51
|
Abstract
Muscle dysfunction often occurs in patients with chronic obstructive pulmonary disease (COPD) and may involve both respiratory and locomotor (peripheral) muscles. The loss of strength and/or endurance in the former can lead to ventilatory insufficiency, whereas in the latter it limits exercise capacity and activities of daily life. Muscle dysfunction is the consequence of complex interactions between local and systemic factors, frequently coexisting in COPD patients. Pulmonary hyperinflation along with the increase in work of breathing that occur in COPD appear as the main contributing factors to respiratory muscle dysfunction. By contrast, deconditioning seems to play a key role in peripheral muscle dysfunction. However, additional systemic factors, including tobacco smoking, systemic inflammation, exercise, exacerbations, nutritional and gas exchange abnormalities, anabolic insufficiency, comorbidities and drugs, can also influence the function of both respiratory and peripheral muscles, by inducing modifications in their local microenvironment. Under all these circumstances, protein metabolism imbalance, oxidative stress, inflammatory events, as well as muscle injury may occur, determining the final structure and modulating the function of different muscle groups. Respiratory muscles show signs of injury as well as an increase in several elements involved in aerobic metabolism (proportion of type I fibers, capillary density, and aerobic enzyme activity) whereas limb muscles exhibit a loss of the same elements, injury, and a reduction in fiber size. In the present review we examine the current state of the art of the pathophysiology of muscle dysfunction in COPD.
Collapse
Affiliation(s)
- Joaquim Gea
- Servei de Pneumologia, Hospital del Mar-IMIM, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), ISCIII, Bunyola, Spain
| | - Alvar Agustí
- CIBER de Enfermedades Respiratorias (CIBERES), ISCIII, Bunyola, Spain
- Servei de Pneumologia, Institut del Tòrax. Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain; and
- Fundació Investigació Sanitària Illes Balears (FISIB), Mallorca, Spain
| | - Josep Roca
- CIBER de Enfermedades Respiratorias (CIBERES), ISCIII, Bunyola, Spain
- Servei de Pneumologia, Institut del Tòrax. Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain; and
| |
Collapse
|
52
|
Remels AHV, Gosker HR, Langen RCJ, Schols AMWJ. The mechanisms of cachexia underlying muscle dysfunction in COPD. J Appl Physiol (1985) 2013; 114:1253-62. [DOI: 10.1152/japplphysiol.00790.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.
Collapse
Affiliation(s)
- A. H. V. Remels
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - H. R. Gosker
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - R. C. J. Langen
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - A. M. W. J. Schols
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
| |
Collapse
|
53
|
Meyer A, Zoll J, Charles AL, Charloux A, de Blay F, Diemunsch P, Sibilia J, Piquard F, Geny B. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol 2013; 98:1063-78. [DOI: 10.1113/expphysiol.2012.069468] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Abstract
Neuromotor control of skeletal muscles, including respiratory muscles, is ultimately dependent on the structure and function of the motor units (motoneurons and the muscle fibers they innervate) comprising the muscle. In most muscles, considerable diversity of contractile and fatigue properties exists across motor units, allowing a range of motor behaviors. In diseases such as chronic obstructive pulmonary disease (COPD), there may be disproportional primary (disease related) or secondary effects (related to treatment or other concomitant factors) on the size and contractility of specific muscle fiber types that would influence the relative contribution of different motor units. For example, with COPD there is a disproportionate atrophy of type IIx and/or IIb fibers that comprise more fatigable motor units. Thus fatigue resistance may appear to improve, while overall motor performance (e.g., 6-min walk test) and endurance (e.g., reduced aerobic exercise capacity) are diminished. There are many coexisting factors that might also influence motor performance. For example, in COPD patients, there may be concomitant hypoxia and/or hypercapnia, physical inactivity and unloading of muscles, and corticosteroid treatment, all of which may disproportionately affect specific muscle fiber types, thereby influencing neuromotor control. Future studies should address how plasticity in motor units can be harnessed to mitigate the functional impact of COPD-induced changes.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
