51
|
Geng S, Zhou W. Influence of extrinsic inputs and synaptic gains on dynamics of Wendling's neural mass model: A bifurcation analysis. J Integr Neurosci 2017; 15:463-483. [PMID: 28077003 DOI: 10.1142/s0219635216500254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analyze the neurodynamics attributed by a model proposed by Wendling and co-workers (2002) [Wendling, F., Bartolomei, F., Bellanger, J.J. & Chauvel, P. (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci., 15, 1499.] to explain several different types of electroencephalographic activities. We could find three principal types of steady states when the system parameters change slowly: (i) the model produce a constant output when it is under a state of stable equilibrium point with a constant input. If a small perturbation is introduced (e.g., noisy input), the output changes into noise without oscillatory components, which is related to the normal background activity or low-voltage rapid activity, (ii) Hopf bifurcations lead to stable limit cycles, which we call Hopf cycles. The model generates a rhythmic oscillating output when it is under a state of Hopf cycles, which is related to slow rhythmic activity or slow quasi-sinusoidal activity, (iii) global bifurcations lead to homoclinic limit cycles that appear suddenly at high amplitude, which we call spike cycles. In general, the spike cycles are not harmonic but they have a spike-like appearance (anharmonic oscillation). The model produces a spike-like output when it is under a state of spike cycles, which is related to the sustained discharge of spikes. Finally, the bifurcation analysis demonstrates the influence of the interaction between the excitatory and inhibitory synaptic gains on the dynamics.
Collapse
Affiliation(s)
- Shujuan Geng
- * School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China.,† School of Information & Electric Engineering, Shandong Jianzhu University, Jinan 250101, P. R. China.,‡ Suzhou Institute, Shandong University, Suzhou 215123, P. R. China
| | - Weidong Zhou
- * School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China.,‡ Suzhou Institute, Shandong University, Suzhou 215123, P. R. China
| |
Collapse
|
52
|
Persistent inhibitory circuit defects and disrupted social behaviour following in utero exogenous cannabinoid exposure. Mol Psychiatry 2017; 22:56-67. [PMID: 26976041 PMCID: PMC5025333 DOI: 10.1038/mp.2016.17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/10/2023]
Abstract
Placental transfer of Δ9-tetrahydrocannabinol (THC) during pregnancy has the potential to interfere with endogenous cannabinoid (CB) regulation of fetal nervous system development in utero. Here we examined the effect of maternal CB intake on mouse hippocampal interneurons largely focusing on cholecystokinin-expressing interneurons (CCK-INTs), a prominent CB subtype-1 receptor (CB1R) expressing neuronal population throughout development. Maternal treatment with THC or the synthetic CB1R agonist WIN55,212-2 (WIN) produced a significant loss of CCK-INTs in the offspring. Further, residual CCK-INTs in animals prenatally treated with WIN displayed decreased dendritic complexity. Consistent with these anatomical deficits, pups born to CB-treated dams exhibited compromised CCK-INT-mediated feedforward and feedback inhibition. Moreover, pups exposed to WIN in utero lacked constitutive CB1R-mediated suppression of inhibition from residual CCK-INTs and displayed altered social behavior. Our findings add to a growing list of potential cell/circuit underpinnings that may underlie cognitive impairments in offspring of mothers that abuse marijuana during pregnancy.
