51
|
Suttle MM, Harvima IT. Mast cell chymase in experimentally induced psoriasis. J Dermatol 2015; 43:693-6. [DOI: 10.1111/1346-8138.13234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/21/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Mireille-Maria Suttle
- Department of Dermatology; University of Eastern Finland and Kuopio University Hospital; Kuopio Finland
| | - Ilkka T. Harvima
- Department of Dermatology; University of Eastern Finland and Kuopio University Hospital; Kuopio Finland
| |
Collapse
|
52
|
Ribatti D, Crivellato E. The role of mast cell in tissue morphogenesis. Thymus, duodenum, and mammary gland as examples. Exp Cell Res 2015; 341:105-109. [PMID: 26615957 DOI: 10.1016/j.yexcr.2015.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 11/29/2022]
Abstract
Mast cells (MCs) are strategically located at host/environment interfaces like skin, airways, and gastro-intestinal and uro-genital tracts. MCs also populate connective tissues in association with blood and lymphatic vessels and nerves. MCs are absent in avascular tissues, such as mineralized bone, cartilage, and cornea. MCs have various functions and different functional subsets of MCs are encountered in different tissues. However, we do not' know exactly what is the physiological function of MC. Most of these functions are not essential for life, as various MC-deficient strains of mice and rats seems to have normal life spans. In this review article, we have reported and discussed the literature data concerning the role of MCs in tissue morphogenesis, and in particular their role in the development of thymus, duodenum, and mammary gland.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| | - Enrico Crivellato
- Department of Experimental and Clinical Medicine, Section of Human Anatomy, University of Udine, Udine, Italy
| |
Collapse
|
53
|
Expression of Proteinase-activated Receptor-2 in the Esophageal Mucosa of Gastroesophageal Reflux Disease Patients. Appl Immunohistochem Mol Morphol 2015; 23:646-52. [DOI: 10.1097/pai.0000000000000130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
54
|
Li S, Guan J, Ge M, Huang P, Lin Y, Gan X. Intestinal mucosal injury induced by tryptase-activated protease-activated receptor 2 requires β-arrestin-2 in vitro. Mol Med Rep 2015; 12:7181-7. [PMID: 26398586 DOI: 10.3892/mmr.2015.4325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 09/01/2015] [Indexed: 11/06/2022] Open
Abstract
Tryptase exacerbates intestinal ischemia-reperfusion injury, however, the direct role of tryptase in intestinal mucosal injury and the underlying mechanism remains largely unknown. Protease-activated receptor 2 (PAR‑2), commonly activated by tryptase, interacts with various adaptor proteins, including β‑arrestin‑2. The present study aimed to determine whether tryptase is capable of inducing intestinal mucosal cell injury via PAR‑2 activation and to define the role of β‑arrestin‑2 in the process of injury. The IEC‑6 rat intestinal epithelial cell line was challenged by tryptase stimulation. Cell viability, lactate dehydrogenase (LDH) activity and apoptosis were analyzed to determine the severity of cell injury. Injury was also evaluated following treatments with specific PAR‑2 and extracellular signal‑related kinases (ERK) inhibitors, and knockdown of β‑arrestin‑2. PAR‑2, ERK and β‑arrestin‑2 protein expression levels were evaluated. Tryptase treatment (100 and 1,000 ng/ml) resulted in IEC‑6 cell injury, as demonstrated by significant reductions in cell viability, accompanied by concomitant increases in LDH activity and levels of cleaved caspase‑3 protein expression. Furthermore, tryptase treatment led to a marked increase in PAR‑2 and phosphorylated‑ERK expression, and exposure to specific PAR‑2 and ERK inhibitors eliminated the changes induced by tryptase. Knockdown of β‑arrestin‑2 blocked tryptase‑mediated cell injury, whereas tryptase exerted no influence on β‑arrestin‑2 expression in IEC‑6 cells. These data indicate that tryptase may directly damage IEC‑6 cells via PAR-2 and the downstream activation of ERK, and demonstrate that the signaling pathway requires β-arrestin-2.
