a pair of genes encoding a stable toxin and its cognate labile antitoxin and are located in the chromosome or in plasmids of several bacterial species. Chromosomally-encoded toxin-antitoxin systems are involved in bacterial stress responses and activation of the toxins usually leads to cell death or dormancy. Overexpression of the chromosomally-encoded YoeB toxin from the yefM-yoeB toxin-antitoxin locus of the Gram-positive bacterium Streptococcus pneumoniae has been shown to cause cell death in S. pneumoniae as well as E. coli. Results Induction of a YoeB-GFP fusion protein using a 17-β-estradiol-inducible plant expression system in Arabidopsis thaliana Col 0, was lethal in all T2 progeny. Examination of plants by fluorescent confocal microscopy showed GFP fluorescence in all parts of the leaves at 24 hours after 17-β-estradiol induction, continuing up to plant death. Quantitative RT-PCR analysis revealed that the expression of the yoeB toxin gene peaked at 3 days after induction with 17-β-estradiol, coinciding with the onset of visible effects on the plants. Moreover, we detected DNA laddering in the transgenic plants at 24 hours after yoeB induction, indicative of apoptosis. Conclusions Expression of the YoeB toxin from Streptococcus pneumoniae is lethal in Arabidopsis. We believe this is the first report of a toxin from a bacterial toxin-antitoxin system functioning in plants. The results presented here mark an important milestone towards the development of a cell ablation based bio-containment strategy, which may be useful for functional studies and for the control of spread of transgenic plants.
Collapse
Affiliation(s)
- Fauziah Abu Bakar
- Centre for Research in Biotechnology for Agriculture (CEBAR) and Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Chew Chieng Yeo
- Biomedical Research Centre, Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, 20400, Kuala Terengganu, Malaysia.
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture (CEBAR) and Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
58
|
Sterckx YGJ, De Gieter S, Zorzini V, Hadži S, Haesaerts S, Loris R, Garcia-Pino A. An efficient method for the purification of proteins from four distinct toxin–antitoxin modules. Protein Expr Purif 2015; 108:30-40. [DOI: 10.1016/j.pep.2015.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/27/2014] [Accepted: 01/04/2015] [Indexed: 11/24/2022]
|
59
|
Chan WT, Balsa D, Espinosa M. One cannot rule them all: Are bacterial toxins-antitoxins druggable? FEMS Microbiol Rev 2015; 39:522-40. [PMID: 25796610 PMCID: PMC4487406 DOI: 10.1093/femsre/fuv002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 01/31/2023] Open
Abstract
Type II (proteic) toxin–antitoxin (TA) operons are widely spread in bacteria and archaea. They are organized as operons in which, usually, the antitoxin gene precedes the cognate toxin gene. The antitoxin generally acts as a transcriptional self-repressor, whereas the toxin acts as a co-repressor, both proteins constituting a harmless complex. When bacteria encounter a stressful environment, TAs are triggered. The antitoxin protein is unstable and will be degraded by host proteases, releasing the free toxin to halt essential processes. The result is a cessation of cell growth or even death. Because of their ubiquity and the essential processes targeted, TAs have been proposed as good candidates for development of novel antimicrobials. We discuss here the possible druggability of TAs as antivirals and antibacterials, with focus on the potentials and the challenges that their use may find in the ‘real’ world. We present strategies to develop TAs as antibacterials in view of novel technologies, such as the use of very small molecules (fragments) as inhibitors of protein–protein interactions. Appropriate fragments could disrupt the T:A interfaces leading to the release of the targeted TA pair. Possible ways of delivery and formulation of Tas are also discussed. We consider various approaches to develop the toxins of the type II family as possible candidates to drug discovery; druggability of toxins-antitoxins could be possible as antivirals. As antibacterials, they might be considered as druggable but delivery and formulation may not be simple so far.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28006-Madrid, Spain
| | - Dolors Balsa
- Immunology & Vaccines, Laboratorios LETI, Gran Via de les Corts Catalanes 184. 08034-Barcelona, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28006-Madrid, Spain
| |
Collapse
|
60
|
Lipuma J, Cinege G, Bodogai M, Oláh B, Kiers A, Endre G, Dupont L, Dusha I. AvapBC-type toxin-antitoxin module ofSinorhizobium melilotiinfluences symbiotic efficiency and nodule senescence ofMedicago sativa. Environ Microbiol 2015; 16:3714-29. [DOI: 10.1111/1462-2920.12608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 08/18/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Justine Lipuma
- Institut Sophia Agrobiotech (ISA); INRA UMR 1355; CNRS UMR 7254; Université de Nice Sophia Antipolis; 400 Route des Chappes - BP167 Sophia Antipolis Cedex F-06903 France
| | - Gyöngyi Cinege
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| | - Monica Bodogai
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| | - Boglárka Oláh
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| | - Aurélie Kiers
- Institut Sophia Agrobiotech (ISA); INRA UMR 1355; CNRS UMR 7254; Université de Nice Sophia Antipolis; 400 Route des Chappes - BP167 Sophia Antipolis Cedex F-06903 France
| | - Gabriella Endre
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| | - Laurence Dupont
- Institut Sophia Agrobiotech (ISA); INRA UMR 1355; CNRS UMR 7254; Université de Nice Sophia Antipolis; 400 Route des Chappes - BP167 Sophia Antipolis Cedex F-06903 France
| | - Ilona Dusha
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| |
Collapse
|
61
|
Komi KK, Ge YM, Xin XY, Ojcius DM, Sun D, Hu WL, Zhao X, Lin X, Yan J. RETRACTED: ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection. Microbes Infect 2015; 17:34-47. [PMID: 25461800 DOI: 10.1016/j.micinf.2014.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the corresponding author and the editorial office of Microbes and Infection. An independent reviewer of the retraction request was also appointed given that one of the authors is the Editor-in- Chief. For figure 1C, Lanes 1 and 2 appear to share some unexpected similarities, except for the bottom band, which also appear to be the band of interest. Sections of Figure 2C appear similar to sections of Figure 5D of a paper that had already appeared in Molecular Microbiology, volume 83, issue 5 (2012) 1006-1023. https://doi.org/10.1111/j.1365-2958.2012.07985.x. In figure 3A, Flow cytograms share identical/similar patterns highlighted in various colours. Peculiarly, some of these patterns can be seen as horizontal rotations of others along the axis that separates different quadrants. (ie red green & purple). Moreover, some quadrants appear to have very high densities of events that are suprisingly limited by quadrant gates (most noticeably quadrants B2 from the second column of panels. Figure 5A-B it was found that there were duplicated bands were produced. Figures 5C and 5D, it was found that bands across each individual gel appear identical. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process”.