Collapse
|
53
|
Amakhin DV, Ergina JL, Chizhov AV, Zaitsev AV. Synaptic Conductances during Interictal Discharges in Pyramidal Neurons of Rat Entorhinal Cortex. Front Cell Neurosci 2016; 10:233. [PMID: 27790093 PMCID: PMC5061778 DOI: 10.3389/fncel.2016.00233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAA R-mediated conductances during two distinct types of interictal discharge (IID) in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAA R channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with early AMPAR and prolonged depolarized GABAA R and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| | - Anton V Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia; Computational Physics Laboratory, Division of Plasma Physics, Atomic Physics and Astrophysics, Ioffe InstituteSaint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| |
Collapse
|
54
|
Y Ho EC, Truccolo W. Interaction between synaptic inhibition and glial-potassium dynamics leads to diverse seizure transition modes in biophysical models of human focal seizures. J Comput Neurosci 2016; 41:225-44. [PMID: 27488433 PMCID: PMC5002283 DOI: 10.1007/s10827-016-0615-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 11/10/2022]
Abstract
How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K (+)] o ) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled: seizures characterized by sustained (∼30-60 Hz) gamma local field potential (LFP) oscillations; seizures where the onset in the propagated site consisted of LFP spikes that later evolved into rhythmic (∼2-3 Hz) spike-wave complexes (SWCs); and seizures where a brief stage of low-amplitude fast-oscillation (∼10-20 Hz) LFPs preceded the SWC activity. Our findings are fourfold: (1) The interaction between elevated [K (+)] o (due to abnormal potassium buffering by glial cells) and the strength of synaptic inhibition plays a predominant role in shaping these three types of seizures. (2) Strengthening of inhibition leads to the onset of sustained narrowband gamma seizures. (3) Transition into SWC seizures is obtained either by the weakening of inhibitory synapses, or by a transient strengthening followed by an inhibitory breakdown (e.g. GABA depletion). This reduction or breakdown of inhibition among fast-spiking (FS) inhibitory interneurons increases their spiking activity and leads them eventually into depolarization block. Ictal spike-wave discharges in the model are then sustained solely by pyramidal neurons. (4) FS cell dynamics are also critical for seizures where the evolution into SWC activity is preceded by low-amplitude fast oscillations. Different levels of elevated [K (+)] o were important for transitions into and maintenance of sustained gamma oscillations and SWC discharges. Overall, our modelling study predicts that the interaction between inhibitory interneurons and [K (+)] o glial buffering under abnormal conditions may explain different types of ictal transitions and dynamics during propagated seizures in human focal epilepsy.
Collapse
Affiliation(s)
- E C Y Ho
- Department of Neuroscience & Institute for Brain Science, Brown University, Providence, RI, USA.
- U.S. Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA.
| | - Wilson Truccolo
- Department of Neuroscience & Institute for Brain Science, Brown University, Providence, RI, USA.
- U.S. Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA.
| |
Collapse
|
55
|
Du M, Li J, Wang R, Wu Y. The influence of potassium concentration on epileptic seizures in a coupled neuronal model in the hippocampus. Cogn Neurodyn 2016; 10:405-14. [PMID: 27668019 PMCID: PMC5018011 DOI: 10.1007/s11571-016-9390-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/14/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022] Open
Abstract
Experiments on hippocampal slices have recorded that a novel pattern of epileptic seizures with alternating excitatory and inhibitory activities in the CA1 region can be induced by an elevated potassium ion (K(+)) concentration in the extracellular space between neurons and astrocytes (ECS-NA). To explore the intrinsic effects of the factors (such as glial K(+) uptake, Na(+)-K(+)-ATPase, the K(+) concentration of the bath solution, and K(+) lateral diffusion) influencing K(+) concentration in the ECS-NA on the epileptic seizures recorded in previous experiments, we present a coupled model composed of excitatory and inhibitory neurons and glia in the CA1 region. Bifurcation diagrams showing the glial K(+) uptake strength with either the Na(+)-K(+)-ATPase pump strength or the bath solution K(+) concentration are obtained for neural epileptic seizures. The K(+) lateral diffusion leads to epileptic seizure in neurons only when the synaptic conductance values of the excitatory and inhibitory neurons are within an appropriate range. Finally, we propose an energy factor to measure the metabolic demand during neuron firing, and the results show that different energy demands for the normal discharges and the pathological epileptic seizures of the coupled neurons.