Collapse
Affiliation(s)
- Shun Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianqiang Guan
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Pinjie Huang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yiquan Lin
- Department of Anesthesiology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaoliang Gan
- Department of Anesthesiology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
55
|
Gu GS, Ren JA, Li GW, Yuan YJ, Li N, Li JS. Cordyceps sinensis preserves intestinal mucosal barrier and may be an adjunct therapy in endotoxin-induced sepsis rat model: a pilot study. Int J Clin Exp Med 2015; 8:7333-41. [PMID: 26221273 PMCID: PMC4509218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/06/2015] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cordyceps sinensis (C. sinensis), a traditional Chinese medicine, exhibits various pharmacological activities such as reparative, antioxidant, and apoptosis inhibitory effects. Intestinal barrier dysfunction plays a vital role in the progression of sepsis. We aimed to explore the effect of C. sinensis on the gut barrier and evaluate its efficacy in sepsis. METHODS A murine model of gut barrier dysfunction was created by intraperitoneal injection of endotoxin. C. sinensis or saline was administered orally after the induction of sepsis. Alterations of intestinal barrier were evaluated and compared in terms of epithelial cell apoptosis, proliferation index (PI), intercellular tight junction (TJ) and proliferating cell nuclear antigen (PCNA). RESULTS C. sinensis significantly decreased the percentage of apoptotic cells and promoted mucosal cells proliferation indicated by enhanced PI and PCNA expression in the intestinal mucosa compared to control group. The TJs between epithelial cells which were disrupted in septic rats were also restored by treatment of C. sinensis. In survival studies, C. sinensis was demonstrated to confer a protection against the lethal effect of sepsis. CONCLUSION These results suggest that C. sinensis has gut barrier-protection effect in endotoxin-induced sepsis by promoting the proliferation and inhibiting the apoptosis of intestinal mucosal cells, as well as restoring the TJs of intestinal mucosa. C. sinensis may have the potential to be a useful adjunct therapy for sepsis.
Collapse
Affiliation(s)
- Guo-Sheng Gu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University Nanjing, P.R. China
| | - Jian-An Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University Nanjing, P.R. China
| | - Guan-Wei Li
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University Nanjing, P.R. China
| | - Yu-Jie Yuan
- Department of Gastrointestinal-Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University Guangzhou, P.R. China
| | - Ning Li
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University Nanjing, P.R. China
| | - Jie-Shou Li
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University Nanjing, P.R. China
| |
Collapse
|
56
|
Abstract
Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.
Collapse
|
57
|
Wang X, Kulka M. n-3 Polyunsaturated fatty acids and mast cell activation. J Leukoc Biol 2015; 97:859-871. [DOI: 10.1189/jlb.2ru0814-388r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 01/18/2023] Open
|
58
|
Abstract
Protease-activated receptors (PARs) have been implicated in a variety of physiological functions, as well as somatosensation and particularly itch and pain. Considerable attention has focused on PARs following the finding they are upregulated in the skin of atopic dermatitis patients. The present review focuses on recent studies showing that PARs are critically involved in itch and sensitization of itch. PARs are expressed by diverse cell types including primary sensory neurons, keratinocytes, and immune cells and are activated by proteases that expose a tethered ligand. Endogenous proteases are also released from diverse cell types including keratinocytes and immune cells. Exogenous proteases released from certain plants and insects contacting the skin can also induce itch. Increased levels