51
|
Su J, Yin LP, Zhang X, Li BB, Liu L, Li H. Chronic allograft nephropathy in rats is improved by the intervention of rhein. Transplant Proc 2014; 45:2546-52. [PMID: 23953579 DOI: 10.1016/j.transproceed.2013.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/15/2013] [Accepted: 03/21/2013] [Indexed: 01/14/2023]
Abstract
AIM In this study, we investigated the therapeutic efficacy and potential mechanisms of rhein to mitigate chronic allograft nephropathy (CAN) in rats. MATERIALS AND METHODS Fisher rat donors and Lewis rat recipients were used to establish the CAN model. Thirty rats with transplanted kidneys were randomly divided into two groups: 16 untreated and 14 rhein = treated rats. Five Lewis rat controls underwent removal of their right kidneys. The Intervention group was administered rhein oral solution (100 mg kg(-1) d(-1)) by gavage after transplantation. The untreated and control groups were given 0.5% sodium carboxymethyl cellulose. Blood and urine samples were collected at 4, 8, and 16 weeks to examine renal function and total urine protein. Half of the rats in each group were sacrifice at 8 or 16 weeks to examine renal pathology. Immunohistochemical examination and real-time polymerase chain reaction of renal tissues were performed to detect expressions of transforming growth-β1(TGF-β1), hepatic growth factor (HGF), bone morphogenetic protein 7 (BMP7), frobronectin, and collgen IV. RESULTS Rhein improved renal function and significantly reduced renal fibrosis and interstitial inflammation. The levels of BMP7 and HGF were significantly elevated in the renal tissues of the rhein intervention group. In the meantime, fibronectin and collagen IV were decreased in the extracellular matrix. The expression of TGF-β1 was similar between these two groups. CONCLUSION Rhein improved renal function and reduced renal fibrosis and interstitial inflammation by inducing production of HGF and BMP7.
Collapse
Affiliation(s)
- J Su
- Department of Urology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
52
|
Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA. Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol 2014; 29:553-64. [PMID: 24005792 PMCID: PMC3944192 DOI: 10.1007/s00467-013-2597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be "reprogrammed" to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eric D. de Groh
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
53
|
Io K, Nishino T, Obata Y, Kitamura M, Koji T, Kohno S. SAHA Suppresses Peritoneal Fibrosis in Mice. Perit Dial Int 2014; 35:246-58. [PMID: 24584598 DOI: 10.3747/pdi.2013.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/07/2013] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Long-term peritoneal dialysis causes peritoneal fibrosis in submesothelial areas. However, the mechanism of peritoneal fibrosis is unclear. Epigenetics is the mechanism to induce heritable changes without any changes in DNA sequences. Among epigenetic modifications, histone acetylation leads to the transcriptional activation of genes. Recent studies indicate that histone acetylation is involved in the progression of fibrosis. Therefore, we examined the effect of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on the progression of peritoneal fibrosis in mice. METHODS Peritoneal fibrosis was induced by the injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. SAHA, or a dimethylsulfoxide and saline vehicle, was administered subcutaneously every day from the start of the CG injections for 3 weeks. Morphologic peritoneal changes were assessed by Masson's trichrome staining, and fibrosis-associated factors were assessed by immunohistochemistry. RESULTS In CG-injected mice, a marked thickening of the submesothelial compact zone was observed. In contrast, the administration of SAHA suppressed the progression of submesothelial thickening and type III collagen accumulation in CG-injected mice. The numbers of fibroblast-specific protein-1-positive cells and α-smooth muscle actin α-positive cells were significantly decreased in the CG + SAHA group compared to that of the CG group. The level of histone acetylation was reduced in the peritoneum of the CG group, whereas it was increased in the CG + SAHA group. CONCLUSIONS Our results indicate that SAHA can suppress peritoneal thickening and fibrosis in mice through up-regulation of histone acetylation. These results suggest that SAHA may have therapeutic potential for treating peritoneal fibrosis.
Collapse
Affiliation(s)
- Kumiko Io
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Tomoya Nishino
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoko Obata
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Mineaki Kitamura
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| |
Collapse
|
54
|
Tampe D, Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 2014; 10:226-37. [DOI: 10.1038/nrneph.2014.14] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
55
|
Tampe B, Tampe D, Müller CA, Sugimoto H, LeBleu V, Xu X, Müller GA, Zeisberg EM, Kalluri R, Zeisberg M. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J Am Soc Nephrol 2014; 25:905-12. [PMID: 24480825 DOI: 10.1681/asn.2013070723] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Methylation of CpG island promoters is an epigenetic event that can effectively silence transcription over multiple cell generations. Hypermethylation of the Rasal1 promoter contributes to activation of fibroblasts and progression of kidney fibrosis. Here, we explored whether such causative hypermethylation could be reversed through endogenous mechanisms and whether such reversal of hypermethylation is a constituent of the antifibrotic activity of bone morphogenic protein 7 (BMP7). We show that successful inhibition of experimental kidney fibrosis through administration of BMP7 associates with normalization of Rasal1 promoter hypermethylation. Furthermore, this reversal of pathologic hypermethylation was achieved specifically through Tet3-mediated hydroxymethylation. Collectively, our findings reveal a new mechanism that may be exploited to facilitate therapeutic DNA demethylation to reverse kidney fibrosis.
Collapse
Affiliation(s)
- Björn Tampe
- Departments of Nephrology and Rheumatology, and
| | | | - Claudia A Müller
- Departments of Nephrology and Rheumatology, and Department of Transplantation, Immunology and Immunohematology, Tübingen University Medical Center, Eberhard Karls University, Tübingen, Germany
| | - Hikaru Sugimoto
- Department of Cancer Biology and the Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Valerie LeBleu
- Department of Cancer Biology and the Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Xingbo Xu
- Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | | | - Elisabeth M Zeisberg
- Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Raghu Kalluri
- Department of Cancer Biology and the Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | | |
Collapse
|
56
|
Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol 2013; 46:765-76. [PMID: 24072452 DOI: 10.1007/s11255-013-0520-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/15/2013] [Indexed: 01/10/2023]
Abstract
Unilateral ureteral obstruction is a popular experimental model of renal injury. However, the study of the kidney response to urinary tract obstruction is only one of several advantages of this model. Unilateral ureteral obstruction causes subacute renal injury characterized by tubular cell injury, interstitial inflammation and fibrosis. For this reason, it serves as a model both of irreversible acute kidney injury and of events taking place during human chronic kidney disease. Being a unilateral disease, it is not useful to study changes in global kidney function, but has the advantage of a low mortality and the availability of an internal control (the non-obstructed kidney). Experimental unilateral ureteral obstruction has illustrated the molecular mechanisms of apoptosis, inflammation and fibrosis, all three key processes in kidney injury of any cause, thus providing information beyond obstruction. Recently this model has supported key concepts on the role in kidney fibrosis of epithelial-mesenchymal transition, tubular epithelial cell G2/M arrest, the anti-aging hormone Klotho and renal innervation. We now review the experimental model and its contribution to identifying novel therapeutic targets in kidney injury and fibrosis, independently of the noxa.
Collapse
|
57
|
Manson SR, Song JB, Hruska KA, Austin PF. HDAC dependent transcriptional repression of Bmp-7 potentiates TGF-β mediated renal fibrosis in obstructive uropathy. J Urol 2013; 191:242-52. [PMID: 23820056 DOI: 10.1016/j.juro.2013.06.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE Recombinant BMP-7 inhibits the pathogenesis of renal injury in response to various stimuli. However, little is known about the molecular regulation of endogenous BMP-7 and its renal protective functions. We examined transcriptional regulation of Bmp-7 and its role in the pathogenesis of renal injury resulting from urinary tract dysfunction. MATERIALS AND METHODS Obstruction induced renal injury was modeled in vivo in mice by unilateral ureteral obstruction and in vitro in primary kidney cells by treatment with transforming growth factor-β, a profibrotic cytokine that is increased in the obstructed kidney. RESULTS Unilateral ureteral obstruction resulted in the loss of BMP-7 expression in conjunction with histone deacetylation and transcriptional repression of the Bmp-7 promoter. The histone deacetylase inhibitor trichostatin A stimulated Bmp-7 expression in primary kidney cells. Trichostatin A also inhibited the expression of transforming growth factor-β dependent profibrotic genes in a manner that depended on BMP receptor signaling. These findings extended to the obstructed kidney in vivo, in which trichostatin A treatment restored the expression of Bmp-7 along with BMP-7 mediated suppression of transforming growth factor-β dependent signaling pathways. Finally, trichostatin A stimulated activation of the BMP-7 pathway the ameliorated obstruction induced renal injury by preventing disruption of the renal architecture and the development of renal fibrosis. CONCLUSIONS These findings show that histone deacetylase dependent repression of Bmp-7 transcription is a critical event during the pathogenesis of renal injury in obstructive uropathy. Accordingly, treatment with histone deacetylase inhibitors represents a potentially effective strategy to restore BMP-7 expression and its renal protective functions during treatment of obstructive uropathy.