Collapse
Affiliation(s)
- Mengmeng Du
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| | - Jiajia Li
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| | - Rong Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
56
|
Abdolmaleki A, Moghimi A, Ghayour MB, Rassouli MB. Evaluation of neuroprotective, anticonvulsant, sedative and anxiolytic activity of citicoline in rats. Eur J Pharmacol 2016; 789:275-279. [PMID: 27475676 DOI: 10.1016/j.ejphar.2016.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Citicoline (cytidine-5'-diphosphocholine) is a neuroprotective agent that is administered following ischemic and traumatic brain injuries. There is little information about the antiseizure and anxiolytic effects of citicoline, which are therefore addressed in the present study. For evaluating the anticonvulsant effect of citicoline in the pentylentetrazole seizure model, a single intraperitoneal dose of citicoline was administered at 50, 100 or 150mg/kg. Sedative and anxiolytic effects of citicoline were examined via elevated plus maze and pentobarbital induced sleep tests. Results show that citicoline at the doses of 100 and 150mg/kg significantly delayed the latent period compared with the control (P<0.05). Citicoline at the doses of 100 and 150mg/kg significantly decreased total locomotion compared with the control (P<0.05). Additionally, citicoline at the doses of 100 and 150mg/kg significantly increased both percentage of entry and time spent in the open arms in the elevated plus maze test (P<0.05). The pentobarbital induced sleep test showed that citicoline significantly reduced the latency to sleep (P<0.05). Our results suggest that acute administration of citicoline has anticonvulsant activity and sedative effect.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Moghimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Morteza B Rassouli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
57
|
Wang J, Niebur E, Hu J, Li X. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller. Sci Rep 2016; 6:27344. [PMID: 27273563 PMCID: PMC4895166 DOI: 10.1038/srep27344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 05/18/2016] [Indexed: 11/09/2022] Open
Abstract
Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen's neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme.
Collapse
Affiliation(s)
- Junsong Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Ernst Niebur
- Zanvyl Krieger Mind/Brain Institute and Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jinyu Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiaoli Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
58
|
Amiri S, Haj-Mirzaian A, Amini-khoei H, Momeny M, Shirzadian A, Rahimi-Balaei M, Zarrinrad G, Ghazi-Khansari M, Azizi R, Dehpour AR, Mehr SE. NMDA receptor antagonists attenuate the proconvulsant effect of juvenile social isolation in male mice. Brain Res Bull 2016; 121:158-68. [PMID: 26836272 DOI: 10.1016/j.brainresbull.2016.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/12/2023]
Abstract
Experiencing psychosocial stress in early life, such as social isolation stress (SIS), is known to have negative enduring effects on the development of the brain and behavior. In addition to anxiety and depressive-like behaviors, we previously showed that juvenile SIS increases susceptibility to pentylenetetrazole (PTZ)-induced seizures in mice through enhancing the nitrergic system activity in the hippocampus. In this study, we investigated the possible involvement of N-methyl-D-aspartate (NMDA) receptors in proconvulsant effects of juvenile SIS. Applying 4 weeks of SIS to juvenile male mice at postnatal day 21-23, we observed an increased susceptibility to PTZ as well as anxiety and depressive-like behaviors in adult mice. Intraperitoneal (i.p.) administration of NMDA receptor antagonists, MK-801 (0.05 mg/kg) and ketamine (0.5mg/kg), reversed the proconvulsant effects of SIS in Isolated (and not social) housed animals. Co-administration of non-effective doses of nitric oxide synthase (NOS) inhibitors, 7NI (25mg/kg) and L-NAME (10mg/kg), with NMDA receptor antagonists, MK-801 (0.01 mg/kg) and ketamine (0.1mg/kg) attenuated the proconvulsant effects of juvenile SIS only in isolated housed mice. Also, using real time RT-PCR, we showed that hippocampal upregulation of NR2B subunit of NMDA receptor may play a critical role in proconvulsant effects of juvenile SIS by dysregulation of NMDA/NO pathway. In conclusion, results of present study revealed that experiencing SIS during adolescence predisposes the co-occurrence of seizure disorders with psychiatric comorbidities and also, alteration of NMDA receptor structure and function in hippocampus plays a role in proconvulsant effects of juvenile SIS through enhancing the NMDA/NO pathway.
Collapse
Affiliation(s)
- Shayan Amiri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Amini-khoei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Armin Shirzadian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Ghazaleh Zarrinrad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Ghazi-Khansari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Romina Azizi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shahram Ejtemaei Mehr
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
59
|
Neske GT. The Slow Oscillation in Cortical and Thalamic Networks: Mechanisms and Functions. Front Neural Circuits 2016; 9:88. [PMID: 26834569 PMCID: PMC4712264 DOI: 10.3389/fncir.2015.00088] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/21/2015] [Indexed: 12/03/2022] Open
Abstract
During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz), synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states) and almost complete silence (Down states). The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.
