51
|
Giachini FR, Tostes RC. Does Na+ really play a role in Ca2+ homeostasis in hypertension? Am J Physiol Heart Circ Physiol 2010; 299:H602-4. [PMID: 20543080 DOI: 10.1152/ajpheart.00542.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
52
|
Pritchard TJ, Bowman PS, Jefferson A, Tosun M, Lynch RM, Paul RJ. Na(+)-K(+)-ATPase and Ca(2+) clearance proteins in smooth muscle: a functional unit. Am J Physiol Heart Circ Physiol 2010; 299:H548-56. [PMID: 20543086 DOI: 10.1152/ajpheart.00527.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Na(+)-K(+)-ATPase (NKA) can affect intracellular Ca(2+) concentration regulation via coupling to the Na(+)-Ca(2+) exchanger and may be important in myogenic tone. We previously reported that in mice carrying a transgene for the NKA alpha(2)-isoform in smooth muscle (alpha(2sm+)), the alpha(2)-isoform protein as well as the alpha(1)-isoform (not contained in the transgene) increased to similar degrees (2-7-fold). Aortas from alpha(2sm+) mice relaxed faster from a KCl-induced contraction, hypothesized to be related to more rapid Ca(2+) clearance. To elucidate the mechanisms underlying this faster relaxation, we therefore measured the expression and distribution of proteins involved in Ca(2+) clearance. Na(+)-Ca(2+) exchanger, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), and plasma membrane Ca(2+)-ATPase (PMCA) proteins were all elevated up to approximately fivefold, whereas actin, myosin light chain, and calponin proteins were not changed in smooth muscle from alpha(2sm+) mice. Interestingly, the corresponding Ca(2+) clearance mRNA levels were unchanged. Immunocytochemical data indicate that the Ca(2+) clearance proteins are distributed similarly in wild-type and alpha(2sm+) aorta cells. In studies measuring relaxation half-times from a KCl-induced contraction in the presence of pharmacological inhibitors of SERCA and PMCA, we estimated that together these proteins were responsible for approximately 60-70% of relaxation in aorta. Moreover, the percent contribution of SERCA and PMCA to relaxation rates in alpha(2sm+) aorta was not significantly different from that in wild-type aorta. The coordinate expressions of NKA and Ca(2+) clearance proteins without change in the relative contributions of each individual protein to smooth muscle function suggest that NKA may be but one component of a larger functional Ca(2+) clearance system.
Collapse
Affiliation(s)
- Tracy J Pritchard
- Molecular and Cellular Physiology, Univ. of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0576, USA
| | | | | | | | | | | |
Collapse
|
53
|
Shaikh S, Samanta K, Kar P, Roy S, Chakraborti T, Chakraborti S. m-Calpain-mediated cleavage of Na+/Ca2+ exchanger-1 in caveolae vesicles isolated from pulmonary artery smooth muscle. Mol Cell Biochem 2010; 341:167-80. [PMID: 20372982 DOI: 10.1007/s11010-010-0448-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/17/2010] [Indexed: 01/30/2023]
Abstract
Using m-calpain antibody, we have identified two major bands corresponding to the 80 kDa large and the 28 kDa small subunit of m-calpain in caveolae vesicles isolated from bovine pulmonary artery smooth muscle plasma membrane. In addition, 78, 35, and 18 kDa immunoreactive bands of m-calpain have also been detected. Casein zymogram studies also revealed the presence of m-calpain in the caveolae vesicles. We have also identified Na(+)/Ca(2+) exchanger-1 (NCX1) in the caveolae vesicles. Purification and N-terminal sequence analyses of these two proteins confirmed their identities as m-calpain and NCX1, respectively. We further sought to determine the role of m-calpain on calcium-dependent proteolytic cleavage of NCX1 in the caveolae vesicles. Treatment of the caveolae vesicles with the calcium ionophore, A23187 (1 microM) in presence of CaCl(2) (1 mM) appears to cleave NCX1 (120 kDa) to an 82 kDa fragment as revealed by immunoblot study using NCX1 monoclonal antibody; while pretreatment with the calpain inhibitors, calpeptin or MDL28170; or the Ca(2+) chelator, BAPTA-AM did not cause a discernible change in the NCX protein profile. In vitro cleavage of the purified NCX1 by the purified m-calpain supports this finding. The cleavage of NCX1 by m-calpain in the caveolae vesicles may be interpreted as an important mechanism of Ca(2+) overload, which could arise due to inhibition of Ca(2+) efflux by the forward-mode NCX and that could lead to sustained Ca(2+) overload in the smooth muscle leading to pulmonary hypertension.
