51
|
Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M. Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol 2016; 23:688-703. [PMID: 27000978 DOI: 10.1111/ene.12984] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 01/18/2016] [Indexed: 02/05/2023]
Abstract
In this review we discuss the use of conventional (computed tomography, magnetic resonance imaging, ultrasound) and advanced muscle imaging modalities (diffusion tensor imaging, magnetic resonance spectroscopy) in hereditary and acquired myopathies. We summarize the data on specific patterns of muscle involvement in the major categories of muscle disease and provide recommendations on how to use muscle imaging in this field of neuromuscular disorders.
Collapse
Affiliation(s)
- L Ten Dam
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - A J van der Kooi
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - C Verhamme
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - M P Wattjes
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - M de Visser
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
52
|
|
53
|
Qiang B, Brigham JC, McGough RJ, Greenleaf JF, Urban MW. Mapped Chebyshev pseudo-spectral method for simulating the shear wave propagation in the plane of symmetry of a transversely isotropic viscoelastic medium. Med Biol Eng Comput 2016; 55:389-401. [PMID: 27221812 DOI: 10.1007/s11517-016-1522-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/06/2016] [Indexed: 11/26/2022]
Abstract
Shear wave elastography is a versatile technique that is being applied to many organs. However, in tissues that exhibit anisotropic material properties, special care must be taken to estimate shear wave propagation accurately and efficiently. A two-dimensional simulation method is implemented to simulate the shear wave propagation in the plane of symmetry in transversely isotropic viscoelastic media. The method uses a mapped Chebyshev pseudo-spectral method to calculate the spatial derivatives and an Adams-Bashforth-Moulton integrator with variable step sizes for time marching. The boundaries of the two-dimensional domain are surrounded by perfectly matched layers to approximate an infinite domain and minimize reflection errors. In an earlier work, we proposed a solution for estimating the apparent shear wave elasticity and viscosity of the spatial group velocity as a function of rotation angle through a low-frequency approximation by a Taylor expansion. With the solver implemented in MATLAB, the simulated results in this paper match well with the theory. Compared to the finite element method simulations we used before, the pseudo-spectral solver consumes less memory and is faster and achieves better accuracy.
Collapse
Affiliation(s)
- Bo Qiang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
- The Nielsen Company, Oldsmar, FL, 34677, USA.
| | - John C Brigham
- Department of Civil and Environmental Engineering, Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- School of Engineering and Computing Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Robert J McGough
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
54
|
Hooijmans M, Damon B, Froeling M, Versluis M, Burakiewicz J, Verschuuren J, Webb A, Niks E, Kan H. Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy. NMR IN BIOMEDICINE 2015; 28:1589-97. [PMID: 26449628 PMCID: PMC4670831 DOI: 10.1002/nbm.3427] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 05/05/2023]
Abstract
Diffusion tensor imaging (DTI) is a popular method to assess differences in fiber organization in diseased and healthy muscle tissue. Previous work has shown that muscle DTI measurements depend on signal-to-noise ratio (SNR), %fat, and tissue T2. The goal of this study was to evaluate the potential biasing effects of these factors on skeletal muscle DTI data in patients with Duchenne Muscular Dystrophy (DMD). MR images were obtained of the right lower leg of 21 DMD patients and 12 healthy controls on a Philips 3T system. DTI measurements were combined with quantitative in-vivo measures of mean water T2, %fat and SNR to evaluate their effect on DTI parameter estimation. All outcome measures were determined within ROIs drawn for six lower leg muscles. Between group analysis, using all ROIs, revealed a significantly elevated FA in the GCL, SOL and PER muscles (p<0.05) and an increased mean diffusivity (p<0.05) and λ3 (p<0.05) in the TA muscle of DMD patients. In-vivo evaluation of the individual confounders showed behaviour in line with predictions from previous simulation work. To account for these confounders, subsequent analysis used only ROIs with SNR greater than 20. With this criterion we found significantly greater MD in the TA muscle of DMD patient (p<0.009) and λ3 in the TA and GCL muscles (p<0.001) of DMD patients, but no differences in FA. As both increased %fat and lower SNR are expected to reduce the apparent MD and λ3, these between-group differences are likely due to pathophysiology. However, the increased FA, observed when using all ROIs, likely reflects the effect of low SNR and %fat on the DTI parameter estimation. These findings suggest that measuring mean water T2, %fat and SNR is essential to ascribe changes in DTI measures to intrinsic diffusion changes or to confounding influences.