Collapse
Affiliation(s)
- Garrett T Neske
- Department of Neuroscience, Division of Biology and Medicine, Brown UniversityProvidence, RI, USA; Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
60
|
Zhong P, Liu W, Yan Z. Aberrant regulation of synchronous network activity by the attention-deficit/hyperactivity disorder-associated human dopamine D4 receptor variant D4.7 in the prefrontal cortex. J Physiol 2015; 594:135-47. [PMID: 26541360 DOI: 10.1113/jp271317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/29/2015] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS The hD4.7 variant has been linked to attention-deficit/hyperactivity disorder (ADHD); however, the underlying mechanism is unknown. We found that activation of hD4.7 induced over-suppression of glutamatergic excitatory network bursts and under-suppression of GABAergic inhibitory network bursts in the prefrontal cortex (PFC) circuitry. Methylphenidate, a psychostimulant drug used to treat ADHD, normalized the effects of hD4.7 on synchronous network bursts in PFC pyramidal neurons. The findings of the present study suggest that the aberrant regulation of PFC synchronous network activity by hD4.7 may underlie its involvement in ADHD. A unique feature of the human D4 receptor (hD4 R) gene is the existence of a large number of polymorphisms in exon 3 coding for the third intracellular loop, which consists of a variable number of tandem repeats. The hD4 R variants with long repeats have been linked to attention-deficit/hyperactivity disorder (ADHD); however, the underlying mechanism is unknown. Emerging evidence suggests that selective attention is controlled by the rhythmic synchronization in the prefrontal cortex (PFC) and its connected networks. In the present study, we examined the role of hD4 R variants in regulating PFC synchronous network activity. D4 R knockout mice with viral infection of hD4.4 or hD4.7 in the medial PFC were used. Whole-cell patch-clamp recordings were performed to examine the effects of activating hD4.x on the spontaneous large scale correlated activity in PFC pyramidal neurons. We found that, compared to the normal four-repeat variant hD4.4, the ADHD-linked variant hD4.7 induces more suppression of glutamatergic excitatory network bursts and less suppression of GABAergic inhibitory network bursts in the PFC circuitry. Methylphenidate, a psychostimulant drug used to treat ADHD, normalized the effects of hD4.7 on synchronous network bursts in PFC pyramidal neurons. These results reveal the differential effects of hD4 R variants on the integrated excitability of PFC circuits. It is suggested that the aberrant regulation of PFC network activity by hD4.7 may underlie its involvement in ADHD. The methylphenidate-induced normalization of synaptic circuitry regulation may contribute to its effectiveness in ADHD treatment.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,VA Western New York Healthcare System, Buffalo, NY, USA
| | - Wenhua Liu
- Department of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,School of Lifescience, Zhaoqing University, Zhaoqing, China
| | - Zhen Yan
- Department of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,VA Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
61
|
Finding Order in Human Neurological Disorder Using a Tadpole. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
Liang R, Broussard GJ, Tian L. Imaging chemical neurotransmission with genetically encoded fluorescent sensors. ACS Chem Neurosci 2015; 6:84-93. [PMID: 25565280 DOI: 10.1021/cn500280k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A major challenge in neuroscience is to decipher the logic of neural circuitry and to link it to learning, memory, and behavior. Synaptic transmission is a critical event underlying information processing within neural circuitry. In the extracellular space, the concentrations and distributions of excitatory, inhibitory, and modulatory neurotransmitters impact signal integration, which in turn shapes and refines the function of neural networks. Thus, the determination of the spatiotemporal relationships between these chemical signals with synaptic resolution in the intact brain is essential to decipher the codes for transferring information across circuitry and systems. Here, we review approaches and probes that have been employed to determine the spatial and temporal extent of neurotransmitter dynamics in the brain. We specifically focus on the design, screening, characterization, and application of genetically encoded indicators directly probing glutamate, the most abundant excitatory neurotransmitter. These indicators provide synaptic resolution of glutamate dynamics with cell-type specificity. We also discuss strategies for developing a suite of genetically encoded probes for a variety of neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- Ruqiang Liang
