Myers RD, Simpson CW, Higgins D, Nattermann RA, Rice JC, Redgrave P, Metcalf G. Hypothalamic Na+ and Ca++ ions and temperature set-point: new mechanisms of action of a central or peripheral thermal challenge and intrahypothalamic 5-HT, NE, PGEi and pyrogen.
Brain Res Bull 1976;
1:301-27. [PMID:
974810 DOI:
10.1016/0361-9230(76)90102-7]
[Citation(s) in RCA: 48] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effects of changes in ambient and central temperature, amines, PGEu and pyrogen were investigated with respect to the mechanism of Na+-Ca++ ratio in the posterior hypothalamus of the unrestrained cat. Guide tubes were implanted bilaterally above the posterior hypothalamic area of 23 cats so as to accommodate push-pull cannulae. After a Na+ or Ca++ sensitive site was identified by perfusion at 50 mul/min of an artificial CSF containing 10.4 mM excess Ca++ ions or 13.6 mM excess Na+ ions, several types of experiments were undertaken with the results summarized as follows: if the cat was exposed to a cold or warm environmental temperature as the posterior hypothalamus was perfused with excess cation, the typical hypothermia was produced by Ca++ and hyperthermia by Na+ ions. However, if the cat was exposed to peripheral cooling or warming 30 min prior to the perfusion, the fall or rise produced by Ca++ or Na+ was attenuated or prevented. In other experiments, 1.0 muCi 45Ca++ was injected in the ion sensitive site in the posterior hypothalamus to label stores of the cation. Raising of ambient temperature caused a retention of 45Ca++ in this hypothalmic area, whereas a cold environmental temperature enhanced the efflux of 45Ca++ at the same perfusion site. The magnitude of change in 45Ca++ efflux depended upon the intensity of the thermal challenge. Similarly, warming of the anterior hypothalmic, preoptic area by means of implanted thermodes caused an immediate diminution in 45Ca++ efflux in the posterior hypothalamus, whereas cooling of this anterior region augmented the extrusion of 45Ca++ ions from the posterior area. When substances which produce a temperature change were applied to the same thermosensitive zone, the direction of shift in 45Ca++ flux in the posterior area corresponded to the signal for heat production or heat loss. That is, the microinjection of 5-HT, PGE1 or Salmonella typhosa into the anterior hypothalamus enhanced the efflux of 45Ca++ in the posterior hypothalamus as hyperthermia developed, whereas a similar microinjection of norepinephrine reduced the 45Ca++ output from the same sites. Finally, locally anesthetizing the cells of the anterior hypothalamus by the nerve blocker, procaine, prevented the cold and heat-induced 45Ca++ eflux and retention, respectively. These results suggest that if the Na+-Ca++ ratio in the posterior hypothalamus establishes and maintains the set-point for body temperature of 37 degrees -38 degrees C, the mechanism of lability of Ca++ through changes in binding characteristics, transport, or metabolism of the cation serves two purposes: (1) the active defense of the set-point temperature through gradations in ion shifts; and (2) the upward or downward change in set-point value, pathological or normal, triggered by virtue of impulses relayed from the anterior hypothalamus.
Collapse