Collapse
Affiliation(s)
- M.T. Hooijmans
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - B.M. Damon
- Depts. of Radiology and Radiological Sciences, Biomedical Engineering, and Molecular Physiology and Biophysics, Vanderbilt University, Nashville TN USA
| | - M. Froeling
- Dept of Radiology, Utrecht Medical Center, Utrecht, The Netherlands
| | | | - J. Burakiewicz
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - J.J.G.M Verschuuren
- Dept of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A.G. Webb
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - E.H. Niks
- Dept of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - H.E. Kan
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
55
|
Attyé A, Karkas A, Troprès I, Roustit M, Kastler A, Bettega G, Lamalle L, Renard F, Righini C, Krainik A. Parotid gland tumours: MR tractography to assess contact with the facial nerve. Eur Radiol 2015; 26:2233-41. [DOI: 10.1007/s00330-015-4049-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/11/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022]
|
56
|
Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging 2015. [PMID: 26221741 DOI: 10.1002/jmri.25016] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) is increasingly applied to study skeletal muscle physiology, anatomy, and pathology. The reason for this growing interest is that DTI offers unique, noninvasive, and potentially diagnostically relevant imaging readouts of skeletal muscle structure that are difficult or impossible to obtain otherwise. DTI has been shown to be feasible within most skeletal muscles. DTI parameters are highly sensitive to patient-specific properties such as age, body mass index (BMI), and gender, but also to more transient factors such as exercise, rest, pressure, temperature, and relative joint position. However, when designing a DTI study one should not only be aware of sensitivity to the above-mentioned factors but also the fact that the DTI parameters are dependent on several acquisition parameters such as echo time, b-value, and diffusion mixing time. The purpose of this review is to provide an overview of DTI studies covering the technical, demographic, and clinical aspects of DTI in skeletal muscles. First we will focus on the critical aspects of the acquisition protocol. Second, we will cover the reported normal variance in skeletal muscle diffusion parameters, and finally we provide an overview of clinical studies and reported parameter changes due to several (patho-)physiological conditions.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| |
Collapse
|
57
|
Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration. Invest Radiol 2015; 50:456-63. [DOI: 10.1097/rli.0000000000000151] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
|
59
|
Focus on diffusion MR investigations of musculoskeletal tissue to improve osteoporosis diagnosis: a brief practical review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:948610. [PMID: 25861652 PMCID: PMC4377366 DOI: 10.1155/2015/948610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/18/2015] [Indexed: 01/13/2023]
Abstract
Nowadays, a huge number of papers have documented the ability of diffusion magnetic resonance imaging (D-MRI) to highlight normal and pathological conditions in a variety of cerebral, abdominal, and cardiovascular applications. To date, however, the role of D-MRI to investigate musculoskeletal tissue, specifically the cancellous bone, has not been extensively explored. In order to determine potentially useful applications of diffusion techniques in musculoskeletal investigation, D-MRI applications to detect osteoporosis disease were reviewed and further explained.
Collapse
|
60
|
Ha DH, Choi S, Kang EJ, Park HT. Diffusion tensor imaging and T2 mapping in early denervated skeletal muscle in rats. J Magn Reson Imaging 2014; 42:617-23. [PMID: 25504841 DOI: 10.1002/jmri.24818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND To evaluate the temporal changes of diffusion tensor imaging (DTI) indices, T2 values, and visual signal intensity on various fat suppression techniques in the early state of denervated skeletal muscle in a rat model. METHODS Institutional Animal Care and Use Committee approval was obtained. Sciatic nerves of eight rats were transected for irreversible neurotmesis model. We examined normal lower leg and denervated muscles at 3 days, 1 week, and 2 weeks on a 3 Tesla MR. fractional anisotropy (FA), mean apparent diffusion coefficient (mADC), and T2 values were measured by using DTI and T2 mapping scan. We subjectively classified the signal intensity change on various fat suppression images into the following three grades: negative, suspicious, and definite change. Wilcoxon-sign rank test and Kruskal-Wallis test were used for the comparison of FA, mADC, T2 values. McNemar's test was used for comparing signal intensity change among fat suppression techniques. RESULTS FA values of denervated muscles at 3 days (0.35 ± 0.06), 1 week (0.29 ± 0.04), and 2 weeks (0.34 ± 0.05) were significantly (P < 0.05) lower than that in the control group (0.54 ± 0.17). mADC of denervated muscles decreased without statistically significant (P > 0.05) change. T2 values were significantly increased at 1 week (38.11 ± 6.42 ms, P = 0.017) and markedly increased at 2 weeks (46.53 ± 5.17 ms, P = 0.012). The grade of visual signal intensity change on chemical shift selective fat saturation, STIR and IDEAL images were identical in all cases (P = 1.000). CONCLUSION FA and T2 values can demonstrate the early temporal changes in denervated rat skeletal muscle.
Collapse
Affiliation(s)
- Dong-Ho Ha
- Department of Radiology, Dong-A University Medical Center, Busan, Korea
| | - Sunseob Choi
- Department of Radiology, Dong-A University Medical Center, Busan, Korea
| | - Eun-Ju Kang
- Department of Radiology, Dong-A University Medical Center, Busan, Korea
| | - Hwan Tae Park
- Department of Microbiology, Medical Science Research Institute, College of Medicine, Dong-A University, Busan, Korea
| |
Collapse
|