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| | - Gerard Joseph Broussard
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| | - Lin Tian
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| |
Collapse
|
63
|
Woldman W, Terry JR. Multilevel Computational Modelling in Epilepsy: Classical Studies and Recent Advances. VALIDATING NEURO-COMPUTATIONAL MODELS OF NEUROLOGICAL AND PSYCHIATRIC DISORDERS 2015. [DOI: 10.1007/978-3-319-20037-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
64
|
Nenov MN, Tempia F, Denner L, Dineley KT, Laezza F. Impaired firing properties of dentate granule neurons in an Alzheimer's disease animal model are rescued by PPARγ agonism. J Neurophysiol 2014; 113:1712-26. [PMID: 25540218 PMCID: PMC4359997 DOI: 10.1152/jn.00419.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Early cognitive impairment in Alzheimer's disease (AD) correlates with medial temporal lobe dysfunction, including two areas essential for memory formation: the entorhinal cortex and dentate gyrus (DG). In the Tg2576 animal model for AD amyloidosis, activation of the peroxisome proliferator-activated receptor-gamma (PPARγ) with rosiglitazone (RSG) ameliorates hippocampus-dependent cognitive impairment and restores aberrant synaptic activity at the entorhinal cortex to DG granule neuron inputs. It is unknown, however, whether intrinsic firing properties of DG granule neurons in these animals are affected by amyloid-β pathology and if they are sensitive to RSG treatment. Here, we report that granule neurons from 9-mo-old wild-type and Tg2576 animals can be segregated into two cell types with distinct firing properties and input resistance that correlate with less mature type I and more mature type II neurons. The DG type I cell population was greater than type II in wild-type littermates. In the Tg2576 animals, the type I and type II cell populations were nearly equal but could be restored to wild-type levels through cognitive enhancement with RSG. Furthermore, Tg2576 cell firing frequency and spike after depolarization were decreased in type I and increased in type II cells, both of which could also be restored to wild-type levels upon RSG treatment. That these parameters were restored by PPARγ activation emphasizes the therapeutic value of RSG against early AD cognitive impairment.
Collapse
Affiliation(s)
- Miroslav N Nenov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas
| | - Filippo Tempia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas
| | - Larry Denner
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; Center for Addiction Research, The University of Texas Medical Branch, Galveston, Texas; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas; and
| | - Kelly T Dineley
- Department of Neurology, The University of Texas Medical Branch, Galveston, Texas; Center for Addiction Research, The University of Texas Medical Branch, Galveston, Texas; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas; and
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas; Center for Addiction Research, The University of Texas Medical Branch, Galveston, Texas; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas; and Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
65
|
Gheyara AL, Ponnusamy R, Djukic B, Craft RJ, Ho K, Guo W, Finucane MM, Sanchez PE, Mucke L. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann Neurol 2014; 76:443-56. [PMID: 25042160 PMCID: PMC4338764 DOI: 10.1002/ana.24230] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
Objective Reducing levels of the microtubule-associated protein tau has shown promise as a potential treatment strategy for diseases with secondary epileptic features such as Alzheimer disease. We wanted to determine whether tau reduction may also be of benefit in intractable genetic epilepsies. Methods We studied a mouse model of Dravet syndrome, a severe childhood epilepsy caused by mutations in the human SCN1A gene encoding the voltage-gated sodium channel subunit Nav1.1. We genetically deleted 1 or 2 Tau alleles in mice carrying an Nav1.1 truncation mutation (R1407X) that causes Dravet syndrome in humans, and examined their survival, epileptic activity, related hippocampal alterations, and behavioral abnormalities using