Collapse
Affiliation(s)
- Scott R Manson
- Division of Urology, Department of Surgery and Division of Pediatric Nephrology, Departments of Medicine and Pediatrics (KAH), Washington University, St. Louis Children's Hospital, St. Louis, Missouri
| | - Joseph B Song
- Division of Urology, Department of Surgery and Division of Pediatric Nephrology, Departments of Medicine and Pediatrics (KAH), Washington University, St. Louis Children's Hospital, St. Louis, Missouri
| | - Keith A Hruska
- Division of Urology, Department of Surgery and Division of Pediatric Nephrology, Departments of Medicine and Pediatrics (KAH), Washington University, St. Louis Children's Hospital, St. Louis, Missouri
| | - Paul F Austin
- Division of Urology, Department of Surgery and Division of Pediatric Nephrology, Departments of Medicine and Pediatrics (KAH), Washington University, St. Louis Children's Hospital, St. Louis, Missouri.
| |
Collapse
|
58
|
Huang H, Huang H, Li Y, Liu M, Shi Y, Chi Y, Zhang T. Gremlin induces cell proliferation and extra cellular matrix accumulation in mouse mesangial cells exposed to high glucose via the ERK1/2 pathway. BMC Nephrol 2013; 14:33. [PMID: 23394397 PMCID: PMC3572428 DOI: 10.1186/1471-2369-14-33] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Gremlin, a bone morphogenetic protein antagonist, plays an important role in the pathogenesis of diabetic nephropathy (DN). However, the specific molecular mechanism underlying Gremlin’s involvement in DN has not been fully elucidated. In the present study, we investigated the role of Gremlin on cell proliferation and accumulation of extracellular matrix (ECM) in mouse mesangial cells (MMCs), and explored the relationship between Gremlin and the ERK1/2 pathway. Methods To determine expression of Gremlin in MMCs after high glucose (HG) exposure, Gremlin mRNA and protein expression were evaluated using real-time polymerase chain reaction and western blot analysis, respectively. To determine the role of Gremlin on cell proliferation and accumulation of ECM, western blot analysis was used to assess expression of pERK1/2, transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Cell proliferation was examined by bromodeoxyuridine (BrdU) ELISA, and accumulation of collagen IV was measured using a radioimmunoassay. This enabled the relationship between Gremlin and ERK1/2 pathway activation to be investigated. Results HG exposure induced expression of Gremlin, which peaked 12 h after HG exposure. HG exposure alone or transfection of normal-glucose (NG) exposed MMCs with Gremlin plasmid (NG + P) increased cell proliferation. Transfection with Gremlin plasmid into MMCs previously exposed to HG (HG + P) significantly increased this HG-induced phenomenon. HG and NG + P conditions up-regulated protein levels of TGF-β1, CTGF and collagen IV accumulation, while HG + P significantly increased levels of these further. Inhibition of Gremlin with Gremlin siRNA plasmid reversed the HG-induced phenomena. These data indicate that Gremlin can induce cell proliferation and accumulation of ECM in MMCs. HG also induced the activation of the ERK1/2 pathway, which peaked 24 h after HG exposure. HG and NG + P conditions induced overexpression of pERK1/2, whilst HG + P significantly induced levels further. Inhibition of Gremlin by Gremlin siRNA plasmid reversed the HG-induced phenomena. This indicates Gremlin can induce activation of the ERK1/2 pathway in MMCs. Conclusion Culture of MMCs in the presence of HG up-regulates expression of Gremlin. Gremlin induces cell proliferation and accumulation of ECM in MMCs. and enhances activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Haixia Huang
- Department of Nephropathy, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | | | | | | | | | | | | |
Collapse
|
59
|
Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 2013; 304:C216-25. [PMID: 23255577 PMCID: PMC3566435 DOI: 10.1152/ajpcell.00328.2012] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022]
Abstract
Fibrosis is a pathological scarring process that leads to destruction of organ architecture and impairment of organ function. Chronic loss of organ function in most organs, including bone marrow, heart, intestine, kidney, liver, lung, and skin, is associated with fibrosis, contributing to an estimated one third of natural deaths worldwide. Effective therapies to prevent or to even reverse existing fibrotic lesions are not yet available in any organ. There is hope that an understanding of common fibrosis pathways will lead to development of antifibrotic therapies that are effective in all of these tissues in the future. Here we review common and organ-specific pathways of tissue fibrosis.
Collapse
Affiliation(s)
- Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany.
| | | |
Collapse
|
60
|
Abstract
TGF-β (transforming growth factor-β) and BMP-7 (bone morphogenetic protein-7), two key members in the TGF-β superfamily, play important but diverse roles in CKDs (chronic kidney diseases). Both TGF-β and BMP-7 share similar downstream Smad signalling pathways, but counter-regulate each other to maintain the balance of their biological activities. During renal injury in CKDs, this balance is significantly altered because TGF-β signalling is up-regulated by inducing TGF-β1 and activating Smad3, whereas BMP-7 and its downstream Smad1/5/8 are down-regulated. In the context of renal fibrosis, Smad3 is pathogenic, whereas Smad2 and Smad7 are renoprotective. However, this counter-balancing mechanism is also altered because TGF-β1 induces Smurf2, a ubiquitin E3-ligase, to target Smad7 as well as Smad2 for degradation. Thus overexpression of renal Smad7 restores the balance of TGF-β/Smad signalling and has therapeutic effect on CKDs. Recent studies also found that Smad3 mediated renal fibrosis by up-regulating miR-21 (where miR represents microRNA) and miR-192, but down-regulating miR-29 and miR-200 families. Therefore restoring miR-29/miR-200 or suppressing miR-21/miR-192 is able to treat progressive renal fibrosis. Furthermore, activation of TGF-β/Smad signalling inhibits renal BMP-7 expression and BMP/Smad signalling. On the other hand, overexpression of renal BMP-7 is capable of inhibiting TGF-β/Smad3 signalling and protects the kidney from TGF-β-mediated renal injury. This counter-regulation not only expands our understanding of the causes of renal injury, but also suggests the therapeutic potential by targeting TGF-β/Smad signalling or restoring BMP-7 in CKDs. Taken together, the current understanding of the distinct roles and mechanisms of TGF-β and BMP-7 in CKDs implies that targeting the TGF-β/Smad pathway or restoring BMP-7 signalling may represent novel and effective therapies for CKDs.
Collapse
|
61
|
Prunotto M, Budd DC, Gabbiani G, Meier M, Formentini I, Hartmann G, Pomposiello S, Moll S. Epithelial-mesenchymal crosstalk alteration in kidney fibrosis. J Pathol 2012; 228:131-47. [PMID: 22570261 DOI: 10.1002/path.4049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/19/2012] [Accepted: 04/26/2012] [Indexed: 02/06/2023]
Abstract
The incidence of chronic kidney diseases (CKD) is constantly rising, reaching epidemic proportions in the western world and leading to an enormous threat, even to modern health-care systems, in industrialized countries. Therapies of CKD have greatly improved following the introduction of drugs targeting the renin-angiotensin system (RAAS) but even this refined pharmacological approach has failed to stop progression to end-stage renal disease (ESRD) in many individuals. In vitro historical data and recent new findings have suggested that progression of renal fibrosis might occur as a result of an altered tubulo-interstitial microenvironment and, more specifically, as a result of an altered epithelial-mesenchymal crosstalk. Here we the review biological findings that support the hypothesis of an altered cellular crosstalk in an injured local tubulo-interstitial microenvironment leading to renal disease progression. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marco Prunotto
- CV and Metabolic DTA Department, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Gandhi NS, Mancera RL. Prediction of heparin binding sites in bone morphogenetic proteins (BMPs). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1374-81. [PMID: 22824487 DOI: 10.1016/j.bbapap.2012.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/04/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Heparin is a glycosaminoglycan known to bind bone morphogenetic proteins (BMPs) and the growth and differentiation factors (GDFs) and has strong and variable effects on BMP osteogenic activity. In this paper we report our predictions of the likely heparin binding sites for BMP-2 and 14. The N-terminal sequences upstream of TGF-β-type cysteine-knot domains in BMP-2, 7 and 14 contain the basic residues arginine and lysine, which are key components of the heparin/HS-binding sites, with these residues being highly non-conserved. Importantly, evolutionary conserved surfaces on the beta sheets are required for interactions with receptors and antagonists. Furthermore, BMP-2 has electropositive surfaces on two sides compared to BMP-7 and BMP-14. Molecular docking simulations suggest the presence of high and low affinity binding sites in dimeric BMP-2. Histidines were found to play a role in the interactions of BMP-2 with heparin; however, a pK(a) analysis suggests that histidines are likely not protonated. This is indicative that interactions of BMP-2 with heparin do not require acidic pH. Taken together, non-conserved amino acid residues in the N-terminus and residues protruding from the beta sheet (not overlapping with the receptor binding sites and the dimeric interface) and not C-terminal are found to be important for heparin-BMP interactions.
Collapse
Affiliation(s)
- Neha S Gandhi
- Curtin Health Innovation Research Institute, Western Australian Biomedical Research Institute, School of Biomedical Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | | |
Collapse
|
63
|
Prunotto M, Budd DC, Meier M, Formentini I, Hartmann G, Pomposiello S, Moll S. From acute injury to chronic disease: pathophysiological hypothesis of an epithelial/mesenchymal crosstalk alteration in CKD. Nephrol Dial Transplant 2012; 27 Suppl 3:iii43-50. [PMID: 22785113 DOI: 10.1093/ndt/gfs283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Observational clinical studies link acute kidney injury to chronic kidney disease (CKD) progression. The pathophysiological mechanisms that underlie this process are currently unknown but recently published papers suggest that tubular epithelial cells and interstitial mesenchymal cells emerge as a single unit, and their integrity alteration as a whole might lead to renal fibrosis and CKD. The present article reviews the biological findings supporting the hypothesis of an altered epithelial/mesenchymal crosstalk in fibrosis development and progression toward CKD.