Collapse
Affiliation(s)
- Komi Koukoura Komi
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China.
| | - Yu-Mei Ge
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Xiao-Yang Xin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - David M Ojcius
- Health Sciences Research Institute and Molecular Cell Biology Department, University of California, Merced, CA 95343, USA.
| | - Dexter Sun
- New York Presbyterian Hospital & Hospital for Special Surgery, Weill Medical College, Cornell University, New York, NY, USA.
| | - Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Xin Zhao
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
62
|
Worley-Morse TO, Gunsch CK. A computational analysis of antisense off-targets in prokaryotic organisms. Genomics 2014; 105:123-30. [PMID: 25486012 DOI: 10.1016/j.ygeno.2014.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
The adoption of antisense gene silencing as a novel disinfectant for prokaryotic organisms is hindered by poor silencing efficiencies. Few studies have considered the effects of off-targets on silencing efficiencies, especially in prokaryotic organisms. In this computational study, a novel algorithm was developed that determined and sorted the number of off-targets as a function of alignment length in Escherichia coli K-12 MG1655 and Mycobacterium tuberculosis H37Rv. The mean number of off-targets per a single location was calculated to be 14.1 ± 13.3 and 36.1 ± 58.5 for the genomes of E. coli K-12 MG1655 and M. tuberculosis H37Rv, respectively. Furthermore, when the entire transcriptome was analyzed, it was found that there was no general gene location that could be targeted to minimize or maximize the number of off-targets. In an effort to determine the effects of off-targets on silencing efficiencies, previously published studies were used. Analyses with acpP, ino1, and marORAB revealed a statistically significant relationship between the number of short alignment length off-targets hybrids and the efficacy of the antisense gene silencing, suggesting that the minimization of off-targets may be beneficial for antisense gene silencing in prokaryotic organisms.
Collapse
Affiliation(s)
- Thomas O Worley-Morse
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, USA
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, USA.
| |
Collapse
|
63
|
Chan WT, Yeo CC, Sadowy E, Espinosa M. Functional validation of putative toxin-antitoxin genes from the Gram-positive pathogen Streptococcus pneumoniae: phd-doc is the fourth bona-fide operon. Front Microbiol 2014; 5:677. [PMID: 25538695 PMCID: PMC4257102 DOI: 10.3389/fmicb.2014.00677] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Bacterial toxin-antitoxin (TAs) loci usually consist of two genes organized as an operon, where their products are bound together and inert under normal conditions. However, under stressful circumstances the antitoxin, which is more labile, will be degraded more rapidly, thereby unleashing its cognate toxin to act on the cell. This, in turn, causes cell stasis or cell death, depending on the type of TAs and/or time of toxin exposure. Previously based on in silico analyses, we proposed that Streptococcus pneumoniae, a pathogenic Gram-positive bacterium, may harbor between 4 and 10 putative TA loci depending on the strains. Here we have chosen the pneumococcal strain Hungary(19A)-6 which contains all possible 10 TA loci. In addition to the three well-characterized operons, namely relBE2, yefM-yoeB, and pezAT, we show here the functionality of a fourth operon that encodes the pneumococcal equivalent of the phd-doc TA. Transcriptional fusions with gene encoding Green Fluorescent Protein showed that the promoter was slightly repressed by the Phd antitoxin, and exhibited almost background values when both Phd-Doc were expressed together. These findings demonstrate that phd-doc shows the negative self-regulatory features typical for an authentic TA. Further, we also show that the previously proposed TAs XreA-Ant and Bro-XreB, although they exhibit a genetic organization resembling those of typical TAs, did not appear to confer a functional behavior corresponding to bona fide TAs. In addition, we have also discovered new interesting bioinformatics results for the known pneumococcal TAs RelBE2 and PezAT. A global analysis of the four identified toxins-antitoxins in the pneumococcal genomes (PezAT, RelBE2, YefM-YoeB, and Phd-Doc) showed that RelBE2 and Phd-Doc are the most conserved ones. Further, there was good correlation among TA types, clonal complexes and sequence types in the 48 pneumococcal strains analyzed.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine and Health Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu Terengganu, Malaysia
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute Warsaw, Poland
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
64
|
Reynolds AS. The deaths of a cell: how language and metaphor influence the science of cell death. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2014; 48 Pt B:175-84. [PMID: 25085023 DOI: 10.1016/j.shpsc.2014.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms.
Collapse
Affiliation(s)
- Andrew S Reynolds
- Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| |
Collapse
|
65
|
|
66
|
Kumar S, Engelberg-Kulka H. Quorum sensing peptides mediating interspecies bacterial cell death as a novel class of antimicrobial agents. Curr Opin Microbiol 2014; 21:22-7. [PMID: 25244032 DOI: 10.1016/j.mib.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 01/27/2023]
Abstract
mazEF is a toxin-antitoxin stress-induced module which is abundant on the chromosome of most bacteria including pathogens and most extensively studied in Escherichia coli. E. coli mazEF mediated cell death is a population phenomenon requiring the quorum-sensing (QS) 'Extracellular Death Factor' (EDF), the E. coli peptide NNWNN. E. coli mazEF-mediated cell death can also be triggered by different QS peptides secreted by the Gram positive bacterium Bacillus subtilis and the Gram negative bacterium Pseudomonas aeruginosa. Thus, the different EDFs belong to a family of QS peptides that mediates interspecies cell death. We suggest that members of the EDF family may become the basis for a novel class of antimicrobial agents to trigger death from outside the bacterial cells.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hanna Engelberg-Kulka
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
67
|
Toxin ζ reversible induces dormancy and reduces the UDP-N-acetylglucosamine pool as one of the protective responses to cope with stress. Toxins (Basel) 2014; 6:2787-803. [PMID: 25238046 PMCID: PMC4179160 DOI: 10.3390/toxins6092787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/14/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
Toxins of the ζ/PezT family, found in the genome of major human pathogens, phosphorylate the peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG) leading to unreactive UNAG-3P. Transient over-expression of a PezT variant impairs cell wall biosynthesis and triggers autolysis in Escherichia coli. Conversely, physiological levels of ζ reversibly induce dormancy produce a sub-fraction of membrane-compromised cells, and a minor subpopulation of Bacillus subtilis cells become tolerant of toxin action. We report here that purified ζ is a strong UNAG-dependent ATPase, being GTP a lower competitor. In vitro, ζ toxin phosphorylates a fraction of UNAG. In vivo, ζ-mediated inactivation of UNAG by phosphorylation does not deplete the active UNAG pool, because expression of the toxin enhances the efficacy of genuine cell wall inhibitors (fosfomycin, vancomycin or ampicillin). Transient ζ expression together with fosfomycin treatment halt cell proliferation, but ε2 antitoxin expression facilitates the exit of ζ-induced dormancy, suggesting that there is sufficient UNAG for growth. We propose that ζ induces diverse cellular responses to cope with stress, being the reduction of the UNAG pool one among them. If the action of ζ is not inhibited, e.g., by de novo ε2 antitoxin synthesis, the toxin markedly enhances the efficacy of antimicrobial treatment without massive autolysis in Firmicutes.