of proteases in the skin contribute to inflammation that is often accompanied by chronic itch which is not predominantly mediated by histamine. The neural pathway signaling itch induced by activation of PARs is distinct from that mediating histamine-induced itch. In addition, there is evidence that PARs play an important role in sensitization of itch signaling under conditions of chronic itch. These recent findings suggest that PARs and other molecules involved in the itch-signaling pathway are good targets to develop novel treatments for most types of chronic itch that are poorly treated with antihistamines.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Department of Dermatology, Anatomy and Cell Biology/Temple Itch Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
59
|
Junkins RD, Carrigan SO, Wu Z, Stadnyk AW, Cowley E, Issekutz T, Berman J, Lin TJ. Mast Cells Protect against Pseudomonas aeruginosa–Induced Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2310-21. [DOI: 10.1016/j.ajpath.2014.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/07/2014] [Accepted: 05/12/2014] [Indexed: 01/09/2023]
|
60
|
|
61
|
Eum SY, Jaraki D, Bertrand L, András IE, Toborek M. Disruption of epithelial barrier by quorum-sensing N-3-(oxododecanoyl)-homoserine lactone is mediated by matrix metalloproteinases. Am J Physiol Gastrointest Liver Physiol 2014; 306:G992-G1001. [PMID: 24742991 PMCID: PMC4042118 DOI: 10.1152/ajpgi.00016.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal epithelium forms a selective barrier maintained by tight junctions (TJs) and separating the luminal environment from the submucosal tissues. N-acylhomoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence homeostasis of the host intestinal epithelium. In the present study, we evaluated the regulatory mechanisms affecting the impact of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on barrier function of human intestinal epithelial Caco-2 cells. Treatment with C12-HSL, but not with C4-HSL, perturbed Caco-2 barrier function; the effect was associated with decreased levels of the TJ proteins occludin and tricellulin and their delocalization from the TJs. C12-HSL also induced matrix metalloprotease (MMP)-2 and MMP-3 activation via lipid raft- and protease-activated receptor (PAR)-dependent signaling. Pretreatment with lipid raft disruptors, PAR antagonists, or MMP inhibitors restored the C12-HSL-induced loss of the TJ proteins and increased permeability of Caco-2 cell monolayers. These results indicate that PAR/lipid raft-dependent MMP-2 and -3 activation followed by degradation of occludin and tricellulin are involved in C12-HSL-induced alterations of epithelial paracellular barrier functions.
Collapse
Affiliation(s)
- Sung Yong Eum
- 1Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Dima Jaraki
- 1Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Luc Bertrand
- 1Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Ibolya E. András
- 1Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
62
|
Abstract
PURPOSE OF REVIEW To summarize the recent knowledge regarding intestinal proteases and the gut barrier. RECENT FINDINGS It is now well established that intestinal proteases, such as matrix metalloproteinase (MMP)-1, MMP-3, MMP-10 and MMP-12, are key players in the development of ulcers in inflammatory bowel disease, have direct effects on epithelial barrier function and are involved in epithelial restitution. However, more recent work has suggested that the membrane-anchored epithelial cell serine protease matriptase is critical in maintaining the gut barrier, and roles have also been described for elastase, MMP-13, gelatinases, mast cell proteases and proteases derived from parasites and gut bacteria. Interestingly, epithelial proteases often co-localize with epithelial adherens junctions, and nonepithelial-derived proteases have junctional proteins as targets. SUMMARY The role of proteases in controlling normal barrier function in the gut is now becoming very clear, to go alongside their role in intestinal inflammation.