Collapse
Affiliation(s)
- Soni Shaikh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235 West Bengal, India
| | | | | | | | | | | |
Collapse
|
54
|
Zhang J, Ren C, Chen L, Navedo MF, Antos LK, Kinsey SP, Iwamoto T, Philipson KD, Kotlikoff MI, Santana LF, Wier WG, Matteson DR, Blaustein MP. Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am J Physiol Heart Circ Physiol 2010; 298:H1472-83. [PMID: 20173044 DOI: 10.1152/ajpheart.00964.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice with smooth muscle (SM)-specific knockout of Na(+)/Ca(2+) exchanger type-1 (NCX1(SM-/-)) and the NCX inhibitor, SEA0400, were used to study the physiological role of NCX1 in mouse mesenteric arteries. NCX1 protein expression was greatly reduced in arteries from NCX1(SM-/-) mice generated with Cre recombinase. Mean blood pressure (BP) was 6-10 mmHg lower in NCX1(SM-/-) mice than in wild-type (WT) controls. Vasoconstriction was studied in isolated, pressurized mesenteric small arteries from WT and NCX1(SM-/-) mice and in heterozygotes with a global null mutation (NCX1(Fx/-)). Reduced NCX1 activity was manifested by a marked attenuation of responses to low extracellular Na(+) concentration, nanomolar ouabain, and SEA0400. Myogenic tone (MT, 70 mmHg) was reduced by approximately 15% in NCX1(SM-/-) arteries and, to a similar extent, by SEA0400 in WT arteries. MT was normal in arteries from NCX1(Fx/-) mice, which had normal BP. Vasoconstrictions to phenylephrine and elevated extracellular K(+) concentration were significantly reduced in NCX1(SM-/-) arteries. Because a high extracellular K(+) concentration-induced vasoconstriction involves the activation of L-type voltage-gated Ca(2+) channels (LVGCs), we measured LVGC-mediated currents and Ca(2+) sparklets in isolated mesenteric artery myocytes. Both the currents and the sparklets were significantly reduced in NCX1(SM-/-) (vs. WT or NCX1(Fx/-)) myocytes, but the voltage-dependent inactivation of LVGCs was not augmented. An acute application of SEA0400 in WT myocytes had no effect on LVGC current. The LVGC agonist, Bay K 8644, eliminated the differences in LVGC currents and Ca(2+) sparklets between NCX1(SM-/-) and control myocytes, suggesting that LVGC expression was normal in NCX1(SM-/-) myocytes. Bay K 8644 did not, however, eliminate the difference in myogenic constriction between WT and NCX1(SM-/-) arteries. We conclude that, under physiological conditions, NCX1-mediated Ca(2+) entry contributes significantly to the maintenance of MT. In NCX1(SM-/-) mouse artery myocytes, the reduced Ca(2+) entry via NCX1 may lower cytosolic Ca(2+) concentration and thereby reduce MT and BP. The reduced LVGC activity may be the consequence of a low cytosolic Ca(2+) concentration.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Murata H, Hotta S, Sawada E, Yamamura H, Ohya S, Kita S, Iwamoto T, Imaizumi Y. Cellular Ca2+ Dynamics in Urinary Bladder Smooth Muscle From Transgenic Mice Overexpressing Na+-Ca2+ Exchanger. J Pharmacol Sci 2010; 112:373-7. [DOI: 10.1254/jphs.09319sc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
56
|
Pulina MV, Zulian A, Berra-Romani R, Beskina O, Mazzocco-Spezzia A, Baryshnikov SG, Papparella I, Hamlyn JM, Blaustein MP, Golovina VA. Upregulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain-induced hypertensive rats. Am J Physiol Heart Circ Physiol 2009; 298:H263-74. [PMID: 19897708 DOI: 10.1152/ajpheart.00784.