Collapse
|
68
|
Zhu WN, Huang LL, Zeng LB, Zhuang XR, Chen CY, Wang YZ, Qin JH, Zhu YZ, Guo XK. Isolation and characterization of two novel plasmids from pathogenic Leptospira interrogans serogroup Canicola Serovar Canicola strain Gui44. PLoS Negl Trop Dis 2014; 8:e3103. [PMID: 25144555 PMCID: PMC4140679 DOI: 10.1371/journal.pntd.0003103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/01/2014] [Indexed: 12/01/2022] Open
Abstract
Background Previous genomic analysis of pathogenic Leptospira has identified two circular chromosomes but no plasmid. This study aims to investigate potential extrachromosomal elements of L.interrogans serovar Canicola strain Gui44. Methodology Two novel plasmids, pGui1 and pGui2, were isolated from the pathogenic strain Gui44, using a modified alkaline lysis method. Southern blotting was performed to determine the presence and size of them. Then, 454 and Hiseq sequencing were applied to obtain and analyze the complete sequences of the two plasmids. Furthermore, real-time quantitative PCR and next-generation sequencing were used to compare relative copy numbers of the two plasmids with that of the chromosomes. Finally, after serial passages in vitro for more than 2 years, the strain Gui44 was subsequently re-sequenced to estimate stability of the two plasmids. Principal Findings The larger plasmid, pGui1, 74,981 base pairs (bp) in length with GC content of 34.63%, possesses 62 open reading frames (ORFs). The smaller plasmid, pGui2, is 66,851 bp in length with GC content of 33.33%, and contains 63 ORFs. The replication initiation proteins encoded by pGui1 and pGui2 demonstrate significant sequence similarity with LA1839 (86% and 88%), a well-known replication protein in another pathogenic L.interrogans serovar Lai strain Lai, suggesting the ability for autonomous plasmid replication. Quantitative PCR and next-generation sequencing confirms a single copy of both plasmids and their stable presence in the strain Gui44 with in vitro serial passages after more than 2 years. Interestingly, the two plasmids both contain a significant number of novel genes (35 in pGui1 and 52 in pGui2). Conclusions This report confirms the presence of two separate circular plasmids in serovar Canicola strain Gui44 and provides a new understanding of genomic organization, adaptation, evolution and pathogenesis of Leptospira, which will aid in the development of in vivo genetic manipulation systems in pathogenic Leptospira species. Leptospira species are the causative agent of leptospirosis, one of the most common animal to human transmitted diseases. Previous genomic analysis of L.interrogans serovar Lai and Copenhageni has identified the presence of large (4.33 mega base) and small (350 kilo base) circular chromosomes without evidence of any plasmids. Detailed understanding of Leptospira and its pathogenicity was delayed by the lack of available genetic tools. In this study we confirm the existence of two novel plasmids in L.interrogans serovar Canicola strain Gui44, an epidemic strain in China. Some novel genes identified in the two plasmids may play important roles in the characterization of the strain. The two plasmids will provide useful information in understanding the diversity of Leptospira genome and markedly improve our understanding of the evolution and pathogenesis of L.interrogans. In particular, it will contribute to the development of genetic manipulation systems in pathogenic Leptospira species.
Collapse
Affiliation(s)
- Wei-Nan Zhu
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Li Huang
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Soochow University Affiliated Children's Hospital, Soochow, China
| | - Ling-Bing Zeng
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Ran Zhuang
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Yan Chen
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Zhuo Wang
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Hong Qin
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Zhang Zhu
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (YZZ); (XKG)
| | - Xiao-Kui Guo
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (YZZ); (XKG)
| |
Collapse
|
69
|
Merhej V, Angelakis E, Socolovschi C, Raoult D. Genotyping, evolution and epidemiological findings of Rickettsia species. INFECTION GENETICS AND EVOLUTION 2014; 25:122-37. [DOI: 10.1016/j.meegid.2014.03.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/12/2023]
|
70
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
71
|
Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 2014; 12:137-48. [PMID: 24384601 DOI: 10.1038/nrmicro3185] [Citation(s) in RCA: 505] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The type VI secretion system (T6SS) mediates interactions between a broad range of Gram-negative bacterial species. Recent studies have led to a substantial increase in the number of characterized T6SS effector proteins and a more complete and nuanced view of the adaptive importance of the system. Although the T6SS is most often implicated in antagonism, in this Review, we consider the case for its involvement in both antagonistic and non-antagonistic behaviours. Clarifying the roles that type VI secretion has in microbial communities will contribute to broader efforts to understand the importance of microbial interactions in maintaining human and environmental health, and will inform efforts to manipulate these interactions for therapeutic or environmental benefit.
Collapse
Affiliation(s)
- Alistair B Russell
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
72
|
Wang H, Bian X, Xia L, Ding X, Müller R, Zhang Y, Fu J, Stewart AF. Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res 2013; 42:e37. [PMID: 24369425 PMCID: PMC3950717 DOI: 10.1093/nar/gkt1339] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli, usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expression of CcdB is toxic to E. coli in the absence of the CcdA antidote so counterselection is initiated by the removal of CcdA expression. CcdB counterselection is robust and does not require titrations or experiment-to-experiment optimization. Because counterselection strategies necessarily differ according to the copy number of the target, we describe two variations. For multi-copy targets, we use two E. coli hosts so that counterselection is exerted by the transformation step that is needed to separate the recombined and unrecombined plasmids. For single copy targets, we put the ccdA gene onto the temperature-sensitive pSC101 Red expression plasmid so that counterselection is exerted by the standard temperature shift to remove the expression plasmid. To reduce unwanted intramolecular recombination, we also combined CcdB counterselection with Redα omission. These options improve the use of counterselection in recombineering with BACs, plasmids and the E. coli chromosome.
