51
|
Rhoads RP, Baumgard LH, Suagee JK, Sanders SR. Nutritional interventions to alleviate the negative consequences of heat stress. Adv Nutr 2013; 4:267-76. [PMID: 23674792 PMCID: PMC3650495 DOI: 10.3945/an.112.003376] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism is a highly coordinated process, and preferred fuel(s) differ among tissues. The hierarchy of substrate use can be affected by physiological status and environmental factors including high ambient temperature. Unabated heat eventually overwhelms homeothermic mechanisms resulting in heat stress, which compromises animal health, farm animal production, and human performance. Various aspects of heat stress physiology have been extensively studied, yet a clear understanding of the metabolic changes occurring at the cellular, tissue, and whole-body levels in response to an environmental heat load remains ill-defined. For reasons not yet clarified, circulating nonesterified fatty acid levels are reduced during heat stress, even in the presence of elevated stress hormones (epinephrine, glucagon, and cortisol), and heat-stressed animals often have a blunted lipolytic response to catabolic signals. Either directly because of or in coordination with this, animals experiencing environmental hyperthermia exhibit a shift toward carbohydrate use. These metabolic alterations occur coincident with increased circulating basal and stimulated plasma insulin concentrations. Limited data indicate that proper insulin action is necessary to effectively mount a response to heat stress and minimize heat-induced damage. Consistent with this idea, nutritional interventions targeting increased insulin action may improve tolerance and productivity during heat stress. Further research is warranted to uncover the effects of heat on parameters associated with energy metabolism so that more appropriate and effective treatment methodologies can be designed.
Collapse
Affiliation(s)
- Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|
52
|
Sourbier C, Scroggins BT, Ratnayake R, Prince TL, Lee S, Lee MJ, Nagy PL, Lee YH, Trepel JB, Beutler JA, Linehan WM, Neckers L. Englerin A stimulates PKCθ to inhibit insulin signaling and to simultaneously activate HSF1: pharmacologically induced synthetic lethality. Cancer Cell 2013; 23:228-37. [PMID: 23352416 PMCID: PMC3574184 DOI: 10.1016/j.ccr.2012.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/19/2012] [Accepted: 12/18/2012] [Indexed: 12/31/2022]
Abstract
The natural product englerin A (EA) binds to and activates protein kinase C-θ (PKCθ). EA-dependent activation of PKCθ induces an insulin-resistant phenotype, limiting the access of tumor cells to glucose. At the same time, EA causes PKCθ-mediated phosphorylation and activation of the transcription factor heat shock factor 1, an inducer of glucose dependence. By promoting glucose addiction, while simultaneously starving cells of glucose, EA proves to be synthetically lethal to highly glycolytic tumors.
Collapse
Affiliation(s)
- Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Bradley T. Scroggins
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Ranjala Ratnayake
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Thomas L. Prince
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Sunmin Lee
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Min-Jung Lee
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | | | - Young H. Lee
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Jane B. Trepel
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
53
|
Rodrigues-Krause J, Krause M, O’Hagan C, De Vito G, Boreham C, Murphy C, Newsholme P, Colleran G. Divergence of intracellular and extracellular HSP72 in type 2 diabetes: does fat matter? Cell Stress Chaperones 2012; 17:293-302. [PMID: 22215518 PMCID: PMC3312959 DOI: 10.1007/s12192-011-0319-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022] Open
Affiliation(s)
- Josianne Rodrigues-Krause
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, Conway Institute, Dublin, Ireland
| | - Mauricio Krause
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Conway Institute, Dublin, Ireland
| | - C. O’Hagan
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Giuseppe De Vito
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Colin Murphy
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
| | - Philip Newsholme
- UCD School of Biomolecular and Biomedical Science, Conway Institute, Dublin, Ireland
- School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Gerard Colleran
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
| |
Collapse
|
54
|
Kondo T, Sasaki K, Matsuyama R, Morino-Koga S, Adachi H, Suico MA, Kawashima J, Motoshima H, Furukawa N, Kai H, Araki E. Hyperthermia with mild electrical stimulation protects pancreatic β-cells from cell stresses and apoptosis. Diabetes 2012; 61:838-47. [PMID: 22362176 PMCID: PMC3314363 DOI: 10.2337/db11-1098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Induction of heat shock protein (HSP) 72 improves metabolic profiles in diabetic model mice. However, its effect on pancreatic β-cells is not known. The current study investigated whether HSP72 induction can reduce β-cell stress signaling and apoptosis and preserve β-cell mass. MIN6 cells and db/db mice were sham-treated or treated with heat shock (HS) and mild electrical stimulation (MES) (HS+MES) to induce HSP72. Several cellular markers, metabolic