Collapse
Affiliation(s)
- Marco Prunotto
- Department of CV & Metabolic DTA, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
64
|
García IM, Mazzei L, Benardón ME, Oliveros L, Cuello-Carrión FD, Gil Lorenzo A, Manucha W, Vallés PG. Caveolin-1-eNOS/Hsp70 interactions mediate rosuvastatin antifibrotic effects in neonatal obstructive nephropathy. Nitric Oxide 2012; 27:95-105. [PMID: 22683596 DOI: 10.1016/j.niox.2012.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022]
Abstract
Evidence suggesting that statins may contribute to renoprotection has been provided in experimental and clinical studies. Statins restore endothelial nitric oxide (NO) levels by mechanisms including up-regulation of endothelial NO synthase (eNOS) expression. Caveolin-1/eNOS interaction is essential preventing inadequate NO levels. Here, we evaluated whether caveolin-1 associated with eNOS/Hsp70 expression may be involved in the mechanism by which rosuvastatin exerts tubulointerstitial fibrosis protection in neonatal unilateral ureteral obstruction (UUO). Neonatal rats subjected to UUO within 2 days of birth and controls were treated daily with vehicle or rosuvastatin (10 mg/kg/day) by oral gavage for 14 days. After UUO, morphometric evaluation of interstitial fibrosis showed increased interstitial volume (Vv) associated with reduced NO availability, increased mRNA and protein caveolin-1 expression as well as downregulation eNOS and heat shock protein 70 (Hsp70) expression. Conversely, rosuvastatin treatment attenuated the fibrotic response linked to high NO availability, decreased mRNA and protein caveolin-1 expression, and marked upregulation of eNOS and Hsp70 expression at transcriptional and posttranscriptional levels. Moreover, protein-protein interactions determined by immunoprecipitation and by immunofluorescence co-localization have shown decreased caveolin-1/eNOS as well as increased Hsp70/eNOS interaction, after rosuvastatin treatment. A dose dependent effect of rosuvastatin on decreased caveolin-1 expression was shown in control cortex. In conclusion, our data suggest that statins contribute to the protection against tubulointerstitial fibrosis injury in neonatal early kidney obstruction by increased NO availability, involving interaction of up-regulated eNOS/Hsp70 and down-regulated caveolin-1.
Collapse
Affiliation(s)
- Isabel Mercedes García
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
65
|
García IM, Altamirano L, Mazzei L, Fornés M, Molina MN, Ferder L, Manucha W. Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy. Am J Physiol Renal Physiol 2012; 302:F1595-605. [PMID: 22492946 DOI: 10.1152/ajprenal.00617.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin D slows the progression of chronic kidney disease. Furthermore, activators of vitamin D receptors (VDR) have suppressant effects on the renin-angiotensin system, as well as anti-inflammatory and antifibrotic actions. This study aimed to evaluate the cytoprotective effects of paricalcitol, a VDR activator, at the mitochondrial level using an obstructive nephropathy model [unilateral ureteral obstruction (UUO)]. Rats subjected to UUO and controls were treated daily with vehicle or paricalcitol. The control group underwent a sham surgery. The treatment was done for 15 days (30 ng/kg). The following were determined: biochemical parameters; fibrosis; apoptosis; mitochondrial morphology; VDR, AT(1) receptor, and NADPH oxidase 4 expression; and NADPH oxidase activity (in total and in mitochondrial fractions from the renal cortex). VDR activation prevented fibrosis (20 ± 5 vs. 60 ± 10%) and the number of TUNEL-positive apoptotic cells (10 ± 3 vs. 25 ± 4) in UUO. Biochemical, histological, and molecular studies suggest mitochondrial injury. Electron microscopy revealed in UUO electronically luminous material in the nucleus. Some mitochondria were increased in size and contained dilated crests and larger than normal spaces in their interiors. These changes were not present with paricalcitol treatment. Additionally, high AT(1)-receptor mRNA and NADPH activity was reverted in mitochondrial fractions from obstructed paricalcitol-treated animals (0.58 ± 0.06 vs. 0.95 ± 0.05 relative densitometry units and 9,000 ± 800 vs. 15,000 ± 1,000 relative fluorescence units·μg protein(-1)·min(-1), respectively). These changes were consistent with an improvement in VDR expression (0.75 ± 0.05 vs. 0.35 ± 0.04 relative densitometry units). These results suggest that paricalcitol confers a protective effect and reveal, as well, a possible AT(1) receptor-dependent protective effect that occurs at the mitochondrial level.
Collapse
Affiliation(s)
- Isabel Mercedes García
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Bone morphogenetic protein (BMP) signaling in diseases is the subject of an overwhelming array of studies. BMPs are excellent targets for treatment of various clinical disorders. Several BMPs have already been shown to be clinically beneficial in the treatment of a variety of conditions, including BMP-2 and BMP-7 that have been approved for clinical application in nonunion bone fractures and spinal fusions. With the use of BMPs increasingly accepted in spinal fusion surgeries, other therapeutic approaches targeting BMP signaling are emerging beyond applications to skeletal disorders. These approaches can further utilize next-generation therapeutic tools such as engineered BMPs and ex vivo- conditioned cell therapies. In this review, we focused to provide insights into such clinical potentials of BMPs in metabolic and vascular diseases, and in cancer. [BMB reports 2011; 44(10): 619-634].
Collapse
Affiliation(s)
- Meejung Kim
- Joint Center for Biosciences at Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University of Medicine and Science, IncheonKorea
| | | |
Collapse
|
67
|
Tasnim F, Kandasamy K, Muck JS, bin Ibrahim MS, Ying JY, Zink D. Effects of Bone Morphogenetic Proteins on Primary Human Renal Cells and the Generation of Bone Morphogenetic Protein-7-Expressing Cells for Application in Bioartificial Kidneys. Tissue Eng Part A 2012; 18:262-76. [DOI: 10.1089/ten.tea.2011.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Joscha S. Muck
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Jackie Y. Ying
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| |
Collapse
|
68
|
Larman BW, Karolak MJ, Lindner V, Oxburgh L. Distinct bone morphogenetic proteins activate indistinguishable transcriptional responses in nephron epithelia including Notch target genes. Cell Signal 2012; 24:257-64. [PMID: 21945409 PMCID: PMC3205934 DOI: 10.1016/j.cellsig.2011.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/22/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Endogenous Bone Morphogenetic Protein (BMP) signaling plays a significant role in the kidney's recovery from acute injury and exogenous administration of BMP7 has therapeutic potential in numerous rodent models of renal injury and disease. However, in the healthy kidney endogenous BMP7 ligand is vigorously counteracted by extracellular antagonists such as USAG1 and CHRDL1. Little is known about the degree of BMP signaling and the ligands driving it in the healthy adult kidney. In this study we characterize basal BMP signaling in the healthy tubular nephron, and show that BMP2 is expressed in proximal nephron epithelial cells. Comparative gene profiling of proximal tubule cell responses to BMP2 and BMP7 does not reveal any qualitative difference, suggesting that identical BMP gene targets may be activated in healthy and injured organs. Interestingly, our gene profiling analysis shows that BMP signaling activates a number of Notch regulated transcription factors, including HEY1. As in other biological systems, HEY1 functions as a negative feedback regulator of BMP2 expression in the proximal tubule. In summary, this work reveals endogenous BMP signaling patterns in the healthy human and mouse kidneys, and identifies novel gene targets, some of which are involved in the complex regulation of BMP signaling in the adult kidney.
Collapse
Affiliation(s)
- Barry W Larman
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, United States
| | | | | | | |
Collapse
|
69
|
Mazzei LJ, García IM, Altamirano L, Docherty NG, Manucha W. Rosuvastatin preserves renal structure following unilateral ureteric obstruction in the neonatal rat. Am J Nephrol 2012; 35:103-13. [PMID: 22212364 DOI: 10.1159/000334935] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/08/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND/AIMS Unilateral ureteric obstruction (UUO) in neonatal rodents can be used as a paradigm for in utero obstruction in humans and a platform for studying the potential of novel therapies for congenital obstructive nephropathy. The present study examined the effect of rosuvastatin (Ros) on key morphometric measures of renal injury and corresponding gene expression correlates following neonatal UUO in the rat. METHODS Neonatal rats subjected to UUO and controls were treated daily with vehicle or Ros for 14 days. Quantification of tubular dilatation, glomerular size and number and tubulointerstitial fibrotic area was performed and changes validated by reference to appropriate renal gene expression correlates. RESULTS UUO increased tubular diameter and interstitial fibrosis by 2.7- and 7-fold, respectively, in parallel with increases in renal transforming growth factor-β(1) (TGF-β(1)) and tumor necrosis factor-α (TNF-α) mRNA levels. Glomerular number and size were reduced by 52 and 33%, respectively. Reductions in WT-1 mRNA and protein expression were noted following obstruction occurring in tandem with reduced mRNA levels for BMP-7 and E-cadherin. Ros attenuated tubular dilatation (33%) and interstitial fibrosis (72%) in association with the normalization of renal TGF-β(1) and TNF-α mRNA levels. Ros improved glomerular number and size (30 and 50%), and preserved mRNA and protein expression levels of WT-1 and normalized mRNA levels for BMP-7 and E-cadherin. CONCLUSIONS Ros treatment attenuated all changes, most notably the increase in interstitial fibrosis. Notably, Ros treatment was unable to completely salvage glomerular development. Together these data highlight the therapeutic potential and limitations of Ros in neonatal obstruction.
Collapse
Affiliation(s)
- Luciana Jorgelina Mazzei
- Áreas de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | |
Collapse
|
70
|
Enhanced expression of bone morphogenetic protein system in aldosterone-treated mouse kidneys. Hypertens Res 2011; 35:312-7. [DOI: 10.1038/hr.2011.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
71
|
Yuan XP, Liu LS, Fu Q, Wang CX. Effects of ligustrazine on ureteral obstruction-induced renal tubulointerstitial fibrosis. Phytother Res 2011; 26:697-703. [PMID: 22006851 DOI: 10.1002/ptr.3630] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 04/19/2011] [Accepted: 07/09/2011] [Indexed: 11/10/2022]
Abstract
Ligustrazine (LIG) is a purified and chemically identified component of the Chinese herb Ligusticum wallichii Franchat. It is a potent blocker of vasoconstriction and has strong scavenger of oxygen free radicals. We investigated the effect of LIG on renal tubulointerstitial fibrosis using a rat model of unilateral ureteral obstruction. Ligustrazine treatment significantly reduced the scores of interstitial collagen deposition, amounts of hydroxyproline, the density of myofibroblasts and macrophages, and amounts of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) compared with their level in a saline-treated control group. Using quantitative polymerase chain reaction we found that LIG treatment significantly reduced the mRNA expression of TGF-β1, CTGF, monocyte chemoattractant protein-1 and osteopontin. Moreover, the mRNA expression of hepatocyte growth factor and bone morphogenetic protein-7 were significantly increased by LIG. In vitro, LIG inhibited the TGF-β1-induced loss of cytokeratin-18 expression and de novo increase of the expression of α-smooth muscle actin of HK-2 cells in a dose-dependent manner, which suggested that LIG could restrain the process of epithelial-myofibroblast transition of tubular epithelial cells. This study indicates that LIG can attenuate renal tubulointerstitial fibrosis. It might be useful as a potential candidate in the treatment of chronic renal diseases.