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prolonged ouabain administration (25 microg kg(-1) day(-1) for 5 wk) induces "ouabain hypertension" (OH) in rats, but the molecular mechanisms by which ouabain elevates blood pressure are unknown. Here, we compared Ca(2+) signaling in mesenteric artery smooth muscle cells (ASMCs) from normotensive (NT) and OH rats. Resting cytosolic free Ca(2+) concentration ([Ca(2+)](cyt); measured with fura-2) and phenylephrine-induced Ca(2+) transients were augmented in freshly dissociated OH ASMCs. Immunoblots revealed that the expression of the ouabain-sensitive alpha(2)-subunit of Na(+) pumps, but not the predominant, ouabain-resistant alpha(1)-subunit, was increased (2.5-fold vs. NT ASMCs) as was Na(+)/Ca(2+) exchanger-1 (NCX1; 6-fold vs. NT) in OH arteries. Ca(2+) entry, activated by sarcoplasmic reticulum (SR) Ca(2+) store depletion with cyclopiazonic acid (SR Ca(2+)-ATPase inhibitor) or caffeine, was augmented in OH ASMCs. This reflected an augmented expression of 2.5-fold in OH ASMCs of C-type transient receptor potential TRPC1, an essential component of store-operated channels (SOCs); two other components of some SOCs were not expressed (TRPC4) or were not upregulated (TRPC5). Ba(2+) entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol [a measure of receptor-operated channel (ROC) activity] was much greater in OH than NT ASMCs. This correlated with a sixfold upregulation of TRPC6 protein, a ROC family member. Importantly, in primary cultured mesenteric ASMCs from normal rats, 72-h treatment with 100 nM ouabain significantly augmented NCX1 and TRPC6 protein expression and increased resting [Ca(2+)](cyt) and ROC activity. SOC activity was also increased. Silencer RNA knockdown of NCX1 markedly downregulated TRPC6 and eliminated the ouabain-induced augmentation; silencer RNA knockdown of TRPC6 did not affect NCX1 expression but greatly attenuated its upregulation by ouabain. Clearly, NCX1 and TRPC6 expression are interrelated. Thus, prolonged ouabain treatment upregulates the Na(+) pump alpha(2)-subunit-NCX1-TRPC6 (ROC) Ca(2+) signaling pathway in arterial myocytes in vitro as well as in vivo. This may explain the augmented myogenic responses and enhanced phenylephrine-induced vasoconstriction in OH arteries (83) as well as the high blood pressure in OH rats.
Collapse
Affiliation(s)
- Maria V Pulina
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Sakamoto K, Owada Y, Shikama Y, Wada I, Waguri S, Iwamoto T, Kimura J. Involvement of Na+/Ca2+ exchanger in migration and contraction of rat cultured tendon fibroblasts. J Physiol 2009; 587:5345-59. [PMID: 19770194 DOI: 10.1113/jphysiol.2009.172080] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In response to injury and inflammation of tendons, tendon fibroblasts are activated, migrate to the wound, and eventually induce contraction of the extracellular matrices to repair the tissue. Under such conditions, Ca(2+) signalling is involved in motility and contractility of tendon fibroblasts. Using cultured tendon fibroblasts isolated from rat Achilles tendons, we investigated functional expression of Na(+)/Ca(2+) exchangers (NCX). The fluorometric study showed that the intracellular Ca(2+) concentration ([Ca(2+)](i)) was increased by reducing extracellular Na(+) concentration ([Na(+)](o)) in tendon fibroblasts. Selective NCX inhibitors, KB-R7943 and SEA0400, both attenuated [Na(+)](o)-dependent [Ca(2+)](i) elevation and the resting [Ca(2+)](i) in tendon fibroblasts. RT-PCR, Western blots and sequence analyses revealed that NCX1.3 and NCX1.7 were expressed in cultured tendon fibroblasts. NCX2 mRNA was undetected. NCX3 expression was negligibly low. Immunofluorescence microscopy indicated that NCX1 protein localized in the plasma membrane especially at the microspikes of tendon fibroblasts. In the wound-healing scratch assay, the cells migrated toward the space created by a scratch and almost completely filled the space within 48 h. This phenomenon was significantly suppressed by KB-R7943 and SEA0400. Furthermore, the NCX inhibitors abrogated the tendon fibroblast-mediated collagen-matrix contractions. Two types of siRNAs for NCX1 also suppressed the migration and contraction of tendon fibroblasts. We conclude that NCX is expressed and mediates Ca(2+) influx in cultured tendon fibroblasts. Since the pharmacological inhibitors and siRNA for NCX1 suppressed motility and contractility of tendon fibroblasts, NCX may play an important role in the function of tendon fibroblasts in the wound healing.