Collapse
Affiliation(s)
- Hailong Wang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, People's Republic of China, Department of Genomics, Dresden University of Technology, BioInnovations-Zentrum, Tatzberg 47-51, 01307 Dresden, Germany, Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China, Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany and Gene Bridges GmbH, Building C2.3, Saarland University, 66123 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: so few and yet so many. Microbiol Mol Biol Rev 2013. [PMID: 23204366 DOI: 10.1128/mmbr.00030-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pneumococcal infections cause up to 2 million deaths annually and raise a large economic burden and thus constitute an important threat to mankind. Because of the increase in the antibiotic resistance of Streptococcus pneumoniae clinical isolates, there is an urgent need to find new antimicrobial approaches to triumph over pneumococcal infections. Toxin-antitoxin (TA) systems (TAS), which are present in most living bacteria but not in eukaryotes, have been proposed as an effective strategy to combat bacterial infections. Type II TAS comprise a stable toxin and a labile antitoxin that form an innocuous TA complex under normal conditions. Under stress conditions, TA synthesis will be triggered, resulting in the degradation of the labile antitoxin and the release of the toxin protein, which would poison the host cells. The three functional chromosomal TAS from S. pneumoniae that have been studied as well as their molecular characteristics are discussed in detail in this review. Furthermore, a meticulous bioinformatics search has been performed for 48 pneumococcal genomes that are found in public databases, and more putative TAS, homologous to well-characterized ones, have been revealed. Strikingly, several unusual putative TAS, in terms of components and genetic organizations previously not envisaged, have been discovered and are further discussed. Previously, we reported a novel finding in which a unique pneumococcal DNA signature, the BOX element, affected the regulation of the pneumococcal yefM-yoeB TAS. This BOX element has also been found in some of the other pneumococcal TAS. In this review, we also discuss possible relationships between some of the pneumococcal TAS with pathogenicity, competence, biofilm formation, persistence, and an interesting phenomenon called bistability.
Collapse
|
74
|
Kreuzer KN. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 2013; 5:a012674. [PMID: 24097899 DOI: 10.1101/cshperspect.a012674] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
75
|
Lin CY, Awano N, Masuda H, Park JH, Inouye M. Transcriptional repressor HipB regulates the multiple promoters in Escherichia coli. J Mol Microbiol Biotechnol 2013; 23:440-7. [PMID: 24089053 DOI: 10.1159/000354311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HipB is a DNA-binding protein in Escherichia coli and negatively regulates its own promoter by binding to the palindromic sequences [TATCCN8GGATA (N represents any nucleotides)] on the hipBA promoter. For such sequences, bioinformatic analysis revealed that there are a total of 39 palindromic sequences (TATCCN(x)GGATA: N is any nucleotides and x is the number of nucleotides from 1 to 30) in the promoter regions of 33 genes on the E. coli genome. Notably, eutH and fadH have two and three TATCCN(x)GGATA palindromic sequences located in their promoters, respectively. Another significant finding was that a palindromic sequence was also identified in the promoter region of hipAB locus, known to be involved in the RelA-dependent persister cell formation in bacteria. Here, we demonstrated that HipB binds to the palindromic structures in the eutH, fadH, as well as the relA promoter regions and represses their expressions. We further demonstrated that HipA enhances the repression of the relA promoter activity by HipB. This effect was not observed with D291A HipA mutant which was previously shown to lack an ability to interact with HipB, indicating that HipA enhances the HipB's repressor activity through direct interaction with HipB.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Department of Biochemistry, Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Piscataway, N.J., USA
| | | | | | | | | |
Collapse
|
76
|
Exploring the costs of horizontal gene transfer. Trends Ecol Evol 2013; 28:489-95. [DOI: 10.1016/j.tree.2013.04.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 11/20/2022]
|
77
|
Abstract
Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) “extracellular death factor” (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. Bacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other’s presence and to modulate gene expression in response to population density. Previously, we added E. coli EDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria, Bacillus subtilis and Pseudomonas aeruginosa. Thus, in this study we established a “new family of EDFs.” This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of antibiotics triggering death by acting from outside the cell.
Collapse
|
78
|
Taylor-Brown E, Hurd H. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors. Parasit Vectors 2013; 6:108. [PMID: 23597031 PMCID: PMC3640913 DOI: 10.1186/1756-3305-6-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 12/23/2022] Open
Abstract
It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.
Collapse
|
79
|
Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J. The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120325. [PMID: 23479754 DOI: 10.1098/rstb.2012.0325] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dehalobacter restrictus strain PER-K23 is an obligate organohalide respiring bacterium, which displays extremely narrow metabolic capabilities. It grows only via coupling energy conservation to anaerobic respiration of tetra- and trichloroethene with hydrogen as sole electron donor. Dehalobacter restrictus represents the paradigmatic member of the genus Dehalobacter, which in recent years has turned out to be a major player in the bioremediation of an increasing number of organohalides, both in situ and in laboratory studies. The recent elucidation of the D. restrictus genome revealed a rather elaborate genome with predicted pathways that were not suspected from its restricted metabolism, such as a complete corrinoid biosynthetic pathway, the Wood-Ljungdahl (WL) pathway for CO2 fixation, abundant transcriptional regulators and several types of hydrogenases. However, one important feature of the genome is the presence of 25 reductive dehalogenase genes, from which so far only one, pceA, has been characterized on genetic and biochemical levels. This study describes a multi-level functional genomics approach on D. restrictus across three different growth phases. A global proteomic analysis allowed consideration of general metabolic pathways relevant to organohalide respiration, whereas the dedicated genomic and transcriptomic analysis focused on the diversity, composition and expression of genes associated with reductive dehalogenases.
Collapse
Affiliation(s)
- Aamani Rupakula
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
80
|
Pinto UM, Pappas KM, Winans SC. The ABCs of plasmid replication and segregation. Nat Rev Microbiol 2013; 10:755-65. [PMID: 23070556 DOI: 10.1038/nrmicro2882] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To ensure faithful transmission of low-copy plasmids to daughter cells, these plasmids must replicate once per cell cycle and distribute the replicated DNA to the nascent daughter cells. RepABC family plasmids are found exclusively in alphaproteobacteria and carry a combined replication and partitioning locus, the repABC cassette, which is also found on secondary chromosomes in this group. RepC and a replication origin are essential for plasmid replication, and RepA, RepB and the partitioning sites distribute the replicons to predivisional cells. Here, we review our current understanding of the transcriptional and post-transcriptional regulation of the Rep proteins and of their functions in plasmid replication and partitioning.