Collapse
Affiliation(s)
- Xiao-peng Yuan
- Department of Organ Transplant, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | |
Collapse
|
72
|
Manson SR, Niederhoff RA, Hruska KA, Austin PF. Endogenous BMP-7 is a critical molecular determinant of the reversibility of obstruction-induced renal injuries. Am J Physiol Renal Physiol 2011; 301:F1293-302. [PMID: 21880836 DOI: 10.1152/ajprenal.00071.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although obstructive uropathies are frequently correctable through surgery, the potential for permanent renal injury remains even following the successful correction of obstructions. Little is known about the intrinsic mechanisms that determine the reversibility of renal injuries. We and others found that exogenous bone morphogenic protein 7 (BMP-7) inhibits the pathogenesis of renal injury. Here, we examine the role of endogenous BMP-7 in the outcome of renal recovery following the correction of obstructive uropathies using a reversible murine model of ureteral obstruction. The role of BMP-7 was determined by examining the regulation of BMP-7 during renal recovery and by treating with either BMP-7-neutralizing antibodies or exogenous BMP-7. While BMP-7 is upregulated following the correction of obstructions that lead to reversible renal injury, the upregulation of BMP-7 is diminished following the correction of prolonged obstructions that lead to irreversible renal injury. The activation of the BMP-7 pathway is required for several processes that contribute to renal recovery including the suppression of transforming growth factor-β-dependent profibrotic pathways, the restoration of renal architecture, and the resolution of fibrotic changes in the kidney. Importantly, the therapeutic restoration of BMP-7 enhances renal recovery following the correction of prolonged obstructions that typically lead to irreversible renal injury. Together, these findings show that, while BMP-7 plays a critical role in the repair of obstruction-induced renal injuries, the potential for renal recovery from prolonged obstruction is diminished, in part, due to the dysregulation of BMP-7. Accordingly, renal recovery from obstructive uropathies may be optimized through timely intervention and adjuvant approaches to restore BMP-7 activity.
Collapse
Affiliation(s)
- Scott R Manson
- Department of Surgery, Division of Pediatric Urology, Washington University, 4990 Children's Place, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
73
|
Yeh CH, Chang CK, Cheng KC, Li YX, Zhang YW, Cheng JT. Role of Bone Morphogenetic Proteins-7 (BMP-7) in the Renal Improvement Effect of DangGui (Angelica sinensis) in Type-1 Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:796723. [PMID: 21876712 PMCID: PMC3163074 DOI: 10.1155/2011/796723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 10/01/2009] [Indexed: 07/17/2024]
Abstract
Hyperglycemia induced reactive oxygen species (ROS) generation is believed as major factors leading to diabetic nephropathy (DN). DangGui (Angelica sinensis) is mentioned to show renal protective effect in combination with other herbs. Bone morphogenetic proteins-7 (BMP-7) is produced merit in protection of DN. The role of BMP-7 in DangGui-induced renal improvement is not clear. The present study investigated the effects of DangGui on renal functions, BMP-7 expression and the levels of ROS in streptozotocin (STZ)-induced diabetic rats and high glucose-exposed rat mesangial cells (RMCs). After 1- or 4-week treatment, DangGui improved renal functions and increased renal BMP-7 expression in diabetic rats. The BMP-7 expression in RMCs was reduced by high glucose treatment and this could be reversed by DangGui. Moreover, RMCs exposed to high glucose were expired by BMP-7 RNAi transfection but those cells remained alive by scramble transfection. Thus, we employed regular RMCs to knock down BMP-7 with RNAi and we found that DangGui increased BMP-7 expression in these RMCs. Direct activation of BMP-7 expression by DangGui could be considered. The results of DPPH assay, DHE stain and lucigenin assay indicated that DangGui could inhibit high glucose-induced ROS in RMCs. These results suggest that DangGui has an ability to improve renal functions in STZ-diabetic rats through increasing endogenous BMP-7 expression and decreasing oxidative stress in kidney. The present study suggest that DangGui could be applied to improve renal functions in diabetic disorders.
Collapse
Affiliation(s)
- Ching-Hua Yeh
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Kway Jen, Tainan 71101, Taiwan
- Institute of Basic Medical Sciences and Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Yung Kang City, Tainan Shan 71004, Taiwan
| | - Chen-Kuei Chang
- Department of Surgery, Mackay Memorial Hospital, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei City 10107, Taiwan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima City, Japan
| | - Ying-Xiao Li
- Department of Chinese with Western Medicine, Zhongnan Hospitial, Wuhan University, Wuhan 430071, China
| | - Ying Wen Zhang
- Department of Chinese with Western Medicine, Zhongnan Hospitial, Wuhan University, Wuhan 430071, China
| | - Juei-Tang Cheng
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Kway Jen, Tainan 71101, Taiwan
- Institute of Basic Medical Sciences and Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Yung Kang City, Tainan Shan 71004, Taiwan
| |
Collapse
|
74
|
Yeh CH, Chang CK, Cheng KC, Li YX, Zhang YW, Cheng JT. Role of Bone Morphogenetic Proteins-7 (BMP-7) in the Renal Improvement Effect of DangGui (Angelica sinensis) in Type-1 Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:796723. [PMID: 21876712 PMCID: PMC3163074 DOI: 10.1093/ecam/nep167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 10/01/2009] [Indexed: 11/13/2022]
Abstract
Hyperglycemia induced reactive oxygen species (ROS) generation is believed as major factors leading to diabetic nephropathy (DN). DangGui (Angelica sinensis) is mentioned to show renal protective effect in combination with other herbs. Bone morphogenetic proteins-7 (BMP-7) is produced merit in protection of DN. The role of BMP-7 in DangGui-induced renal improvement is not clear. The present study investigated the effects of DangGui on renal functions, BMP-7 expression and the levels of ROS in streptozotocin (STZ)-induced diabetic rats and high glucose-exposed rat mesangial cells (RMCs). After 1- or 4-week treatment, DangGui improved renal functions and increased renal BMP-7 expression in diabetic rats. The BMP-7 expression in RMCs was reduced by high glucose treatment and this could be reversed by DangGui. Moreover, RMCs exposed to high glucose were expired by BMP-7 RNAi transfection but those cells remained alive by scramble transfection. Thus, we employed regular RMCs to knock down BMP-7 with RNAi and we found that DangGui increased BMP-7 expression in these RMCs. Direct activation of BMP-7 expression by DangGui could be considered. The results of DPPH assay, DHE stain and lucigenin assay indicated that DangGui could inhibit high glucose-induced ROS in RMCs. These results suggest that DangGui has an ability to improve renal functions in STZ-diabetic rats through increasing endogenous BMP-7 expression and decreasing oxidative stress in kidney. The present study suggest that DangGui could be applied to improve renal functions in diabetic disorders.
Collapse
Affiliation(s)
- Ching-Hua Yeh
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Kway Jen, Tainan 71101, Taiwan
| | | | | | | | | | | |
Collapse
|
75
|
Wang-Rosenke Y, Mika A, Khadzhynov D, Loof T, Neumayer HH, Peters H. Stimulation of soluble guanylate cyclase improves renal recovery after relief of unilateral ureteral obstruction. J Urol 2011; 186:1142-9. [PMID: 21784461 DOI: 10.1016/j.juro.2011.04.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE The antifibrotic effects of soluble guanylate cyclase stimulation and cyclic guanosine monophosphate production have been observed in cases of anti-thy1-induced renal disease. We analyzed the action of the specific soluble guanylate cyclase stimulator BAY 41-8543 on the renal recovery phase in rats with unilateral ureteral obstruction after obstruction was relieved. MATERIALS AND METHODS Sprague-Dawley® rats underwent reversible unilateral ureteral obstruction for 5 days, after which obstruction was relieved. Rats were randomly assigned to unilateral ureteral obstruction and unilateral ureteral obstruction plus BAY 41-8543 (10 mg/kg body weight daily). Seven days after relief of obstruction we determined treatment effects on renal atrophy, apoptosis, fibrosis and nitric oxide/cyclic guanosine monophosphate signaling. RESULTS Untreated obstructed rats showed mildly increased systolic blood pressure, marked tubular atrophy and apoptosis, tubulointerstitial macrophage infiltration and fibrosis. Plasma cyclic guanosine monophosphate levels were unaltered in untreated rats with obstruction while renal soluble guanylate cyclase mRNA expression was increased. BAY 41-8543 administration significantly increased plasma cyclic guanosine monophosphate, which was paralleled by significant decreases in systolic blood pressure, renal tubular diameter, apoptosis and renal macrophage infiltration. Also, soluble guanylate cyclase stimulation decreased tubulointerstitial fibrosis, as shown by tubulointerstitial volume, matrix protein accumulation, α-smooth muscle actin expression, collagen IV deposition and transforming growth factor-β1 mRNA expression. CONCLUSIONS Soluble guanylate cyclase stimulation by BAY 41-8543 increases cyclic guanosine monophosphate production and subsequently enhances renal recovery after unilateral ureteral obstruction relief through an array of pathways. This finding suggests that soluble guanylate cyclase stimulation may serve as a novel treatment approach to restore or preserve renal structure and function in cases of obstructive kidney disease.