parameters, and β-cell mass were evaluated. HS+MES treatment or HSP72 overexpression increased HSP72 protein levels and decreased tumor necrosis factor (TNF)-α-induced Jun NH(2)-terminal kinase (JNK) phosphorylation, endoplasmic reticulum (ER) stress, and proapoptotic signal in MIN6 cells. In db/db mice, HS+MES treatment for 12 weeks significantly improved insulin sensitivity and glucose homeostasis. Upon glucose challenge, a significant increase in insulin secretion was observed in vivo. Compared with sham treatment, levels of HSP72, insulin, pancreatic duodenal homeobox-1, GLUT2, and insulin receptor substrate-2 were upregulated in the pancreatic islets of HS+MES-treated mice, whereas JNK phosphorylation, nuclear translocation of forkhead box class O-1, and nuclear factor-κB p65 were reduced. Apoptotic signals, ER stress, and oxidative stress markers were attenuated. Thus, HSP72 induction by HS+MES treatment protects β-cells from apoptosis by attenuating JNK activation and cell stresses. HS+MES combination therapy may preserve pancreatic β-cell volume to ameliorate glucose homeostasis in diabetes.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazunari Sasaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Rina Matsuyama
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori Morino-Koga
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Kumamoto, Japan
| | - Hironori Adachi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Kumamoto, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Noboru Furukawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Corresponding author: Eiichi Araki,
| |
Collapse
|
55
|
Kavanagh K, Wylie AT, Chavanne TJ, Jorgensen MJ, Voruganti VS, Comuzzie AG, Kaplan JR, McCall CE, Kritchevsky SB. Aging does not reduce heat shock protein 70 in the absence of chronic insulin resistance. J Gerontol A Biol Sci Med Sci 2012; 67:1014-21. [PMID: 22403054 DOI: 10.1093/gerona/gls008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein (HSP)70 decreases with age. Often aging is associated with coincident insulin resistance and higher blood glucose levels, which also associate with lower HSP70. We aimed to understand how these factors interrelate through a series of experiments using vervet monkeys (Chlorocebus aethiops sabaeous). Monkeys (n = 284, 4-25 years) fed low-fat diets showed no association of muscle HSP70 with age (r = .04, p = .53), but levels were highly heritable. Insulin resistance was induced in vervet monkeys with high-fat diets, and muscle biopsies were taken after 0.3 or 6 years. HSP70 levels were significantly greater after 0.3 years (+72%, p < .05) but were significantly lower following 6 years of high-fat diet (-77%, p < .05). Associations with glucose also switched from being positive (r = .44, p = .03) to strikingly negative (r = -.84, p < .001) with increasing insulin resistance. In conclusion, a low-fat diet may preserve tissue HSP70 and health with aging, whereas high-fat diets, insulin resistance, and genetic factors may be more important than age for determining HSP70 levels.
Collapse
Affiliation(s)
- Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Ma H, Gong H, Chen Z, Liang Y, Yuan J, Zhang G, Wu J, Ye Y, Yang C, Nakai A, Komuro I, Ge J, Zou Y. Association of Stat3 with HSF1 plays a critical role in G-CSF-induced cardio-protection against ischemia/reperfusion injury. J Mol Cell Cardiol 2012; 52:1282-90. [PMID: 22426029 DOI: 10.1016/j.yjmcc.2012.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 11/25/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been shown to be cardio-protective against ischemia through activating Jak2/Stat3 pathway, however, the mechanism is unclear. Heat shock transcription factor 1 (HSF1), a definite endogenous protective protein in cardiomyocytes, may interact with Stat family under stress conditions. We hypothesized that G-CSF could induce cardio-protection against ischemia/reperfusion (I/R) through association of HSF1 with Stat3. To test the hypothesis, we built cardiac I/R injury model with HSF1 knockout (KO) mice and wild type (WT) mice by occlusion of the left anterior descending (LAD) coronary artery for 30min and subsequent release of the occlusion for 24h. These mice were administered with G-CSF (100μg/kg/day) or vehicle subcutaneously for 3days before surgery. As expected, G-CSF induced significant cardio-protections against I/R injury, characterized by higher ejection fraction (EF%), lower left ventricular end diastolic pressure (LVEDP), increased dp/dt value and decreased infarct area as compared with the vehicle treatment in WT mice. In HSF1-KO mice, however, these cardio-protections induced by G-CSF were greatly attenuated. Inhibition of oxidative stress-induced cardiomyocyte apoptosis by G-CSF also disappeared due to the deficiency of HSF1 in vitro and in vivo. Furthermore, G-CSF increased the phosphorylation and the association of Stat3 with HSF1, which enhanced transcriptional activity of HSF1. Inhibition of either Stat3 or HSF1 by pharmacological agents suppressed G-CSF-induced association of the two proteins and anti-apoptotic effect on cardiomyocytes. Our data suggest that G-CSF stimulates phosphorylation and association of Stat3 with HSF1 and therefore enhances transcriptional activity of HSF1, leading to the cardio-protection against I/R injury.
Collapse
Affiliation(s)
- Hong Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|