Collapse
Affiliation(s)
- Uelinton M Pinto
- Departamento de Alimentos, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais 35400-000, Brazil
| | | | | |
Collapse
|
81
|
Han KD, Ahn DH, Lee SA, Min YH, Kwon AR, Ahn HC, Lee BJ. Identification of chromosomal HP0892-HP0893 toxin-antitoxin proteins in Helicobacter pylori and structural elucidation of their protein-protein interaction. J Biol Chem 2013; 288:6004-13. [PMID: 23297406 PMCID: PMC3581365 DOI: 10.1074/jbc.m111.322784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial chromosomal toxin-antitoxin (TA) systems have been proposed not only to play an important role in the stress response, but also to be associated with antibiotic resistance. Here, we identified the chromosomal HP0892-HP0893 TA proteins in the gastric pathogen, Helicobacter pylori, and structurally characterized their protein-protein interaction. Previously, HP0892 protein was suggested to be a putative TA toxin based on its structural similarity to other RelE family TA toxins. In this study, we demonstrated that HP0892 binds to HP0893 strongly with a stoichiometry of 1:1, and HP0892-HP0893 interaction occurs mainly between the N-terminal secondary structure elements of HP0892 and the C-terminal region of HP0893. HP0892 cleaved mRNA in vitro, preferentially at the 5' end of A or G, and the RNase activity of HP0892 was inhibited by HP0893. In addition, heterologous expression of HP0892 in Escherichia coli cells led to cell growth arrest, and the cell toxicity of HP0892 was neutralized by co-expression with HP0893. From these results and a structural comparison with other TA toxins, it is concluded that HP0892 is a toxin with intrinsic RNase activity and HP0893 is an antitoxin against HP0892 from a TA system of H. pylori. It has been known that hp0893 gene and another TA antitoxin gene, hp0895, of H. pylori, are both genomic open reading frames that correspond to genes that are potentially expressed in response to interactions with the human gastric mucosa. Therefore, it is highly probable that TA systems of H. pylori are involved in virulence of H. pylori.
Collapse
Affiliation(s)
- Kyung-Doo Han
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoungbuk-gu, Seoul 136-791, Korea
| | | | | | | | | | | | | |
Collapse
|
82
|
Han J, Lynne AM, David DE, Tang H, Xu J, Nayak R, Kaldhone P, Logue CM, Foley SL. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates. PLoS One 2012; 7:e51160. [PMID: 23251446 PMCID: PMC3519518 DOI: 10.1371/journal.pone.0051160] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc) A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.
Collapse
Affiliation(s)
- Jing Han
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AK, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Desai D, Ellington MJ, Arnold C, Desai M. Mapping the genetic diversity within major clonal complexes of meticillin-resistant Staphylococcus aureus utilizing genome-wide fluorescent amplified fragment length polymorphism markers. J Med Microbiol 2012; 61:1673-1680. [PMID: 22935850 DOI: 10.1099/jmm.0.049429-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic diversity between major meticillin-resistant Staphylococcus aureus (MRSA) lineages was probed using fluorescent amplified fragment length polymorphism (FAFLP) as a random genome sampling tool. Genomic DNA was digested with endonucleases BglII and Csp6I and a subset of the restricted fragments were amplified using the primer pair BglII+A and Csp6I+0. Sixty-seven FAFLP profiles consisting of 46-68 amplified fragments ranging in size from 50 to 600 bp were exhibited amongst the 71 isolates analysed. Cluster analysis of FAFLP data revealed concordance with spa typing and MLST clonal complexes (CC), with isolates of each CC grouping in the same FAFLP cluster. Furthermore, FAFLP could differentiate subtypes within the homogeneous CC22 isolates and also between MLST sequence types 8 and 239. The discriminatory power of FAFLP was 0.998 compared to values of 0.975 and 0.909 for spa typing and MLST, respectively. Thus, FAFLP analysis proved to be a rapid, reproducible and high-resolution tool that displayed the microheterogeneity within MRSA lineages. Using FAFLP data, lineage-specific fragments were identified and sequenced; these encoded toxins, antibiotic resistance determinants and bacteriophage resistance factors. Lineage-specific sequence variations were observed, which may provide insights into the evolution and fitness of successful lineages. This will also aid in the development of rapid and high-throughput diagnostic PCR-based assays for the identification of MRSA lineages in resource-poor settings.
Collapse
Affiliation(s)
- Darshana Desai
- Microbiology Services Division Colindale, Health Protection Agency - Department for Bioanalysis and Horizon Technologies, London NW9 5EQ, UK
| | - Matthew J Ellington
- Microbiology Services Division, Cambridge Laboratory, Health Protection Agency, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QW, UK
| | - Catherine Arnold
- Microbiology Services Division Colindale, Health Protection Agency - Department for Bioanalysis and Horizon Technologies, London NW9 5EQ, UK
| | - Meeta Desai
- Microbiology Services Division Colindale, Health Protection Agency - Department for Bioanalysis and Horizon Technologies, London NW9 5EQ, UK
| |
Collapse
|
84
|
Moll I, Engelberg-Kulka H. Selective translation during stress in Escherichia coli. Trends Biochem Sci 2012; 37:493-8. [PMID: 22939840 DOI: 10.1016/j.tibs.2012.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022]
Abstract
The bacterial stress response, a strategy to cope with environmental changes, is generally known to operate on the transcriptional level. Here, we discuss a novel paradigm for stress adaptation at the post-transcriptional level, based on the recent discovery of a stress-induced modified form of the translation machinery in Escherichia coli that is generated by MazF, the toxin component of the toxin-antitoxin (TA) module mazEF. Under stress, the induced endoribonuclease MazF removes the 3'-terminal 43 nucleotides of the 16S rRNA of ribosomes and, concomitantly, the 5'-untranslated regions (UTRs) of specific transcripts. This elegant mechanism enables selective translation due to the complementary effect of MazF on ribosomes and mRNAs, and also represents the first example of functional ribosome heterogeneity based on rRNA alteration.