Collapse
Affiliation(s)
- Yingrui Wang-Rosenke
- Department of Nephrology and Center for Cardiovascular Research, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
76
|
Affiliation(s)
- Peter Boor
- Department of Nephrology Institute of Pathology, RWTH University of Aachen, Aachen, Germany.
| | | |
Collapse
|
77
|
Manson SR, Niederhoff RA, Hruska KA, Austin PF. The BMP-7-Smad1/5/8 pathway promotes kidney repair after obstruction induced renal injury. J Urol 2011. [PMID: 21527199 DOI: 0.1016/j.juro.2011.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE Urinary tract obstruction causes hydroureteronephrosis and requires surgical intervention to prevent permanent renal injury. While many studies have focused on the development of renal injury, we examined the molecular mechanisms that promote renal recovery after correcting obstruction. MATERIALS AND METHODS A reversible murine model of ureteral obstruction was used to examine the bone morphogenic protein-7 and transforming growth factor-β signaling pathways during renal recovery after obstruction induced injury. Analysis was done using standard molecular techniques, including reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, immunoblotting and co-immunoprecipitation. RESULTS After correcting obstruction the up-regulation of bone morphogenic protein-7 inhibited the transforming growth factor-β dependent profibrotic pathways that are central to renal injury pathogenesis. The inhibitory effects of bone morphogenic protein-7 were mediated in part by the activation of its downstream target proteins, SMA and MAD related proteins 1, 5 and 8, which suppress the activity of transforming growth factor-β dependent Smad proteins and in turn inhibit the expression of transforming growth factor-β dependent genes. Activation of the bone morphogenic protein-7-Smad related protein 1/5/8 pathway during renal recovery promoted renal architecture restoration and fibrosis resolution in the kidney after correcting obstruction. CONCLUSIONS Together these findings show that the bone morphogenic protein-7-Smad1/5/8 pathway promotes kidney repair after obstruction induced injury. Accordingly the pathway represents an important therapeutic target to stimulate this innate repair mechanisms of the kidney during treatment for obstruction induced renal injury.
Collapse
Affiliation(s)
- Scott R Manson
- Division of Pediatric Urology, Department of Surgery, Washington University, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
78
|
Manson SR, Niederhoff RA, Hruska KA, Austin PF. The BMP-7-Smad1/5/8 pathway promotes kidney repair after obstruction induced renal injury. J Urol 2011; 185:2523-30. [PMID: 21527199 DOI: 10.1016/j.juro.2011.01.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Indexed: 12/12/2022]
Abstract
PURPOSE Urinary tract obstruction causes hydroureteronephrosis and requires surgical intervention to prevent permanent renal injury. While many studies have focused on the development of renal injury, we examined the molecular mechanisms that promote renal recovery after correcting obstruction. MATERIALS AND METHODS A reversible murine model of ureteral obstruction was used to examine the bone morphogenic protein-7 and transforming growth factor-β signaling pathways during renal recovery after obstruction induced injury. Analysis was done using standard molecular techniques, including reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, immunoblotting and co-immunoprecipitation. RESULTS After correcting obstruction the up-regulation of bone morphogenic protein-7 inhibited the transforming growth factor-β dependent profibrotic pathways that are central to renal injury pathogenesis. The inhibitory effects of bone morphogenic protein-7 were mediated in part by the activation of its downstream target proteins, SMA and MAD related proteins 1, 5 and 8, which suppress the activity of transforming growth factor-β dependent Smad proteins and in turn inhibit the expression of transforming growth factor-β dependent genes. Activation of the bone morphogenic protein-7-Smad related protein 1/5/8 pathway during renal recovery promoted renal architecture restoration and fibrosis resolution in the kidney after correcting obstruction. CONCLUSIONS Together these findings show that the bone morphogenic protein-7-Smad1/5/8 pathway promotes kidney repair after obstruction induced injury. Accordingly the pathway represents an important therapeutic target to stimulate this innate repair mechanisms of the kidney during treatment for obstruction induced renal injury.
Collapse
Affiliation(s)
- Scott R Manson
- Division of Pediatric Urology, Department of Surgery, Washington University, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
79
|
Abstract
Bone morphogenetic protein-7 (BMP7) is an endogenous antifibrogenic protein in the kidney which is down regulated in experimental chronic kidney diseases such as obstructive and diabetic nephropathy in parallel with progressively increasing TGFβ. In vitro studies were performed in Madin-Darby Canine Kidney (MDCK)-cells to identify transcriptional regulators of BMP7. Experiments with various BMP7 promoter fragments (465-4,267 bp) identify small proximal promoter segments that are transcriptionally activated by high glucose (3.2-fold) but down regulated by TGFβ (0.2-fold) compared to normal glucose. Protein binding to these DNA segments is increased by high glucose and decreased by TGFβ in a time-dependent, progressive manner. Analysis of BMP7 promoter-binding proteins with liquid chromatography/tandem mass spectrometry (LC/MS/MS) identifies seven unique, partially overlapping peptides, spanning 25% of the amino acid sequence of Y-box protein-1 (YB1). EMSA-Western blot combination experiments confirm that YB1 is a BMP7 promoter-binding protein. YB1 knock-down reduces transcriptional responses to high glucose and TGFβ by about one-half, respectively. In addition, high glucose induces but TGFβ reduces nuclear translocation of YB1 from the cytoplasm. These studies identify YB1 as a transcriptional activator of BMP7 and helps to explain the progressive decline in renal BMP7 in diabetic nephropathy and other kidney diseases.
Collapse
Affiliation(s)
- Shinong Wang
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center and UCLA, Torrance, CA
| | - Raimund Hirschberg
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center and UCLA, Torrance, CA
| |
Collapse
|
80
|
Duranay M, Segall L, Sen N, Yilmaz FM, Cetin M, Isleyen A, Kanbay M, Covic A. Bone morphogenic protein-7 serum level decreases significantly in patients with contrast-induced nephropathy. Int Urol Nephrol 2010; 43:807-12. [PMID: 21069567 DOI: 10.1007/s11255-010-9871-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 10/25/2010] [Indexed: 11/24/2022]
Affiliation(s)
- Murat Duranay
- Department of Internal Medicine, Section of Nephrology, Ankara Training and Research Hospital, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Kang YH, Jin JS, Yi DW, Son SM. Bone morphogenetic protein-7 inhibits vascular calcification induced by high vitamin D in mice. TOHOKU J EXP MED 2010; 221:299-307. [PMID: 20647695 DOI: 10.1620/tjem.221.299] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular calcification refers to the deposition of calcium phosphate in cardiovascular tissues, including arteries and myocardium. Vascular calcification is frequently associated with cardiovascular disease. Recently, bone morphgenetic protein-7 (BMP-7) has been proposed to play an inhibitory role in vascular calcification, but its inhibitory effect has not been fully elucidated. We therefore tested the hypothesis that BMP-7 inhibits vascular calcification by using two conditions, high levels of vitamin D and phosphate, each of which could enhance vascular calcification. C57BL/6 mice were treated for 3 days with high vitamin D (500,000 IU/kg/day) in the presence or absence of recombinant human BMP-7 (rhBMP-7). Expression levels of osteopontin and osteocalcin, markers of the osteoblastic phenotype, were assessed by immunohistochemical staining or Western blotting analysis. Vitamin D increased calcium staining in thoracic aortas and hearts and the expression levels of osteopontin and osteocalcin in mice. Importantly, pretreatment for 7 days and subsequent treatment for 3 days with rhBMP-7 (10 microg/kg/day) abolished the vitamin D-mediated increases in the above parameters. In addition, human aortic smooth muscle cells (HASMCs) were cultured with high beta-glycerophosphate, a phosphate donor, for 2 weeks in the presence or absence of rhBMP-7. High beta-glycerophosphate increased expression levels of osteopontin and osteocalcin as well as calcium staining in HASMCs, but these changes were attenuated by treatment with BMP-7. Thus, BMP-7 inhibits vascular calcification associated with high levels of vitamin D or phosphate. We propose that BMP-7 treatment may be helpful in reducing the risks of cardiovascular disease related to vascular calcification.