Collapse
Affiliation(s)
- Kazuho Sakamoto
- Department of Pharmacology, Fukushima Medical University, School of Medicine, Hikarigaoka, Fukushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
58
|
Fameli N, Kuo KH, van Breemen C. A model for the generation of localized transient [Na+] elevations in vascular smooth muscle. Biochem Biophys Res Commun 2009; 389:461-5. [PMID: 19733153 DOI: 10.1016/j.bbrc.2009.08.166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 08/31/2009] [Indexed: 01/22/2023]
Abstract
We present a stochastic computational model to study the mechanism of signaling between a source and a target ionic transporter, both localized on the plasma membrane (PM). In general this requires a nanometer-scale cytoplasmic space, or nanodomain, between the PM and a peripheral organelle to reflect ions back towards the PM. Specifically we investigate the coupling between Na(+) entry via the transient receptor potential canonical channel 6 (TRPC6) and the Na(+)/Ca(2+) exchanger (NCX), a process which is essential for reloading the sarcoplasmic reticulum (SR) via the sarco/endoplasmic reticulum Ca(2+)ATPase (SERCA) and maintaining Ca(2+) oscillations in activated vascular smooth muscle. Having previously modeled the flow of Ca(2+) between reverse NCX and SERCA during SR refilling, this quantitative approach now allows us to model the upstream linkage of Na(+) entry through TRPC6 to reversal of NCX. We have implemented a random walk (RW) Monte Carlo (MC) model with simulations mimicking a diffusion process originating at the TRPC6 within PM-SR junctions. The model calculates the average Na(+) in the nanospace and also produces profiles as a function of distance from the source. Our results highlight the necessity of a strategic juxtaposition of the relevant ion translocators as well as other physical structures within the nanospaces to permit adequate Na(+) build-up to initiate NCX reversal and Ca(2+) influx to refill the SR.
Collapse
Affiliation(s)
- Nicola Fameli
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
59
|
Baryshnikov SG, Pulina MV, Zulian A, Linde CI, Golovina VA. Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes. Am J Physiol Cell Physiol 2009; 297:C1103-12. [PMID: 19675303 DOI: 10.1152/ajpcell.00283.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) entry through store-operated channels (SOCs) in the plasma membrane plays an important role in regulation of vascular smooth muscle contraction, tone, and cell proliferation. The C-type transient receptor potential (TRPC) channels have been proposed as major candidates for SOCs in vascular smooth muscle. Recently, two families of transmembrane proteins, Orai [also known as Ca(2+) release-activated Ca(2+) channel modulator (CRACM)] and stromal interacting molecule 1 (STIM1), were shown to be essential for the activation of SOCs mainly in nonexcitable cells. Here, using small interfering RNA, we show that Orai1 plays an essential role in activating store-operated Ca(2+) entry (SOCE) in primary cultured proliferating human aortic smooth muscle cells (hASMCs), whereas Orai2 and Orai3 do not contribute to SOCE. Knockdown of Orai1 protein expression significantly attenuated SOCE. Moreover, inhibition of Orai1 downregulated expression of Na(+)/Ca(2+) exchanger type 1 (NCX1) and plasma membrane Ca(2+) pump isoform 1 (PMCA1). The rate of cytosolic free Ca(2+) concentration decay after Ca(2+) transients in Ca(2+)-free medium was also greatly decreased under these conditions. This reduction of Ca(2+) extrusion, presumably via NCX1 and PMCA1, may be a compensation for the reduced SOCE. Immunocytochemical observations indicate that Orai1 and NCX1 are clustered in plasma membrane microdomains. Cell proliferation was attenuated in hASMCs with disrupted Orai1 expression and reduced SOCE. Thus Orai1 appears to be a critical component of SOCE in proliferating vascular smooth muscle cells, and may therefore be a key player during vascular growth and remodeling.
Collapse
Affiliation(s)
- Sergey G Baryshnikov
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
60
|
Snow JB, Kanagy NL, Walker BR, Resta TC. Rat strain differences in pulmonary artery smooth muscle Ca(2+) entry following chronic hypoxia. Microcirculation 2009; 16:603-14. [PMID: 19626552 DOI: 10.1080/10739680903114268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Effects of chronic hypoxia (CH) on store- and receptor-operated Ca(2+) entry (SOCE, ROCE) in pulmonary vascular smooth muscle (VSM) are controversial, although whether genetic variation explains such discrepancies in commonly studied rat strains is unclear. Since protein kinase C (PKC) can inhibit Ca(2+) permeable nonselective cation channels, we hypothesized that CH differentially alters PKC-dependent inhibition of SOCE and ROCE in pulmonary VSM from Sprague-Dawley and Wistar rats. To test this hypothesis, we examined SOCE and endothelin-1 (ET-1)-induced ROCE in endothelium-disrupted, pressurized pulmonary arteries from control and CH Sprague-Dawley and Wistar rats. Basal VSM Ca(2+) was elevated in CH Wistar, but not Sprague-Dawley, rats. Further, CH attenuated SOCE in VSM from Sprague-Dawley rats, while augmenting this response in Wistar rats. CH reduced ROCE in arteries from both strains. PKC inhibition restored SOCE in CH Sprague-Dawley arteries to control levels, while having no effect on SOCE in Wistar arteries or on ROCE in either strain. We conclude that effects of CH on pulmonary VSM SOCE are strain dependent, whereas inhibitory effects of CH on ROCE are strain independent. Further, PKC inhibits SOCE following CH in Sprague-Dawley, but not Wistar, rats but does not contribute to ET-1-induced ROCE in either strain.