Collapse
Affiliation(s)
- Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria.
| | | |
Collapse
|
85
|
Benz J, Sendlmeier C, Barends TRM, Meinhart A. Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS One 2012; 7:e40453. [PMID: 22792331 PMCID: PMC3391265 DOI: 10.1371/journal.pone.0040453] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/07/2012] [Indexed: 11/19/2022] Open
Abstract
During an interbacterial battle, the type-6-secretion-system (T6SS) of the human pathogen Pseudomonas aeruginosa injects the peptidoglycan(PG)-hydrolase Tse1 into the periplasm of gram-negative enemy cells and induces their lysis. However, for its own benefit, P. aeruginosa produces and transports the immunity-protein Tsi1 into its own periplasm where in prevents accidental exo- and endogenous intoxication. Here we present the high-resolution X-ray crystal structure of the lytic enzyme Tse1 and describe the mechanism by which Tse1 cleaves the γ-D-glutamyl-l-meso-diaminopimelic acid amide bond of crosslinked PG. Tse1 belongs to the superfamily of N1pC/P60 peptidases but is unique among described members of this family of which the structure was described, since it is a single domain protein without any putative localization domain. Most importantly, we present the crystal structure of Tse1 bound to its immunity-protein Tsi1 as well and describe the mechanism of enzyme inhibition. Tsi1 occludes the active site of Tse1 and abolishes its enzyme activity by forming a hydrogen bond to a catalytically important histidine residue in Tse1. Based on our structural findings in combination with a bioinfomatic approach we also identified a related system in Burkholderia phytofirmans. Not only do our findings point to a common catalytic mechanism of the Tse1 PG-hydrolases, but we can also show that it is distinct from other members of this superfamily. Furthermore, we provide strong evidence that the mechanism of enzyme inhibition between Tsi1 orthologues is conserved. This work is the first structural description of an entire effector/immunity pair injected by the T6SS system. Moreover, it is also the first example of a member of the N1pC/P60 superfamily which becomes inhibited upon binding to its cognate immunity protein.
Collapse
Affiliation(s)
- Juliane Benz
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Christina Sendlmeier
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
86
|
Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 2012; 7:18. [PMID: 22731697 PMCID: PMC3482391 DOI: 10.1186/1745-6150-7-18] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. RESULTS Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. CONCLUSIONS Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | | | |
Collapse
|
87
|
Lashin SA, Suslov VV, Matushkin YG. Theories of biological evolution from the viewpoint of the modern systemic biology. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412030064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
88
|
Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage. J Bacteriol 2012; 194:3464-74. [PMID: 22544268 DOI: 10.1128/jb.00217-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an important, emerging nosocomial pathogen. The transition from harmless colonization to disease is typically preceded by antimicrobial therapy, which alters the balance of the intestinal flora, enabling C. difficile to proliferate in the colon. One of the most perplexing aspects of the C. difficile infectious cycle is its ability to survive antimicrobial therapy and transition from inert colonization to active infection. Toxin-antitoxin (TA) systems have been implicated in facilitating persistence after antibiotic treatment. We identified only one TA system in C. difficile strain 630 (epidemic type X), designated MazE-cd and MazF-cd, a counterpart of the well-characterized Escherichia coli MazEF TA system. This E. coli MazF toxin cleaves mRNA at ACA sequences, leading to global mRNA degradation, growth arrest, and death. Likewise, MazF-cd expression in E. coli or Clostridium perfringens resulted in growth arrest. Primer extension analysis revealed that MazF-cd cleaved RNA at the five-base consensus sequence UACAU, suggesting that the mRNAs susceptible to cleavage comprise a subset of total mRNAs. In agreement, we observed differential cleavage of several mRNAs by MazF-cd in vivo, revealing a direct correlation between the number of cleavage recognition sites within a given transcript and its susceptibility to degradation by MazF-cd. Interestingly, upon detailed statistical analyses of the C. difficile transcriptome, the major C. difficile virulence factor toxin B (TcdB) and CwpV, a cell wall protein involved in aggregation, were predicted to be significantly resistant to MazF-cd cleavage.
Collapse
|
89
|
Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 2012; 10:e1001281. [PMID: 22412352 PMCID: PMC3295820 DOI: 10.1371/journal.pbio.1001281] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 01/26/2012] [Indexed: 12/17/2022] Open
Abstract
A newly discovered apoptotic-like death is inhibited by the previously described mazEF-mediated death pathway, revealing two programmed cell death systems in Escherichia coli. In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin–antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway. The enteric bacterium Escherichia coli, like most other bacteria, carries on its chromosome a pair of genes, mazE and mazF (mazEF): mazF specifies a toxin, and mazE specifies an antitoxin. Previously, we have shown that E. coli mazEF is responsible for bacterial programmed cell death in response to stressors such as DNA damage. Here, we report that extensive DNA damage can induce a second mode of cell death, which we call apoptotic-like death (ALD). ALD is like apoptosis—a mode of cell death that has previously been recorded only in eukaryotes. During ALD, the cell membrane is depolarized, and the DNA is fragmented and can be detected using the classical TUNEL assay. The MazEF death pathway, however, shows neither of those features, yet also kills the cell. We show that ALD is mediated by two proteins, RecA and LexA, which are noteworthy because LexA is an inhibitor of the SOS response (which is a global response to DNA damage in which the cell cycle is arrested and DNA repair is induced). This defines ALD as a form of SOS response. Furthermore, MazEF and its downstream components cause reduction of recA mRNA levels, which could explain how the MazEF pathway inhibits the ALD pathway. We conclude that the E. coli ALD pathway is a back-up system for the traditional mazEF cell death pathway. Should one of the components of the mazEF pathway be inactivated, bacterial cell death would occur through ALD. These findings also have implications for the mechanisms of “altruistic” cell death among bacterial populations.
Collapse
|
90
|
Shapira A, Shapira S, Gal-Tanamy M, Zemel R, Tur-Kaspa R, Benhar I. Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin. PLoS One 2012; 7:e32320. [PMID: 22359682 PMCID: PMC3281143 DOI: 10.1371/journal.pone.0032320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named "zymoxins". These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the "first generation zymoxins" by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express intracellular proteases.
Collapse
Affiliation(s)
- Assaf Shapira
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
| | - Shiran Shapira
- The Integrated Cancer Prevention Center, Tel Aviv Medical Center, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Meital Gal-Tanamy
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
| | - Romy Zemel
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
| | - Ran Tur-Kaspa
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
- Department of Medicine D and Liver Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|
91
|
Lashin SA, Matushkin YG, Suslov VV, Kolchanov NA. Evolutionary trends in the prokaryotic community and prokaryotic community-phage systems. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411110123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
92
|
Vesper O, Amitai S, Belitsky M, Byrgazov K, Kaberdina AC, Engelberg-Kulka H, Moll I. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 2011; 147:147-57. [PMID: 21944167 DOI: 10.1016/j.cell.2011.07.047] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/11/2011] [Accepted: 07/21/2011] [Indexed: 01/17/2023]
Abstract
Escherichia coli (E. coli) mazEF is a stress-induced toxin-antitoxin (TA) module. The toxin MazF is an endoribonuclease that cleaves single-stranded mRNAs at ACA sequences. Here, we show that MazF cleaves at ACA sites at or closely upstream of the AUG start codon of some specific mRNAs and thereby generates leaderless mRNAs. Moreover, we provide evidence that MazF also targets 16S rRNA within 30S ribosomal subunits at the decoding center, thereby removing 43 nucleotides from the 3' terminus. As this region comprises the anti-Shine-Dalgarno (aSD) sequence that is required for translation initiation on canonical mRNAs, a subpopulation of ribosomes is formed that selectively translates the described leaderless mRNAs both in vivo and in vitro. Thus, we have discovered a modified translation machinery that is generated in response to MazF induction and that probably serves for stress adaptation in Escherichia coli.