observation, electroencephalographic recordings, acute slice electrophysiology, immunohistochemistry, and behavioral assays. Results Tau ablation prevented the high mortality of Dravet mice and reduced the frequency of spontaneous and febrile seizures. It reduced interictal epileptic spikes in vivo and drug-induced epileptic activity in brain slices ex vivo. Tau ablation also prevented biochemical changes in the hippocampus indicative of epileptic activity and ameliorated abnormalities in learning and memory, nest building, and open field behaviors in Dravet mice. Deletion of only 1 Tau allele was sufficient to suppress epileptic activity and improve survival and nesting performance. Interpretation Tau reduction may be of therapeutic benefit in Dravet syndrome and other intractable genetic epilepsies. Ann Neurol 2014;76:443–456
Collapse
Affiliation(s)
- Ania L Gheyara
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA; Departments of Pathology, University of California, San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Wei Y, Ullah G, Ingram J, Schiff SJ. Oxygen and seizure dynamics: II. Computational modeling. J Neurophysiol 2014; 112:213-23. [PMID: 24671540 DOI: 10.1152/jn.00541.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrophysiological recordings show intense neuronal firing during epileptic seizures leading to enhanced energy consumption. However, the relationship between oxygen metabolism and seizure patterns has not been well studied. Recent studies have developed fast and quantitative techniques to measure oxygen microdomain concentration during seizure events. In this article, we develop a biophysical model that accounts for these experimental observations. The model is an extension of the Hodgkin-Huxley formalism and includes the neuronal microenvironment dynamics of sodium, potassium, and oxygen concentrations. Our model accounts for metabolic energy consumption during and following seizure events. We can further account for the experimental observation that hypoxia can induce seizures, with seizures occurring only within a narrow range of tissue oxygen pressure. We also reproduce the interplay between excitatory and inhibitory neurons seen in experiments, accounting for the different oxygen levels observed during seizures in excitatory vs. inhibitory cell layers. Our findings offer a more comprehensive understanding of the complex interrelationship among seizures, ion dynamics, and energy metabolism.
Collapse
Affiliation(s)
- Yina Wei
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida; Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio; and
| | - Justin Ingram
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Steven J Schiff
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania; Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio; and Departments of Neurosurgery and Physics, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
67
|
Ingram J, Zhang C, Cressman JR, Hazra A, Wei Y, Koo YE, Žiburkus J, Kopelman R, Xu J, Schiff SJ. Oxygen and seizure dynamics: I. Experiments. J Neurophysiol 2014; 112:205-12. [PMID: 24598521 DOI: 10.1152/jn.00540.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We utilized a novel ratiometric nanoquantum dot fluorescence resonance energy transfer (NQD-FRET) optical sensor to quantitatively measure oxygen dynamics from single cell microdomains during hypoxic episodes as well as during 4-aminopyridine (4-AP)-induced spontaneous seizure-like events in rat hippocampal slices. Coupling oxygen sensing with electrical recordings, we found the greatest reduction in the O2 concentration ([O2]) in the densely packed cell body stratum (st.) pyramidale layer of the CA1 and differential layer-specific O2 dynamics between the st. pyramidale and st. oriens layers. These hypoxic decrements occurred up to several seconds before seizure onset could be electrically measured extracellularly. Without 4-AP, we quantified a narrow range of [O2], similar to the endogenous hypoxia found before epileptiform activity, which permits a quiescent network to enter into a seizure-like state. We demonstrated layer-specific patterns of O2 utilization accompanying layer-specific neuronal interplay in seizure. None of the oxygen overshoot artifacts seen with polarographic measurement techniques were observed. We therefore conclude that endogenously generated hypoxia may be more than just a consequence of increased cellular excitability but an influential and critical factor for orchestrating network dynamics associated with epileptiform activity.