Collapse
Affiliation(s)
- Jessica B Snow
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA.
| | | | | | | |
Collapse
|
61
|
Zhang WB, Kwan CY. Unrepeatable extracellular Ca2+-dependent contractile effects of cyclopiazonic acid in rat vascular smooth muscle. Eur J Pharmacol 2009; 610:81-6. [PMID: 19292983 DOI: 10.1016/j.ejphar.2009.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 03/09/2009] [Indexed: 11/16/2022]
Abstract
Cyclopiazonic acid (CPA), a specific reversible inhibitor of Ca(2+)-pumps in sarcoplasmic reticulum, causes a slowly developing and subsequently diminishing characteristic contraction in endothelium-denuded rat vascular smooth muscle. We recently found that CPA-induced contractions were not completely repeatable in endothelium-denuded rat aorta and superior mesenteric artery. 10 microM CPA-induced contractions expressed as a percentage of 80 mM KCl-induced contraction were significantly decreased from 51.4+/-5.7% to 11.8+/-2.6% (P<0.0001) upon the second application in endothelium-denuded rat aorta, and this was not due to any irreversible cytotoxic effects of CPA. The decrease of CPA-induced contractile responses upon the second application was dependent on both types of blood vessels and doses of CPA upon the first application. CPA upon the second application in Ca(2+)-containing solutions did induce its characteristic contractions in the rings pretreated with Ca(2+)-free solutions or Ca(2+) entry blockers before and during its first application, suggesting that capacitative mode of Ca(2+) influx during the application of CPA might be responsible for the diminishment of contractions upon the second application. These data suggest that CPA by inducing a transient rise in cytosolic Ca(2+) level might cause a long-lasting upregulation of Ca(2+) extrusion across the plasma membrane in vascular smooth muscle cells and thus accelerate Ca(2+) efflux over a prolonged period, leading to unrepeatable contractile effects of CPA. Such long-lasting upregulation of Ca(2+) extrusion may contribute to the regulation of excitability of vascular smooth muscle cells and protect the cells against excitotoxic injury.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Research Institute of Basic Medical Sciences and Vascular Biology Research Group, College of Medicine, China Medical University, 91 Hue-Shih Road, Taichung, 40402, Taiwan
| | | |
Collapse
|
62
|
Ward JPT, McMurtry IF. Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol 2009; 9:287-96. [PMID: 19297247 DOI: 10.1016/j.coph.2009.02.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/16/2009] [Accepted: 02/16/2009] [Indexed: 12/16/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) normally optimises ventilation-perfusion matching in the lung, but leads to pulmonary hypertension (PH) under conditions of global hypoxia. The past few years have provided some major advances in our understanding of this complex phenomenon, but significant controversy remains concerning many of the key underlying mechanisms. On balance, recent evidence is most consistent with an elevation in mitochondria-derived reactive oxygen species as a key event for initiation of HPV, with consequent Ca2+ release from intracellular ryanodine-sensitive stores, although the activation pathways and molecular identity of the associated Ca2+ entry pathways remain unclear. Recent studies have also raised our perception of the critical role played by Rho kinase (ROCK) in both sustained HPV and the development of PH, further promoting ROCK and the pathways regulating its activity and expression as important therapeutic targets.
Collapse
Affiliation(s)
- Jeremy P T Ward
- King's College London, Division of Asthma, Allergy and Lung Biology, London SE1 9RT, UK.