Collapse
Affiliation(s)
- Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
93
|
Gonçalves AMD, de Sanctis D, McSweeney SM. Structural and functional insights into DR2231 protein, the MazG-like nucleoside triphosphate pyrophosphohydrolase from Deinococcus radiodurans. J Biol Chem 2011; 286:30691-30705. [PMID: 21733847 PMCID: PMC3162430 DOI: 10.1074/jbc.m111.247999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/01/2011] [Indexed: 11/06/2022] Open
Abstract
Deinococcus radiodurans is among the very few bacterial species extremely resistant to ionizing radiation, UV light, oxidizing agents, and cycles of prolonged desiccation. The proteome of D. radiodurans reflects the evolutionary pressure exerted by chronic exposure to (nonradioactive) forms of DNA and protein damage. A clear example of this adaptation is the overrepresentation of protein families involved in the removal of non-canonical nucleoside triphosphates (NTPs) whose incorporation into nascent DNA would promote mutagenesis and DNA damage. The three-dimensional structure of the DR2231 protein has been solved at 1.80 Å resolution. This protein had been classified as an all-α-helical MazG-like protein. The present study confirms that it holds the basic structural module characteristic of the MazG superfamily; two helices form a rigid domain, and two helices form a mobile domain and connecting loops. Contrary to what is known of MazG proteins, DR2231 protein shows a functional affinity with dUTPases. Enzymatic and isothermal calorimetry assays have demonstrated high specificity toward dUTP but an inability to hydrolyze dTTP, a typical feature of dUTPases. Co-crystallization with the product of hydrolysis, dUMP, in the presence of magnesium or manganese cations, suggests similarities with the dUTP/dUDP hydrolysis mechanism reported for dimeric dUTPases. The genome of D. radiodurans encodes for all enzymes required for dTTP synthesis from dCMP, thus bypassing the need of a dUTPase. We postulate that DR2231 protein is not essential to D. radiodurans and rather performs "house-cleaning" functions within the framework of oxidative stress response. We further propose DR2231 protein as an evolutionary precursor of dimeric dUTPases.
Collapse
Affiliation(s)
- Ana Maria D Gonçalves
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Rue Jules Horowitz 6, 38043 Grenoble Cedex, France
| | - Daniele de Sanctis
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Rue Jules Horowitz 6, 38043 Grenoble Cedex, France.
| | - Sean M McSweeney
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Rue Jules Horowitz 6, 38043 Grenoble Cedex, France.
| |
Collapse
|
94
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
95
|
Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect Immun 2011; 79:2502-9. [PMID: 21555398 DOI: 10.1128/iai.00127-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence functions of pathogenic bacteria are often encoded on large extrachromosomal plasmids. These plasmids are maintained at low copy number to reduce the metabolic burden on their host. Low-copy-number plasmids risk loss during cell division. This is countered by plasmid-encoded systems that ensure that each cell receives at least one plasmid copy. Plasmid replication and recombination can produce plasmid multimers that hinder plasmid segregation. These are removed by multimer resolution systems. Equitable distribution of the resulting monomers to daughter cells is ensured by plasmid partition systems that actively segregate plasmid copies to daughter cells in a process akin to mitosis in higher organisms. Any plasmid-free cells that still arise due to occasional failures of replication, multimer resolution, or partition are eliminated by plasmid-encoded postsegregational killing systems. Here we argue that all of these three systems are essential for the stable maintenance of large low-copy-number plasmids. Thus, they should be found on all large virulence plasmids. Where available, well-annotated sequences of virulence plasmids confirm this. Indeed, virulence plasmids often appear to contain more than one example conforming to each of the three system classes. Since these systems are essential for virulence, they can be regarded as ubiquitous virulence factors. As such, they should be informative in the search for new antibacterial agents and drug targets.
Collapse
|
96
|
The Escherichia coli Extracellular Death Factor EDF Induces the Endoribonucleolytic Activities of the Toxins MazF and ChpBK. Mol Cell 2011; 41:625-35. [DOI: 10.1016/j.molcel.2011.02.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/17/2010] [Accepted: 12/24/2010] [Indexed: 01/15/2023]
|
97
|
Gómez FA, Cárdenas C, Henríquez V, Marshall SH. Characterization of a functional toxin-antitoxin module in the genome of the fish pathogen Piscirickettsia salmonis. FEMS Microbiol Lett 2011; 317:83-92. [PMID: 21241361 DOI: 10.1111/j.1574-6968.2011.02218.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This is the first report of a functional toxin-antitoxin (TA) locus in Piscirickettsia salmonis. The P. salmonis TA operon (ps-Tox-Antox) is an autonomous genetic unit containing two genes, a regulatory promoter site and an overlapping putative operator region. The ORFs consist of a toxic ps-Tox gene (P. salmonis toxin) and its upstream partner ps-Antox (P. salmonis antitoxin). The regulatory promoter site contains two inverted repeat motifs between the -10 and -35 regions, which may represent an overlapping operator site, known to mediate transcriptional auto-repression in most TA complexes. The Ps-Tox protein contains a PIN domain, normally found in prokaryote TA operons, especially those of the VapBC and ChpK families. The expression in Escherichia coli of the ps-Tox gene results in growth inhibition of the bacterial host confirming its toxicity, which is neutralized by coexpression of the ps-Antox gene. Additionally, ps-Tox is an endoribonuclease whose activity is inhibited by the antitoxin. The bioinformatic modelling of the two putative novel proteins from P. salmonis matches with their predicted functional activity and confirms that the active site of the Ps-Tox PIN domain is conserved.