Collapse
Affiliation(s)
- Justin Ingram
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Chunfeng Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania; Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, China
| | - John R Cressman
- Department of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, Virginia
| | - Anupam Hazra
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Yina Wei
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Yong-Eun Koo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan; and
| | - Jokūbas Žiburkus
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan; and
| | - Jian Xu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Steven J Schiff
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania; Departments of Neurosurgery and Physics, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
68
|
Sedigh-Sarvestani M, Thuku GI, Sunderam S, Parkar A, Weinstein SL, Schiff SJ, Gluckman BJ. Rapid eye movement sleep and hippocampal theta oscillations precede seizure onset in the tetanus toxin model of temporal lobe epilepsy. J Neurosci 2014; 34:1105-14. [PMID: 24453303 PMCID: PMC3898281 DOI: 10.1523/jneurosci.3103-13.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/09/2023] Open
Abstract
Improved understanding of the interaction between state of vigilance (SOV) and seizure onset has therapeutic potential. Six rats received injections of tetanus toxin (TeTX) in the ventral hippocampus that resulted in chronic spontaneous seizures. The distribution of SOV before 486 seizures was analyzed for a total of 19 d of recording. Rapid eye movement sleep (REM) and exploratory wake, both of which express prominent hippocampal theta rhythm, preceded 47 and 34%, for a total of 81%, of all seizures. Nonrapid eye movement sleep (NREM) and nonexploratory wake, neither of which expresses prominent theta, preceded 6.8 and 13% of seizures. We demonstrate that identification of SOV yields significant differentiation of seizure susceptibilities, with the instantaneous seizure rate during REM nearly 10 times higher than baseline and the rate for NREM less than half of baseline. Survival analysis indicated a shorter duration of preseizure REM bouts, with a maximum transition to seizure at ∼90 s after the onset of REM. This study provides the first analysis of a correlation between SOV and seizure onset in the TeTX model of temporal lobe epilepsy, as well as the first demonstration that hippocampal theta rhythms associated with natural behavioral states can serve a seizure-promoting role. Our findings are in contrast with previous studies suggesting that the correlations between SOV and seizures are primarily governed by circadian oscillations and the notion that hippocampal theta rhythms inhibit seizures. The documentation of significant SOV-dependent seizure susceptibilities indicates the potential utility of SOV and its time course in seizure prediction and control.
Collapse
Affiliation(s)
| | - Godfrey I. Thuku
- Center for Neural Engineering, Departments of Engineering Science and Mechanics
| | - Sridhar Sunderam
- Center for Neural Engineering, Departments of Engineering Science and Mechanics
| | - Anjum Parkar
- Center for Neural Engineering, Departments of Engineering Science and Mechanics
| | - Steven L. Weinstein
- Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Steven J. Schiff
- Center for Neural Engineering, Departments of Engineering Science and Mechanics
- Neurosurgery
- Physics, and
| | - Bruce J. Gluckman
- Center for Neural Engineering, Departments of Engineering Science and Mechanics
- Neurosurgery
- Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802, and
| |
Collapse
|
69
|
Brehme H, Kirschstein T, Schulz R, Köhling R. In vivo treatment with the casein kinase 2 inhibitor 4,5,6,7-tetrabromotriazole augments the slow afterhyperpolarizing potential and prevents acute epileptiform activity. Epilepsia 2013; 55:175-83. [DOI: 10.1111/epi.12474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hannes Brehme
- Oscar Langendorff Institute of Physiology; University of Rostock; Rostock Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology; University of Rostock; Rostock Germany
| | - Robert Schulz
- Oscar Langendorff Institute of Physiology; University of Rostock; Rostock Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology; University of Rostock; Rostock Germany
| |
Collapse
|
70
|
GABA(B) autoreceptor-mediated cell type-specific reduction of inhibition in epileptic mice. Proc Natl Acad Sci U S A 2013; 110:15073-8. [PMID: 23980149 DOI: 10.1073/pnas.1313505110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GABA(B) receptors (GABA(B)Rs) mediate slow inhibitory effects on neuronal excitability and synaptic transmission in the brain. However, the GABA(B)R agonist baclofen can also promote excitability and seizure generation in human patients and animals models. Here we show that baclofen has concentration-dependent effects on the hippocampal network in a mouse model of mesial temporal lobe epilepsy. Application of baclofen at a high dose (10 mg/kg i.p.) reduced the power of γ oscillations and the frequency of pathological discharges in the Cornu Ammonis area 3 (CA3) area of freely moving epileptic mice. Unexpectedly, at a lower dose (1 mg/kg), baclofen markedly increased γ activity accompanied by a higher incidence of pathological discharges. Intracellular recordings from CA3 pyramidal cells in vitro further revealed that, although at a high concentration (10 µM), baclofen invariably resulted in hyperpolarization, at low concentrations (0.5 µM), the drug had divergent effects, producing depolarization and an increase in firing frequency in epileptic but not control mice. These excitatory effects were mediated by the selective muting of inhibitory cholecystokinin-positive basket cells (CCK(+) BCs), through enhanced inhibition of GABA release via presynaptic GABA(B)Rs. We conclude that cell type-specific up-regulation of GABA(B)R-mediated autoinhibition in CCK(+) BCs promotes aberrant high frequency oscillations and hyperexcitability in hippocampal networks of chronic epileptic mice.
Collapse
|