Collapse
|
63
|
Zhang S, Liu Z, Heldsinger A, Owyang C, Yu S. Intraluminal acid activates esophageal nodose C fibers after mast cell activation. Am J Physiol Gastrointest Liver Physiol 2014; 306:G200-7. [PMID: 24264049 PMCID: PMC3920110 DOI: 10.1152/ajpgi.00142.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acid reflux in the esophagus can induce esophageal painful sensations such as heartburn and noncardiac chest pain. The mechanisms underlying acid-induced esophageal nociception are not clearly understood. In our previous studies, we characterized esophageal vagal nociceptive afferents and defined their responses to noxious mechanical and chemical stimulation. In the present study, we aim to determine their responses to intraluminal acid infusion. Extracellular single-unit recordings were performed in nodose ganglion neurons with intact nerve endings in the esophagus using ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal intraluminal acid perfusion were compared in naive and ovalbumin (OVA)-challenged animals, followed by measurements of transepithelial electrical resistance (TEER) and the expression of tight junction proteins (zona occludens-1 and occludin). In naive guinea pigs, intraluminal infusion with either acid (pH = 2-3) or capsaicin did not evoke an action potential discharge in esophageal nodose C fibers. In OVA-sensitized animals, following esophageal mast cell activation by in vivo OVA inhalation, intraluminal acid infusion for about 20 min started to evoke action potential discharges. This effect is further confirmed by selective mast cell activation using in vitro tissue OVA challenge in esophageal-vagal preparations. OVA inhalation leads to decreased TEER and zona occludens-1 expression, suggesting an impaired esophageal epithelial barrier function after mast cell activation. These data for the first time provide direct evidence of intraluminal acid-induced activation of esophageal nociceptive C fibers and suggest that mast cell activation may make esophageal epithelium more permeable to acid, which subsequently may increase esophageal vagal nociceptive C fiber activation.
Collapse
Affiliation(s)
- Shizhong Zhang
- 1Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Zhenyu Liu
- 2Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea Heldsinger
- 1Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Chung Owyang
- 1Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Shaoyong Yu
- 2Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
64
|
Kurashima Y, Goto Y, Kiyono H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur J Immunol 2013; 43:3108-15. [PMID: 24414823 DOI: 10.1002/eji.201343782] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Yosuke Kurashima
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan; Division of Infectious Genetics, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
65
|
Nabe T, Kijitani Y, Kitagawa Y, Sakano E, Ueno T, Fujii M, Nakao S, Sakai M, Takai S. Involvement of chymase in allergic conjunctivitis of guinea pigs. Exp Eye Res 2013; 113:74-9. [PMID: 23726880 DOI: 10.1016/j.exer.2013.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 11/18/2022]
Abstract
It has been reported that chymase activity was increased in allergic conjunctivitis patients and this activity was correlated with the severity of the disease. However, the precise roles of chymase in allergic conjunctivitis are unclear, and whether chymase inhibitors are effective for allergic conjunctivitis has not been reported even in experimental animal models. In this study, the roles of chymase in the pathogenesis were evaluated using a selective chymase inhibitor, ONO-WH-236, in a guinea pig model of allergic conjunctivitis induced by cedar pollen. Sensitized guinea pigs were challenged by the pollen, followed by assessing redness and edema in the conjuntiva, and counting the frequency of eye scratching as an itch-associated response. Treatment with the ONO-WH-236 (40 and 80 mg/kg, p.o.) dose-dependently inhibited the induction of redness, edema and scratching behavior. An anti-histaminic drug, ketotifen (3 mg/kg, p.o.), also significantly inhibited conjunctivitis symptoms. Chymase activity was increased in ophthalmic lavage fluid immediately after the pollen challenge. The increase in chymase activity was inhibited by in vivo treatment with ONO-WH-236. Interestingly, increased histamine in the ophthalmic lavage fluid immediately after the challenge was also inhibited by the chymase inhibitor. Administration of human recombinant chymase by eye dropping (0.09 and 0.9 μg/eye) dose-dependently induced scratching behavior, which was inhibited by not only ONO-WH-236 but also ketotifen; however, chymase administration induced only weak redness in the conjunctiva, which was resistant to treatment with anti-histaminic drugs. In conclusion, it was suggested that chymase was released from mast cells after antigen challenge, followed by the induction of conjunctivitis symptoms through histamine release from mast cells. Thus, chymase could be a potential target for pharmacotherapy for allergic conjunctivitis.
Collapse
Affiliation(s)
- Takeshi Nabe
- Department of Pharmacology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto 607-8414, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|