| | | |
Collapse
|
63
|
Dong X, Smoll EJ, Ko KH, Lee J, Chow JY, Kim HD, Insel PA, Dong H. P2Y receptors mediate Ca2+ signaling in duodenocytes and contribute to duodenal mucosal bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 2009; 296:G424-32. [PMID: 19074643 PMCID: PMC2643905 DOI: 10.1152/ajpgi.90314.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since little is known about the role of P2Y receptors (purinoceptors) in duodenal mucosal bicarbonate secretion (DMBS), we sought to investigate the expression and function of these receptors in duodenal epithelium. Expression of P2Y(2) receptors was detected by RT-PCR in mouse duodenal epithelium and SCBN cells, a duodenal epithelial cell line. UTP, a P2Y(2)-receptor agonist, but not ADP (10 microM), significantly induced murine duodenal short-circuit current and DMBS in vitro; these responses were abolished by suramin (300 microM), a P2Y-receptor antagonist, or 2-aminoethoxydiphenyl borate (2-APB; 100 microM), a store-operated channel blocker. Mucosal or serosal addition of UTP induced a comparable DMBS in wild-type mice, but markedly impaired response occurred in P2Y(2) knockout mice. Acid-stimulated DMBS in vivo was significantly inhibited by suramin (1 mM) or PPADS (30 microM). Both ATP and UTP, but not ADP (1 microM), raised cytoplasmic-free Ca(2+) concentrations ([Ca(2+)](cyt)) with similar potencies in SCBN cells. ATP-induced [Ca(2+)](cyt) was attenuated by U-73122 (10 microM), La(3+) (30 microM), or 2-APB (10 microM), but was not significantly affected by nifedipine (10 microM). UTP (1 microM) induced a [Ca(2+)](cyt) transient in Ca(2+)-free solutions, and restoration of external Ca(2+) (2 mM) raised [Ca(2+)](cyt) due to capacitative Ca(2+) entry. La(3+) (30 microM), SK&F96365 (30 microM), and 2-APB (10 microM) inhibited UTP-induced Ca(2+) entry by 92, 87, and 94%, respectively. Taken together, our results imply that activation of P2Y(2) receptors enhances DMBS via elevation of [Ca(2+)](cyt) that likely results from an initial increase in intracellular Ca(2+) release followed by extracellular Ca(2+) entry via store-operated channel.
Collapse
Affiliation(s)
- Xiao Dong
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Eric James Smoll
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Kwang Hyun Ko
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Jonathan Lee
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Jimmy Yip Chow
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Ho Dong Kim
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Paul A. Insel
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Hui Dong
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
64
|
Meng F, To WKL, Gu Y. Role of TRP channels and NCX in mediating hypoxia-induced [Ca(2+)](i) elevation in PC12 cells. Respir Physiol Neurobiol 2008; 164:386-93. [PMID: 18822394 DOI: 10.1016/j.resp.2008.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/31/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
Mammalian cells require a constant O2 supply to produce adequate energy, and sustained hypoxia can kill cells. Mammals therefore have evolved sophisticated mechanisms to allow their cells to adapt to hypoxia. In this study, we investigated the role of TRP channels and the Na+-Ca2+ exchanger (NCX) in mediating hypoxia-induced [Ca2+]i elevation in a model of the O2-sensing rat pheochromocytoma (PC12) cell line by using Ca2+ imaging and molecular biological approaches. Non-selective cation channels, such as TRPC1, 3 and 6, were found to be functionally expressed in PC12 cells. They mediated Ca2+ entry when cells were exposed to acute hypoxia (PO2 of 15 mmHg), in addition to Ca2+ entry via VGCCs. Blockage of TRPCs by 2APB and SKF96365 could significantly reduce hypoxia-mediated [Ca2+]i elevation. Suramin and U73122 attenuated the hypoxia-induced [Ca2+]i elevation, implying the involvement of the G-protein and PLC pathways in the hypoxic response. In addition to TRPCs and VGCCs, NCX also contributed to the hypoxia-induced [Ca2+]i elevation, and blockade of NCX by KBR7943 could significantly decrease the hypoxia-induced [Ca2+]i elevation. Our results suggest that the activation of TRP by hypoxia could lead to NCX reversal; furthermore, membrane depolarization and TRPCs may play a primary role in mediating the hypoxic response in PC12 cells.
Collapse
Affiliation(s)
- Fei Meng
- Department of Physiology, The Medical School, University of Birmingham, Vincent Drive, Edgbaston B15 2TT, Birmingham, UK
| | | | | |
Collapse
|
65
|
Davis KA, Samson SE, Hammel KE, Kiss L, Fulop F, Grover AK. Functional linkage of Na+-Ca2+-exchanger to sarco/endoplasmic reticulum Ca2+ pump in coronary artery: comparison of smooth muscle and endothelial cells. J Cell Mol Med 2008; 13:1775-1783. [PMID: 18752635 DOI: 10.1111/j.1582-4934.2008.00480.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An increase in cytosolic Ca(2+) concentration in coronary artery smooth muscle causes a contraction but in endothelium it causes relaxation. Na(+)-Ca(2+)-exchanger (NCX) may play a role in Ca(2+) dynamics in both the cell types. Here, the NCX-mediated (45)Ca(2+) uptake was compared in Na(+)-loaded pig coronary artery smooth muscle and endothelial cells. In both the cell types, this uptake was inhibited by KB-R7943, SEA 0400 and by monensin, but not by cariporide. Prior loading of the cells with the Ca(2+) chelator BAPTA increased the NCX-mediated (45)Ca(2+) uptake in smooth muscle but not in endothelial cells. In the presence or absence of BAPTA loading, the Na(+)-mediated (45)Ca(2+) uptake was greater in endothelial than in smooth muscle cells. In smooth muscle cells without BAPTA loading, thapsigargin diminished the NCX-mediated (45)Ca(2+) entry. This effect was not observed in endothelial cells or in either cell type after BAPTA loading. The results in the smooth muscle cells are consistent with a limited diffusional space model in which the NCX-mediated (45)Ca(2+) uptake was enhanced by chelation of cytosolic Ca(2+) or by its sequestration by the sarco/endoplasmic reticulum Ca(2+) pump (SERCA). They suggest a functional linkage between NCX and SERCA in the smooth muscle but not in the endothelial cells. The concept of a linkage between NCX and SERCA in smooth muscle was also confirmed by similar distribution of NCX and SERCA2 proteins when detergent-treated microsomes were fractionated by flotation on sucrose density gradients. Thus, the coronary artery smooth muscle and endothelial cells differ not only in the relative activities of NCX but also in its functional linkage to SERCA.