Collapse
Affiliation(s)
- Yang Ho Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | | | | | | |
Collapse
|
82
|
Dendooven A, Ishola DA, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, Joles JA. Oxidative stress in obstructive nephropathy. Int J Exp Pathol 2010; 92:202-10. [PMID: 20804541 DOI: 10.1111/j.1365-2613.2010.00730.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Amélie Dendooven
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
83
|
Yao Y, Zhang J, Ye DF, Tan DQ, Peng JP, Xie M, Fang L. Left-right determination factor is down-regulated in fibrotic renal tissue of human hydronephrosis. BJU Int 2010; 107:1002-8. [PMID: 20738296 DOI: 10.1111/j.1464-410x.2010.09520.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE • To compare the expressions of common fibrosis-relevant genes in hydronephrosis-induced fibrotic renal tissues and normal human renal tissues, thereby providing insights into the cellular and molecular mechanisms of renal fibrosis resulting from hydronephrosis. PATIENTS AND METHODS • A total of 12 extensively fibrotic renal tissue samples from patients with hydronephrosis (H-group) and six normal renal tissue samples from patients who underwent nephrectomy for renal cell carcinoma (N-group), along with their clinical data, were collected at Renmin Hospital of Wuhan University in China between October 2005 and August 2007. • These tissue samples were compared for their transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) pathway-related gene profiles using a real-time polymerase chain reaction (PCR) microarray. • Subsequently, reverse transcriptase-PCR assays were used to validate the expression changes of left-right determination factor (LEFTY), a gene of interest, at the mRNA level. • The different expression of LEFTY at the protein level was confirmed by western blotting and immunohistochemistry assays. RESULTS • The results showed that 49 genes were differently expressed in fibrotic renal tissues relative to normal control tissues. Among these genes, 25 were up-regulated and 24 were down-regulated. • LEFTY-B, one of the most markedly altered genes, was down-regulated 13.55-fold compared with N-group tissues. • RT-PCR showed that the LEFTY-A (6.05-fold down-regulated, P < 0.001) and LEFTY-B (12.5-fold down-regulated, P < 0.001) genes, two members of the LEFTY family in human tissues, were both significantly down-regulated in H-group tissues. • Similarly, down-regulations of LEFTY-A (0.25-fold vs N-group, P < 0.001) and LEFTY-B (0.20-fold vs N-group, P < 0.001) proteins were detected by western blotting (P < 0.001). • Immunohistochemical staining showed different distributions of LEFTY in the two tissue samples, and quantitative image analyses confirmed that LEFTY protein expression was lower in H-group tissues than in N-group tissues (P < 0.001). CONCLUSIONS • The gene and protein expressions of LEFTY were found to be down-regulated in extensively fibrotic renal tissues induced by hydronephrosis. • LEFTY may represent an ideal candidate for a therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Yi Yao
- Oncology Center, Department of Urology, Renmin Hospital of Wuhan University and State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
84
|
Tasnim F, Deng R, Hu M, Liour S, Li Y, Ni M, Ying JY, Zink D. Achievements and challenges in bioartificial kidney development. FIBROGENESIS & TISSUE REPAIR 2010; 3:14. [PMID: 20698955 PMCID: PMC2925816 DOI: 10.1186/1755-1536-3-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/10/2010] [Indexed: 12/23/2022]
Abstract
Bioartificial kidneys (BAKs) combine a conventional hemofilter in series with a bioreactor unit containing renal epithelial cells. The epithelial cells derived from the renal tubule should provide transport, metabolic, endocrinologic and immunomodulatory functions. Currently, primary human renal proximal tubule cells are most relevant for clinical applications. However, the use of human primary cells is associated with many obstacles, and the development of alternatives and an unlimited cell source is one of the most urgent challenges. BAKs have been applied in Phase I/II and Phase II clinical trials for the treatment of critically ill patients with acute renal failure. Significant effects on cytokine concentrations and long-term survival were observed. A subsequent Phase IIb clinical trial was discontinued after an interim analysis, and these results showed that further intense research on BAK-based therapies for acute renal failure was required. Development of BAK-based therapies for the treatment of patients suffering from end-stage renal disease is even more challenging, and related problems and research approaches are discussed herein, along with the development of mobile, portable, wearable and implantable devices.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Protective effect of BMP-7 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicol Lett 2010; 198:348-57. [PMID: 20696222 DOI: 10.1016/j.toxlet.2010.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/05/2010] [Accepted: 07/29/2010] [Indexed: 11/23/2022]
Abstract
Aristolochic acid nephropathy (AAN) is regarded as a kind of rapidly progressive renal fibrosis caused by the ingestion of herbal remedies containing aristolochic acid (AA). Recent studies showed that bone morphogenetic protein-7 (BMP-7) exerts beneficial effects on acute and chronic kidney injuries induced by different pathological conditions. We examined whether BMP-7 protects human renal tubular epithelial cells (HK-2) against AA-induced injury in vitro. HK-2 cells were cultured with different concentrations of AA and BMP-7 for 48h. Cell viability was determined by Cell Counting Kit-8 assay and lactate dehydrogenase (LDH) release. The apoptosis rate and the activity of caspase 3 protease were also examined. Epithelial-to-mesenchymal transition (EMT) was determined by cell morphology, E-cadherin and α-smooth muscle actin (α-SMA) protein expression, and TGF-β(1) and collagen III secretion. Additionally, the effect of anti-TGF-β1 antibody on AA-induced EMT was assessed. Our results indicated that BMP-7 significantly increased cell proliferation, decreased apoptosis rate and attenuated activation of caspase-3, resulting in the protection of HK-2 cells from AA-induced cytotoxicity. In addition, studies on EMT revealed that BMP-7 could inhibit AA-induced myofibroblast phenotype and restored the epithelial morphology in a dose-dependent manner. It was partially through reducing the activation of a myofibroblast phenotype and production TGF-β1. Treatment with neutralizing anti-TGF-β1 antibody also blocked AA-induced EMT and collagen III secretion. Together, these observations strongly suggest that BMP-7 is a potent inhibitor of AA-induced renal tubular epithelial cell injury and might be a promising agent for aristolochic acid-induced kidney damage.
Collapse
|
86
|
Zhang Q, Shi Y, Wada J, Malakauskas SM, Liu M, Ren Y, Du C, Duan H, Li Y, Li Y, Zhang Y. In vivo delivery of Gremlin siRNA plasmid reveals therapeutic potential against diabetic nephropathy by recovering bone morphogenetic protein-7. PLoS One 2010; 5:e11709. [PMID: 20661431 PMCID: PMC2908623 DOI: 10.1371/journal.pone.0011709] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/30/2010] [Indexed: 11/21/2022] Open
Abstract
Diabetic nephropathy is a complex and poorly understood disease process, and our current treatment options are limited. It remains critical, then, to identify novel therapeutic targets. Recently, a developmental protein and one of the bone morphogenetic protein antagonists, Gremlin, has emerged as a novel modulator of diabetic nephropathy. The high expression and strong co-localization with transforming growth factor- β1 in diabetic kidneys suggests a role for Gremlin in the pathogenesis of diabetic nephropathy. We have constructed a gremlin siRNA plasmid and have examined the effect of Gremlin inhibition on the progression of diabetic nephropathy in a mouse model. CD-1 mice underwent uninephrectomy and STZ treatment prior to receiving weekly injections of the plasmid. Inhibition of Gremlin alleviated proteinuria and renal collagen IV accumulation 12 weeks after the STZ injection and inhibited renal cell proliferation and apoptosis. In vitro experiments, using mouse mesangial cells, revealed that the transfect ion of gremlin siRNA plasmid reversed high glucose induced abnormalities, such as increased cell proliferation and apoptosis and increased collagen IV production. The decreased matrix metalloprotease level was partially normalized by transfection with gremlin siRNA plasmid. Additionally, we observed recovery of bone morphogenetic protein-7 signaling activity, evidenced by increases in phosphorylated Smad 5 protein levels. We conclude that inhibition of Gremlin exerts beneficial effects on the diabetic kidney mainly through maintenance of BMP-7 activity and that Gremlin may serve as a novel therapeutic target in the management of diabetic nephropathy.
Collapse
Affiliation(s)
- Qingxian Zhang
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Jun Wada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Sandra M. Malakauskas
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Maodong Liu
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ying Li
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Yanling Zhang
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
87
|
Gai Z, Zhou G, Gui T, Itoh S, Oikawa K, Uetani K, Muragaki Y. Trps1 haploinsufficiency promotes renal fibrosis by increasing Arkadia expression. J Am Soc Nephrol 2010; 21:1468-76. [PMID: 20507941 DOI: 10.1681/asn.2009121201] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mutations in TRPS1 cause tricho-rhino-pharyngeal syndrome (TRPS). Trps1 is essential for nephron development, acting downstream of Bmp7. Because Bmp7 counteracts epithelial-to-mesenchymal transition (EMT) and reverses chronic renal injury, we examined the function of Trps1 in renal fibrosis. Immunohistochemistry revealed Trps1 expression in proximal tubular epithelial cells of mice. Unilateral ureteral obstruction reduced mRNA and protein expression of Trps1 in wild-type and heterozygous Trps1-knockout (Trps1(+/-)) mice. Trps1 haploinsufficiency promoted tubulointerstitial fibrosis via increased phosphorylation of Smad3 and decreased Smad7 protein. In primary culture, Trps1 deficiency promoted TGF-beta1-mediated EMT in proximal tubule cells. Trps1(+/-)-derived cells had higher levels of phosphorylated Smad3, and TGF-beta1 induced a time-dependent decrease in Smad7 protein in wild-type and Trps1(+/-) kidneys. In addition, compared with wild-type cells, Trps1(+/-) cells had double the amount of the E3 ubiquitin ligase Arkadia, and TGF-beta1 induced further Arkadia expression. Furthermore, knockdown of Arkadia inhibited TGF-beta1-induced EMT in Trps1(+/-) cells. Collectively, these data suggest that Trps1 haploinsufficiency enhances TGF-beta1-induced EMT and tubulointerstitial fibrosis by modulating the amount of Smad7 through Arkadia/ubiquitin-mediated degradation.
Collapse
Affiliation(s)
- Zhibo Gai
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
88
|
Ucero AC, Gonçalves S, Benito-Martin A, Santamaría B, Ramos AM, Berzal S, Ruiz-Ortega M, Egido J, Ortiz A. Obstructive renal injury: from fluid mechanics to molecular cell biology. Res Rep Urol 2010; 2:41-55. [PMID: 24198613 PMCID: PMC3818880 DOI: 10.2147/rru.s6597] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.
Collapse
Affiliation(s)
- Alvaro C Ucero
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Strutz F. Pathogenesis of tubulointerstitial fibrosis in chronic allograft dysfunction. Clin Transplant 2010; 23 Suppl 21:26-32. [PMID: 19930313 DOI: 10.1111/j.1399-0012.2009.01106.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The term chronic allograft nephropathy (CAN) was originally coined in 1991 to replace chronic rejection which was used too generalized. However, the revised Banff classification, published in 2007, eliminated the term CAN again because it was felt that the term was used too broadly and prevented the search for the underlying cause. Interstitial fibrosis and tubular atrophy are integral parts of chronic allograft dysfunction and represent in the new classification a separate entity with or without the identification of a specific etiology. Myofibroblasts are the key, albeit not exclusive, effector cells in renal fibrogenesis resulting in upregulated extracellular matrix synthesis and eventually in interstitial fibrosis. These cells are formed mainly by stimulation of resident interstitial fibroblasts but also by differentiation processes of periadventitial cells, bone marrow derived cells and by a process entitled epithelial mesenchymal transition (EMT) of tubular epithelial cells. EMT has been described by many groups to be of high prevalence in renal allograft dysfunction contributing to matrix accumulation and renal function deterioration. This is of particular interest because immunosuppressive therapy has differential effects on EMT with calcineurin inhibitors in particular inducing the process. Moreover, specific therapies inhibiting EMT have been applied in experimental studies although the effects of their application in chronic allograft dysfunction remain to be studied. At the same time, immunosuppression may interfere with physiologic clearance of myofibroblasts by apoptosis, explaining in part the high prevalence of interstitial fibrosis in allograft biopsies. The Fas system has been identified to be mainly responsible for this physiologic apoptosis in non-renal scarring models; however, its relevance for renal fibrosis and particular fibrosis in renal allograft dysfunction remains to be determined. These findings point to a cautious and individualized use of immunosuppressive therapy in patients with allografts and particular those with chronic allograft dysfunction not because of rejection processes. Protocols using CNI-free immunosuppression are interesting options to prevent fibrosis in chronic allograft dysfunction.