55
|
Barreiro E, Sznajder JI. Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction. J Appl Physiol (1985) 2013; 114:1263-72. [PMID: 23305984 DOI: 10.1152/japplphysiol.01027.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Quadriceps muscle dysfunction occurs in one-third of patients with chronic obstructive pulmonary disease (COPD) in very early stages of their condition, even prior to the development of airway obstruction. Among several factors, deconditioning and muscle mass loss are the most relevant contributing factors leading to this dysfunction. Moreover, epigenetics, defined as the process whereby gene expression is regulated by heritable mechanisms that do not affect DNA sequence, could be involved in the susceptibility to muscle dysfunction, pathogenesis, and progression. Herein, we review the role of epigenetic mechanisms in muscle development and adaptation to environmental factors such as immobilization and exercise, and their implications in the pathophysiology and susceptibility to muscle dysfunction in COPD. The epigenetic modifications identified so far include DNA methylation, histone acetylation and methylation, and non-coding RNAs such as microRNAs (miRNAs). In the present review, we describe the specific contribution of epigenetic mechanisms to the regulation of embryonic myogenesis, muscle structure and metabolism, immobilization, and exercise, and in muscles of COPD patients. Events related to muscle development and regeneration and the response to exercise and immobilization are tightly regulated by epigenetic mechanisms. These environmental factors play a key role in the outcome of muscle mass and function as well as in the susceptibility to muscle dysfunction in COPD. Future research remains to be done to shed light on the specific target pathways of miRNA function and other epigenetic mechanisms in the susceptibility, pathogenesis, and progression of COPD muscle dysfunction.
Collapse
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department-Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIMHospital del Mar, Barcelona Biomedical Research Park (PRBB Barcelona, Spain.
| | | |
Collapse
|
56
|
Puente-Maestu L, Lázaro A, Humanes B. Metabolic derangements in COPD muscle dysfunction. J Appl Physiol (1985) 2013; 114:1282-90. [PMID: 23288549 DOI: 10.1152/japplphysiol.00815.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial muscle alterations are common in patients with chronic obstructive pulmonary disease (COPD) and manifest mainly as decreased oxidative capacity and excessive production of reactive oxygen species (ROS). The significant loss of oxidative capacity observed in the quadriceps of COPD patients is mainly due to reduced mitochondrial content in the fibers, a finding consistent with the characteristic loss of type I fibers observed in that muscle. Decreased oxidative capacity does not directly limit maximum performance; however, it is associated with increased lactate production at lower exercise intensity and reduced endurance. Since type I fiber atrophy does not occur in respiratory muscles, the loss of such fibers in the quadriceps could be to the result of disuse. In contrast, excessive production of ROS and oxidative stress are observed in both the respiratory muscles and the quadriceps of COPD patients. The causes of increased ROS production are not clear, and a number of different mechanisms can play a role. Several mitochondrial alterations in the quadriceps of COPD patients are similar to those observed in diabetic patients, thus suggesting a role for muscle alterations in this comorbidity. Amino acid metabolism is also altered. Expression of peroxisome proliferator-activated receptor-γ coactivator-1α mRNA is low in the quadriceps of COPD patients, which could also be a consequence of type I fiber loss; nevertheless, its response to exercise is not altered. Patterns of muscle cytochrome oxidase gene activation after training differ between COPD patients and healthy subjects, and the profile is consistent with hypoxic stress, even in nonhypoxic patients.
Collapse
Affiliation(s)
- Luis Puente-Maestu
- Servicio de Neumología, Hospital General Gregorio Marañón, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | | | | |
Collapse
|
57
|
Menon MK, Houchen L, Singh SJ, Morgan MD, Bradding P, Steiner MC. Inflammatory and Satellite Cells in the Quadriceps of Patients With COPD and Response to Resistance Training. Chest 2012; 142:1134-1142. [DOI: 10.1378/chest.11-2144] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|