Collapse
Affiliation(s)
- Fernando A Gómez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
98
|
Han KD, Matsuura A, Ahn HC, Kwon AR, Min YH, Park HJ, Won HS, Park SJ, Kim DY, Lee BJ. Functional identification of toxin-antitoxin molecules from Helicobacter pylori 26695 and structural elucidation of the molecular interactions. J Biol Chem 2011; 286:4842-53. [PMID: 21123184 PMCID: PMC3039379 DOI: 10.1074/jbc.m109.097840] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 11/02/2010] [Indexed: 01/15/2023] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are associated with many important cellular processes including antibiotic resistance and microorganism virulence. Here, we identify and structurally characterize TA molecules from the gastric pathogen, Helicobacter pylori. The HP0894 protein had been previously suggested, through our structural genomics approach, to be a putative toxin molecule. In this study, the intrinsic RNase activity and the bacterial cell growth-arresting activity of HP0894 were established. The RNA-binding surface was identified at three residue clusters: (Lys(8) and Ser(9)), (Lys(50)-Lys(54) and Glu(58)), and (Arg(80) and His(84)-Phe(88)). In particular, the -UA- and -CA- sequences in RNA were preferentially cleaved by HP0894, and residues Lys(52), Trp(53), and Ser(85)-Lys(87) were observed to be the main contributors to sequence recognition. The action of HP0894 could be inhibited by the HP0895 protein, and the HP0894-HP0895 complex formed an oligomer with a binding stoichiometry of 1:1. The N and C termini of HP0894 constituted the binding sites to HP0895. In contrast, the unstructured C-terminal region of HP0895 was responsible for binding to HP0894 and underwent a conformational change in the process. Finally, DNA binding activity was observed for both HP0895 and the HP0894-0895 complex but not for HP0894 alone. Taken together, it is concluded that the HP0894-HP0895 protein couple is a TA system in H. pylori, where HP0894 is a toxin with an RNase function, whereas HP0895 is an antitoxin functioning by binding to both the toxin and DNA.
Collapse
Affiliation(s)
- Kyung-Doo Han
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| | - Atsushi Matsuura
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| | - Hee-Chul Ahn
- the Advanced Analysis Center, Korea Institute of Science and Technology, Seoungbuk-gu, Seoul 136-791, Korea
| | - Ae-Ran Kwon
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
- the Department of Herbal Skin Care, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Korea
| | - Yu-Hong Min
- the Department of Herbal Skin Care, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Korea
| | - Hyo-Ju Park
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| | - Hyung-Sik Won
- the School of Medicine, Konkuk University, Chungju, Chungcheongbuk-do 380-701, Korea
| | - Sung-Jean Park
- the Graduate School of Medicine, Gachon University School of Medicine and Science, Yeonsu-gu, Incheon 406-799, Korea, and
| | - Do-Young Kim
- Davidson College, Davidson, North Carolina 28035
| | - Bong-Jin Lee
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| |
Collapse
|
99
|
Zhang D, Iyer LM, Aravind L. A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Res 2011; 39:4532-52. [PMID: 21306995 PMCID: PMC3113570 DOI: 10.1093/nar/gkr036] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The use of nucleases as toxins for defense, offense or addiction of selfish elements is widely encountered across all life forms. Using sensitive sequence profile analysis methods, we characterize a novel superfamily (the SUKH superfamily) that unites a diverse group of proteins including Smi1/Knr4, PGs2, FBXO3, SKIP16, Syd, herpesviral US22, IRS1 and TRS1, and their bacterial homologs. Using contextual analysis we present evidence that the bacterial members of this superfamily are potential immunity proteins for a variety of toxin systems that also include the recently characterized contact-dependent inhibition (CDI) systems of proteobacteria. By analyzing the toxin proteins encoded in the neighborhood of the SUKH superfamily we predict that they possess domains belonging to diverse nuclease and nucleic acid deaminase families. These include at least eight distinct types of DNases belonging to HNH/EndoVII- and restriction endonuclease-fold, and RNases of the EndoU-like and colicin E3-like cytotoxic RNases-folds. The N-terminal domains of these toxins indicate that they are extruded by several distinct secretory mechanisms such as the two-partner system (shared with the CDI systems) in proteobacteria, ESAT-6/WXG-like ATP-dependent secretory systems in Gram-positive bacteria and the conventional Sec-dependent system in several bacterial lineages. The hedgehog-intein domain might also release a subset of toxic nuclease domains through auto-proteolytic action. Unlike classical colicin-like nuclease toxins, the overwhelming majority of toxin systems with the SUKH superfamily is chromosomally encoded and appears to have diversified through a recombination process combining different C-terminal nuclease domains to N-terminal secretion-related domains. Across the bacterial superkingdom these systems might participate in discriminating `self’ or kin from `non-self’ or non-kin strains. Using structural analysis we demonstrate that the SUKH domain possesses a versatile scaffold that can be used to bind a wide range of protein partners. In eukaryotes it appears to have been recruited as an adaptor to regulate modification of proteins by ubiquitination or polyglutamylation. Similarly, another widespread immunity protein from these toxin systems, namely the suppressor of fused (SuFu) superfamily has been recruited for comparable roles in eukaryotes. In animal DNA viruses, such as herpesviruses, poxviruses, iridoviruses and adenoviruses, the ability of the SUKH domain to bind diverse targets has been deployed to counter diverse anti-viral responses by interacting with specific host proteins.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
100
|
The chromosomal mazEF locus of Streptococcus mutans encodes a functional type II toxin-antitoxin addiction system. J Bacteriol 2010; 193:1122-30. [PMID: 21183668 DOI: 10.1128/jb.01114-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type II chromosomal toxin-antitoxin (TA) modules consist of a pair of genes that encode two components: a stable toxin and a labile antitoxin interfering with the lethal action of the toxin through protein complex formation. Bioinformatic analysis of Streptococcus mutans UA159 genome identified a pair of linked genes encoding a MazEF-like TA. Our results show that S. mutans mazEF genes form a bicistronic operon that is cotranscribed from a σ70-like promoter. Overproduction of S. mutans MazF toxin had a toxic effect on S. mutans which can be neutralized by coexpression of its cognate antitoxin, S. mutans MazE. Although mazF expression inhibited cell growth, no cell lysis of S. mutans cultures was observed under the conditions tested. The MazEF TA is also functional in E. coli, where S. mutans MazF did not kill the cells but rather caused reversible cell growth arrest. Recombinant S. mutans MazE and MazF proteins were purified and were shown to interact with each other in vivo, confirming the nature of this TA as a type II addiction system. Our data indicate that MazF is a toxic nuclease arresting cell growth through the mechanism of RNA cleavage and that MazE inhibits the RNase activity of MazF by forming a complex. Our results suggest that the MazEF TA module might represent a cell growth modulator facilitating the persistence of S. mutans under the harsh conditions of the oral cavity.
Collapse
|