Collapse
Affiliation(s)
- Frank Strutz
- Department of Nephrology, Deutsche Klinik für Diagnostik, Wiesbaden, Germany.
| |
Collapse
|
90
|
Targeting bone morphogenetic protein signaling on renal and vascular diseases. Curr Opin Nephrol Hypertens 2010; 19:26-31. [PMID: 19823085 DOI: 10.1097/mnh.0b013e328332fc13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Normal development and adult physiology of the kidney and vasculature rely heavily on bone morphogenetic proteins (BMPs). Here we compile evidence that favors the notion that BMPs are also critically involved in the process of generation and maintenance of renal and vascular diseases. RECENT FINDINGS Molecular manipulation of BMP signaling in vivo and in vitro has been instrumental in showing the protective role of BMPs on renal fibrosis and diabetic nephropathy. Similarly, activation of those pathways produces phenotypic changes in vascular smooth muscle and endothelial cells, tightly linked to the pathogenesis of vascular calcification, hypertrophy and atherosclerosis. SUMMARY Gain-of-function and loss-of-function experiments targeting BMP pathway agonists and inhibitors lead to significant progress in the comprehension of renal and vascular normal and altered behavior. The demonstration that BMP signaling plays an important part in pathological conditions of the vasculature and the kidney opens up possibilities for the development of diagnostic and therapeutic tools.
Collapse
|
91
|
Tanaka M, Asada M, Higashi AY, Nakamura J, Oguchi A, Tomita M, Yamada S, Asada N, Takase M, Okuda T, Kawachi H, Economides AN, Robertson E, Takahashi S, Sakurai T, Goldschmeding R, Muso E, Fukatsu A, Kita T, Yanagita M. Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J Clin Invest 2010; 120:768-77. [PMID: 20197625 DOI: 10.1172/jci39569] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-associated gene-1 (USAG-1) negatively regulates the renoprotective action of BMP-7 in a mouse model of tubular injury during acute renal failure. Here, we investigated the role of USAG-1 in renal function in Col4a3-/- mice, which model Alport syndrome. Ablation of Usag1 in Col4a3-/- mice led to substantial attenuation of disease progression, normalization of GBM ultrastructure, preservation of renal function, and extension of life span. Immunohistochemical analysis revealed that USAG-1 and BMP-7 colocalized in the macula densa in the distal tubules, lying in direct contact with glomerular mesangial cells. Furthermore, in cultured mesangial cells, BMP-7 attenuated and USAG-1 enhanced the expression of MMP-12, a protease that may contribute to GBM degradation. These data suggest that the pathogenetic role of USAG-1 in Col4a3-/- mice might involve crosstalk between kidney tubules and the glomerulus and that inhibition of USAG-1 may be a promising therapeutic approach for the treatment of Alport syndrome.
Collapse
Affiliation(s)
- Mari Tanaka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Loureiro J, Schilte M, Aguilera A, Albar-Vizcaíno P, Ramírez-Huesca M, Pérez-Lozano ML, González-Mateo G, Aroeira LS, Selgas R, Mendoza L, Ortiz A, Ruíz-Ortega M, van den Born J, Beelen RHJ, López-Cabrera M. BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrol Dial Transplant 2010; 25:1098-108. [PMID: 20067910 DOI: 10.1093/ndt/gfp618] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During peritoneal dialysis (PD), mesothelial cells (MC) undergo an epithelial-to-mesenchymal transition (EMT), and this process is associated with peritoneal membrane (PM) damage. Bone morphogenic protein-7 (BMP-7) antagonizes transforming growth factor (TGF)-beta1, modulates EMT and protects against fibrosis. Herein, we analysed the modulating role of BMP-7 on EMT of MC in vitro and its protective effects in a rat PD model. METHODS Epitheliod or non-epitheliod MC were analysed for the expression of BMP-7, TGF-beta1, activated Smads, epithelial cadherin (E-cadherin), collagen I, alpha smooth muscle cell actin (alpha-SMA) and vascular endothelial growth factor (VEGF) using standard procedures. Rats were daily instilled with PD fluid with or without BMP-7 during 5 weeks. Histological analyses were carried out in parietal peritoneum. Fibrosis was quantified with van Gieson or Masson's trichrome staining. Vasculature, activated macrophages and invading MC were quantified by immunofluorescence analysis. Quantification of infiltrating leukocytes and MC density in liver imprints was performed by May-Grünwald-Giemsa staining. Hyaluronic acid levels were determined by ELISA. RESULTS MC constitutively expressed BMP-7, and its expression was downregulated during EMT. Treatment with recombinant BMP-7 resulted in blockade of TGF-beta1-induced EMT of MC. We provide evidence of a Smad-dependent mechanism for the blockade of EMT. Exposure of rat peritoneum to PD fluid resulted in inflammatory and regenerative responses, invasion of the compact zone by MC, fibrosis and angiogenesis. Administration of BMP-7 decreased the number of invading MC and reduced fibrosis and angiogenesis. In contrast, BMP-7 had no effect on inflammatory and regenerative responses, suggesting that these are EMT-independent, and probably upstream, processes. CONCLUSIONS Data point to a balance between BMP-7 and TGF-beta1 in the control of EMT and indicate that blockade of EMT may be a therapeutic approach to ameliorate peritoneal membrane damage during PD.
Collapse
Affiliation(s)
- Jesús Loureiro
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Bone morphogenetic proteins (BMPs) were originally identified with regard to their actions to regulate ectopic formation of bone and cartilage and early embryonic development. Subsequently, our research program has investigated a BMP system that exists in the mammalian ovary and plays roles in regulating numerous granulosa cell functions. BMP ligands including BMP-2, -4, -6, -7 and -15 were found to inhibit gondotropin-dependent progesterone synthesis by granulosa cells, which led to the hypothesis that BMPs are a physiological luteinization inhibitor in growing ovarian follicles during the follicular phase of the ovarian cycle. The physiological importance of the BMP system for normal mammalian reproduction has been further recognized by the discovery of aberrant reproductive phenotypes of female sheep and humans having mutated genes encoding BMP-15. Physiological roles of BMPs in the pituitary, hypothalamus, adrenal and other tissues have also been discovered. Here we discuss recent advances in the understanding of autocrine/paracrine actions of BMPs in the systemic regulation of endocrine function.
Collapse
Affiliation(s)
- Fumio Otsuka
- Endocrine Center of Okayama University Hospital, Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
94
|
Jeyaraj SC, Singh M, Ayupova DA, Govindaraju S, Lee BS. Transcriptional control of human antigen R by bone morphogenetic protein. J Biol Chem 2009; 285:4432-40. [PMID: 20018854 DOI: 10.1074/jbc.m109.062216] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human antigen R (HuR) is an RNA-binding protein with protective activities against cellular stress. This study considers the mechanisms by which HuR transcriptional regulation occurs in renal proximal tubule cells. Under basal conditions, HuR mRNA is expressed in two forms: one that contains a approximately 20-base 5'-untranslated region (UTR) sequence and one that contains a approximately 150-base, G+C-rich 5'-UTR that is inhibitory to translation. Recovery from cellular stresses such as thapsigargin and ATP depletion induced increased expression of the shorter, more translatable transcript and decreased expression of the longer form. Analysis of HuR upstream regions revealed sequences necessary for regulation of the shorter mRNA. Within the long, G+C-rich 5'-UTR exist multiple copies of the alternate Smad 1/5/8-binding motif GCCGnCGC. Recovery from ATP depletion induced increases in Smad 1/5/8 levels; further, gel shift and chromatin immunoprecipitation analyses demonstrated the ability of these Smads to bind to the relevant motif in the HuR 5'-UTR. Transfection of exogenous Smad 1 increased HuR mRNA expression. Finally, HuR mRNA expression driven by the Smad-binding sites was responsive to BMP-7, a protein with known protective effects against ischemic injury in kidney. These data suggest that transcriptional induction of a readily translatable HuR mRNA may be driven by a mechanism known to protect the kidney from injury and provides a novel pathway through which administration of BMP-7 may attenuate renal damage.
Collapse
Affiliation(s)
- Selvi C Jeyaraj
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
95
|
Veerasamy M, Nguyen TQ, Motazed R, Pearson AL, Goldschmeding R, Dockrell MEC. Differential regulation of E-cadherin and alpha-smooth muscle actin by BMP 7 in human renal proximal tubule epithelial cells and its implication in renal fibrosis. Am J Physiol Renal Physiol 2009; 297:F1238-48. [PMID: 19741012 DOI: 10.1152/ajprenal.90539.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney diseases are characterized by progressive tubulointerstitial fibrosis, and TGFbeta1 plays a crucial role in its development. Bone morphogenic protein 7 (BMP 7), another member of the TGF superfamily, antagonized the profibrotic effects of TGFbeta1, including epithelial mesenchymal transition and E-cadherin loss, in the previous studies from animal models. We investigated the effect of BMP 7 on TGFbeta1-mediated E-cadherin loss in two different transformed human adult proximal tubule epithelia. We found that BMP 7 not only failed to prevent TGFbeta1-mediated E-cadherin loss but itself downregulated E-cadherin levels and that it had an additive effect with TGFbeta1 in inducing E-cadherin loss. The downregulation of E-cadherin by BMP 7 was mediated through the Smad1/5 pathway. BMP 7-mediated E-cadherin loss was not followed by de novo alpha-smooth muscle actin (alpha-SMA) expression (a marker of myofibroblastic phenotype), which was due to the concurrent induction of Inhibitor of DNA binding 1 (Id1, a basic helix loop helix class transcriptional regulator) through a non-Smad pathway. Concurrent treatment of BMP 7 and TGFbeta1 prevented TGFbeta1-mediated alpha-SMA induction. In summary, our results suggest that E-cadherin loss, the key feature of epithelial mesenchymal transition, will not necessarily be followed by total phenotype change; rather, cells may undergo some loss of phenotypic marker in a ligand-dependent manner and participate in reparative processes. The inhibition of de novo expression of alpha-SMA could explain the antifibrotic effect of BMP 7. Id1 might play a crucial role in maintaining proximal tubule epithelial cell phenotype and its signaling regulation could be a potential therapeutic target.