Collapse
Affiliation(s)
- Kim A Davis
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Sue E Samson
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kaitlin E Hammel
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lorand Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Eotvo, Hungary
| | - Ferenc Fulop
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Eotvo, Hungary
| | - Ashok K Grover
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
66
|
Li N, Dai DZ, Dai Y. CPU86017 and its isomers improve hypoxic pulmonary hypertension by attenuating increased ETA receptor expression and extracellular matrix accumulation. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:541-52. [DOI: 10.1007/s00210-008-0309-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 05/02/2008] [Indexed: 12/17/2022]
|
67
|
The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 2008; 456:769-85. [PMID: 18365243 DOI: 10.1007/s00424-008-0491-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 03/04/2008] [Indexed: 01/09/2023]
Abstract
Calcium (Ca(2+)) is a highly versatile second messenger that controls vascular smooth muscle cell (VSMC) contraction, proliferation, and migration. By means of Ca(2+) permeable channels, Ca(2+) pumps and channels conducting other ions such as potassium and chloride, VSMC keep intracellular Ca(2+) levels under tight control. In healthy quiescent contractile VSMC, two important components of the Ca(2+) signaling pathways that regulate VSMC contraction are the plasma membrane voltage-operated Ca(2+) channel of the high voltage-activated type (L-type) and the sarcoplasmic reticulum Ca(2+) release channel, Ryanodine Receptor (RyR). Injury to the vessel wall is accompanied by VSMC phenotype switch from a contractile quiescent to a proliferative motile phenotype (synthetic phenotype) and by alteration of many components of VSMC Ca(2+) signaling pathways. Specifically, this switch that culminates in a VSMC phenotype reminiscent of a non-excitable cell is characterized by loss of L-type channels expression and increased expression of the low voltage-activated (T-type) Ca(2+) channels and the canonical transient receptor potential (TRPC) channels. The expression levels of intracellular Ca(2+) release channels, pumps and Ca(2+)-activated proteins are also altered: the proliferative VSMC lose the RyR3 and the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase isoform 2a pump and reciprocally regulate isoforms of the ca(2+)/calmodulin-dependent protein kinase II. This review focuses on the changes in expression of Ca(2+) signaling proteins associated with VSMC proliferation both in vitro and in vivo. The physiological implications of the altered expression of these Ca(2+) signaling molecules, their contribution to VSMC dysfunction during vascular disease and their potential as targets for drug therapy will be discussed.
Collapse
|
68
|
Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochem Soc Trans 2008; 35:890-4. [PMID: 17956239 DOI: 10.1042/bst0350890] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood vessels are essential for animal life, allowing flow of oxygen and nutrients to tissues and removal of waste products. Consequently, inappropriate remodelling of blood vessels, resulting in occlusion, can lead to disabling or catastrophic events: heart attacks, strokes and claudication. An important cell type of remodelling is the VSMC (vascular smooth-muscle cell), a fascinating cell that contributes significantly to occlusive vascular diseases by virtue of its ability to 'modulate' to a cell that no longer contracts and arranges radially in the medial layer of the vessel wall but migrates, invades, proliferates and adopts phenotypes of other cells. An intriguing aspect of modulation is switching to different ion transport systems. Initial events include loss of the Ca(V)1.2 (L-type voltage-gated calcium) channel and gain of the K(Ca)3.1 (IKCa) potassium channel, which putatively occur to enable membrane hyperpolarization that increases rather than decreases a type of calcium entry coupled with cell cycle activity, cell proliferation and cell migration. This type of calcium entry is related to store- and receptor-operated calcium entry phenomena, which, in VSMCs, are contributed to by TRPC [TRP (transient receptor potential) canonical] channel subunits. Instead of being voltage-gated, these channels are chemically gated - importantly, by key phospholipid factors of vascular development and disease. This brief review focuses on the hypothesis that the transition to a modulated cell may require a switch from predominantly voltage- to predominantly lipid-sensing ion channels.
Collapse
|
69
|
Fellner SK, Arendshorst WJ. Angiotensin II-stimulated Ca2+ entry mechanisms in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange. Am J Physiol Renal Physiol 2008; 294:F212-9. [DOI: 10.1152/ajprenal.00244.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In afferent arterioles, the signaling events that lead to an increase in cytosolic Ca2+ concentration ([Ca2+]i) and initiation of vascular contraction are increasingly being delineated. We have recently studied angiotensin II (ANG II)-mediated effects on sarcoplasmic reticulum (SR) mobilization of Ca2+ and the role of superoxide and cyclic adenosine diphosphoribose in these processes. In the current study we investigated the participation of transient receptor potential canonical channels (TRPC) and a Na+/Ca2+ exchanger (NCX) in Ca2+ entry mechanisms. Afferent arterioles, isolated with the magnetized polystyrene bead method, were loaded with fura-2 to measure [Ca2+]i ratiometrically. We observed that the Ca2+-dependent chloride channel blocker niflumic acid (10 and 50 μ M) affects neither the peak nor plateau [Ca2+]i response to ANG II. Arterioles were pretreated with ryanodine (100 μM) and TMB-8 to block SR mobilization via the ryanodine receptor and inositol trisphosphate receptor, respectively. The peak [Ca2+]i response to ANG II was reduced by 40%. Addition of 2-aminoethoxydiphenyl borane to block TRPC-mediated Ca2+ entry inhibited the peak [Ca2+]i ANG II response by 80% and the plateau by 74%. Flufenamic acid (FFA; 50 μM), which stimulates TRPC6, caused a sustained increase of [Ca2+]i of 146 nM. This response was unaffected by diltiazem or nifedipine. KB-R7943 (at the low concentration of 10 μM) inhibits reverse (but not forward) mode NCX. KB-R7943 decreased the peak [Ca2+]i response to ANG II by 48% and to FFA by 38%. We conclude that TRPC6 and reverse-mode NCX may be important Ca2+ entry pathways in afferent arterioles.
Collapse
|
70
|
Ng LC, Kyle BD, Lennox AR, Shen XM, Hatton WJ, Hume JR. Cell culture alters Ca2+ entry pathways activated by store-depletion or hypoxia in canine pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2007; 294:C313-23. [PMID: 17977940 DOI: 10.1152/ajpcell.00258.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that, in acutely dispersed canine pulmonary artery smooth muscle cells (PASMCs), depletion of both functionally independent inositol 1,4,5-trisphosphate (IP(3))- and ryanodine-sensitive Ca(2+) stores activates capacitative Ca(2+) entry (CCE). The present study aimed to determine if cell culture modifies intracellular Ca(2+) stores and alters Ca(2+) entry pathways caused by store depletion and hypoxia in canine PASMCs. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured in fura 2-loaded cells. Mn(2+) quench of fura 2 signal was performed to study divalent cation entry, and the effects of hypoxia were examined under oxygen tension of 15-18 mmHg. In acutely isolated PASMCs, depletion of IP(3)-sensitive Ca(2+) stores with cyclopiazonic acid (CPA) did not affect initial caffeine-induced intracellular Ca(2+) transients but abolished 5-HT-induced Ca(2+) transients. In contrast, CPA significantly reduced caffeine- and 5-HT-induced Ca(2+) transients in cultured PASMCs. In cultured PASMCs, store depletion or hypoxia caused a transient followed by a sustained rise in [Ca(2+)](i). The transient rise in [Ca(2+)](i) was partially inhibited by nifedipine, whereas the nifedipine-insensitive transient rise in [Ca(2+)](i) was inhibited by KB-R7943, a selective inhibitor of reverse mode Na(+)/Ca(2+) exchanger (NCX). The nifedipine-insensitive sustained rise in [Ca(2+)](i) was inhibited by SKF-96365, Ni(2+), La(3+), and Gd(3+). In addition, store depletion or hypoxia increased the rate of Mn(2+) quench of fura 2 fluorescence that was also inhibited by these blockers, exhibiting pharmacological properties characteristic of CCE. We conclude that cell culture of canine PASMCs reorganizes IP(3) and ryanodine receptors into a common intracellular Ca(2+) compartment, and depletion of this store or hypoxia activates voltage-operated Ca(2+) entry, reverse mode NCX, and CCE.
Collapse
Affiliation(s)
- Lih Chyuan Ng
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | |
Collapse
|