Collapse
Affiliation(s)
- Mangalakumar Veerasamy
- South West Thames Institute for Renal Research, Epsom and St. Helier University Hospitals NHS Trust, Carshalton, United Kingdom.
| | | | | | | | | | | |
Collapse
|
96
|
Lavery K, Hawley S, Swain P, Rooney R, Falb D, Alaoui-Ismaili MH. New insights into BMP-7 mediated osteoblastic differentiation of primary human mesenchymal stem cells. Bone 2009; 45:27-41. [PMID: 19306956 DOI: 10.1016/j.bone.2009.03.656] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/16/2009] [Accepted: 03/07/2009] [Indexed: 11/25/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are members of the TGF-beta superfamily of growth factors. Several BMPs exhibit osteoinductive bioactivities, and are critical for bone formation in both developing and mature skeletal systems. BMP-7 (OP-1) is currently used clinically in revision of posterolateral spine fusions and long bone non-unions. The current study characterizes BMP-7 induced gene expression during early osteoblastic differentiation of human mesenchymal stem cells (hMSC). Primary hMSC were treated with BMP-7 for 24 or 120 h and gene expression across the entire human genome was evaluated using Affymetrix HG-U133 Plus 2.0 Arrays. 955 probe sets representing 655 genes and 95 ESTs were identified as differentially expressed and were organized into three major expression profiles (Profiles A, B and C) by hierarchical clustering. Genes from each profile were classified according to biochemical pathway analyses. Profile A, representing genes upregulated by BMP-7, revealed strong enrichment for established osteogenic marker genes, as well as several genes with undefined roles in osteoblast function, including MFI2, HAS3, ADAMTS9, HEY1, DIO2 and FGFR3. A functional screen using siRNA suggested roles for MFI2, HEY1 and DIO2 in osteoblastic differentiation of hMSC. Profile B contained genes transiently downregulated by BMP-7, including numerous genes associated with cell cycle regulation. Follow-up studies confirmed that BMP-7 attenuates cell cycle progression and cell proliferation during early osteoblastic differentiation. Profile C, comprised of genes continuously downregulated by BMP-7, exhibited strong enrichment for genes associated with chemokine/cytokine activity. Inhibitory effects of BMP-7 on cytokine secretion were verified by analysis of enriched culture media. Potent downregulation of CHI3L1, a potential biomarker for numerous joint diseases, was also observed in Profile C. A focused evaluation of BMP, GDF and BMP inhibitor expression elucidated feedback loops modulating BMP-7 bioactivity. BMP-7 was found to induce BMP-2 and downregulate GDF5 expression. Transient knockdown of BMP-2 using siRNA demonstrated that osteoinductive properties associated with BMP-7 are independent of endogenous BMP-2 expression. Noggin was identified as the predominant inhibitor induced by BMP-7 treatment. Overall, this study provides new insight into key bioactivities characterizing early BMP-7 mediated osteoblastic differentiation.
Collapse
|
97
|
Larman BW, Karolak MJ, Adams DC, Oxburgh L. Chordin-like 1 and twisted gastrulation 1 regulate BMP signaling following kidney injury. J Am Soc Nephrol 2009; 20:1020-31. [PMID: 19357253 DOI: 10.1681/asn.2008070768] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Stimulation of the bone morphogenetic protein (BMP) pathway protects the kidney from acute and chronic injury. Numerous regulators in the kidney control BMP signaling, offering many targets for therapeutic manipulation. Here, we screened for modulators of BMP signaling in the ischemia-sensitive S3 segment and found that Chordin-like 1 is expressed in this segment of both the mouse and human nephron. Chordin-like 1 specifically antagonizes BMP7, which is expressed in the neighboring distal nephron, and this depends on the presence of the protein Twisted gastrulation. Upon ischemia-induced degeneration of the S3 segment, we observed a reduction in Chordin-like 1 expression coincident with intense BMP signaling in tubules of the recovering kidney. Restored expression accompanied proximal tubule epithelia redifferentiation, again coincident with decreased BMP signaling. We propose that Chordin-like 1 reduces BMP7 signaling in healthy proximal tubules, and the loss of this activity upon sloughing of injured epithelia promotes BMP7 signaling in repopulating, dedifferentiated epithelia. As regenerating epithelia differentiate, Chordin-like 1 is again expressed, antagonizing BMP7. These data suggest a mechanism for dynamic regulation of renoprotective BMP7 signaling in the S3 segment of the proximal tubule.
Collapse
Affiliation(s)
- Barry W Larman
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | | | | |
Collapse
|
98
|
Zhang Y, Zhang Q. Bone morphogenetic protein-7 and Gremlin: New emerging therapeutic targets for diabetic nephropathy. Biochem Biophys Res Commun 2009; 383:1-3. [PMID: 19303394 DOI: 10.1016/j.bbrc.2009.03.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 03/16/2009] [Indexed: 01/14/2023]
Abstract
Specific therapies of diabetic nephropathy (DN) are not available, and current treatment strategies are limited to management of blood glucose levels and control of hypertension. The re-activation of developmental programs in DN suggests new potential therapeutic targets. Bone morphogenetic protein-7 (BMP-7) and its antagonist, Gremlin is revealed to be involved in renal development and diabetic nephropathy. This article reviews the changes of BMP-7 and Gremlin in diabetic kidney, the protective effects on diabetic nephropathy when targeting BMP-7 and Gremlin, and the possible mechanism. The reorganization of the re-activation of Gremlin and BMP-7 in diabetic kidney had shed light on the identification of novel therapeutic targets for DN.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, PR China.
| | | |
Collapse
|
99
|
Yu MA, Shin KS, Kim JH, Kim YI, Chung SS, Park SH, Kim YL, Kang DH. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol 2009; 20:567-81. [PMID: 19193779 DOI: 10.1681/asn.2008040424] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Over time, peritoneal dialysis results in functional and structural alterations of the peritoneal membrane, but the underlying mechanisms and whether these changes are reversible are not completely understood. Here, we studied the effects of high levels of glucose, which are found in the dialysate, on human peritoneal mesothelial cells (HPMCs). We found that high concentrations of glucose induced epithelial-to-mesenchymal transition (EMT) of HPMC, suggested by decreased expression of E-cadherin and increased expression of alpha-smooth muscle actin, fibronectin, and type I collagen and by increased cell migration. Normalization of glucose concentration on day 2 reversed the phenotypic transformation, but the changes were irreversible after 7 d of stimulation with high glucose. In addition, exposure of HPMC to high glucose resulted in a decreased expression of the antifibrotic cytokines, hepatocyte growth factor (HGF) and bone morphogenic protein 7 (BMP-7). Exogenous treatment with HGF resulted in a dosage-dependent prevention of high glucose-induced EMT. Both BMP-7 peptide and gene transfection with an adenoviral vector of BMP-7 also protected HPMCs from EMT. Furthermore, adenoviral BMP-7 transfection decreased peritoneal EMT and ameliorated peritoneal thickening in an animal model of peritoneal dialysis. In summary, high concentrations of glucose induce a reversible EMT of HPMCs, associated with decreased production of HGF and BMP-7. Treatment of HPMCs with HGF or BMP-7 blocks high glucose-induced EMT, and BMP-7 ameliorates peritoneal fibrosis in an animal model of peritoneal dialysis.
Collapse
Affiliation(s)
- Min-A Yu
- Division of Nephrology, Ewha University School of Medicine, Yangchun-Ku, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Yang YL, Liu YS, Chuang LY, Guh JY, Lee TC, Liao TN, Hung MY, Chiang TA. Bone morphogenetic protein-2 antagonizes renal interstitial fibrosis by promoting catabolism of type I transforming growth factor-beta receptors. Endocrinology 2009; 150:727-740. [PMID: 18832104 DOI: 10.1210/en.2008-0090] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta is a therapeutic target for renal fibrosis. Scientists have long sought ways to antagonize TGF-beta to ameliorate diabetic nephropathy. Bone morphogenetic protein (BMP-2) is a member of the TGF-beta superfamily and is highly regulated in the kidney. Thus, the role of BMP-2 was investigated in NRK-49F cells (rat fibroblasts). We showed that TGF-beta1 induces an increase in fibronectin. Treatment with exogenous BMP-2 or pCMV-BMP-2 significantly reversed the TGF-beta1-induced increase in fibronectin concomitant with a significant decrease in type I TGF-beta receptors (TGF-beta RI). Moreover, BMP-2 significantly shortened the half-life of TGF-beta RI. These results are related to proteosomal activation because MG132, a proteasome inhibitor, abolished BMP-2-mediated degradation of TGF-beta RI. This was confirmed because BMP-2 time course dependently enhanced the ubiquitination level of TGF-beta RI. In addition, Smads would seem to be involved in the interaction of BMP-2 and TGF-beta. We demonstrated that BMP-2 significantly reversed the TGF-beta1-induced increase in pSmad2/3 and reversed the TGF-beta1-induced decrease in inhibitory Smad7. Most importantly, Smad7 small interfering RNA abolished the BMP-2-induced decrease in TGF-beta RI. We evaluated the clinical efficacy of BMP-2 using unilateral ureteral obstruction rats. BMP-2 was administered ip for 7 d. In the unilateral ureteral obstruction kidneys, interstitial fibrosis was prominent. However, treatment with BMP-2 dramatically reduced Masson's trichrome staining (collagen) in the interstitial and tubular areas of the kidneys concomitantly with a reduction in TGF-beta RI. These results suggest that BMP-2 acts as a novel fibrosis antagonizing cytokine partly by down-regulating TGF-beta RI and Smads.
Collapse
Affiliation(s)
- Yu-Lin Yang
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|