51
|
Obeso J, Jahanshahi M, Alvarez L, Macias R, Pedroso I, Wilkinson L, Pavon N, Day B, Pinto S, Rodríguez-Oroz M, Tejeiro J, Artieda J, Talelli P, Swayne O, Rodríguez R, Bhatia K, Rodriguez-Diaz M, Lopez G, Guridi J, Rothwell J. What can man do without basal ganglia motor output? The effect of combined unilateral subthalamotomy and pallidotomy in a patient with Parkinson's disease. Exp Neurol 2009; 220:283-92. [DOI: 10.1016/j.expneurol.2009.08.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/26/2009] [Accepted: 08/30/2009] [Indexed: 11/27/2022]
|
52
|
Tunik E, Houk JC, Grafton ST. Basal ganglia contribution to the initiation of corrective submovements. Neuroimage 2009; 47:1757-66. [PMID: 19422921 PMCID: PMC6368854 DOI: 10.1016/j.neuroimage.2009.04.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/07/2009] [Accepted: 04/16/2009] [Indexed: 12/01/2022] Open
Abstract
We investigated the neural processes, with a focus on subcortical circuits, which govern corrective submovements in visually targeted action. During event-related fMRI, subjects moved a cursor to capture targets presented at varying movement amplitudes. Movements were performed in a rehearsed null and a novel viscous (25% random trials) torque field. Movement error feedback was provided after each trial. The viscous field invoked a significantly larger error at the end of the primary movement. Subjects compensated by producing more corrections than they had in the null condition. Corrective submovements were appropriately scaled such that terminal error was similar between the two conditions. Parametric analysis identified two regions where the BOLD signal correlated with the number of submovements per trial: a cerebellar region similar to the one noted in the task contrast and the contralateral dorsal putamen. A separate parametric analysis identified brain regions where activity correlated with movement amplitude. This identified the same cerebellar region as above, bilateral parietal cortex, and left motor and premotor cortex. Our data indicate that the basal ganglia and cerebellum play complementary roles in regulating ongoing actions when precise updating is required. The basal ganglia have a key role in contextually-based motor decision-making, i.e. for deciding if and when to correct a given movement by initiating corrective submovements, and the cerebellum is more generally involved in amplifying and refining the command signals for movements of different amplitudes.
Collapse
Affiliation(s)
- Eugene Tunik
- Department of Rehabilitation and Movement Science, University of Medicine and Dentistry of New Jersey, Newark, NJ, 07107, USA
| | - James C. Houk
- Department of Physiology M211, The Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Scott T. Grafton
- Sage Center for the Study of Mind and the Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755, USA
| |
Collapse
|
53
|
Brown AR, Hu B, Antle MC, Teskey GC. Neocortical movement representations are reduced and reorganized following bilateral intrastriatal 6-hydroxydopamine infusion and dopamine type-2 receptor antagonism. Exp Neurol 2009; 220:162-70. [PMID: 19703443 DOI: 10.1016/j.expneurol.2009.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
The neurophysiologic model of Parkinson's disease predicts nigrostriatal dopamine depletion leads to increased inhibitory basal ganglia output resulting in frontal neocortical hypoactivity. The nature of this hypoactivation is not well understood and modeled predominantly by a unilateral representation. Intracortical microstimulation (ICMS) was used to probe topographic movement representations of the left forelimb motor area 2 weeks following sham, unilateral left hemisphere or bilateral intrastriatal 6-hydroxydopamine (6-OHDA) infusion and under acute dopamine receptor antagonism with haloperidol in non-lesioned rats. 6-OHDA infusions induced a significant loss of substantia nigra pars compacta (SNc) dopamine neurons. Bilateral SNc lesions and haloperidol significantly reduced map area which was preserved in unilateral lesions. All lesion conditions and haloperidol induced significant map reorganization, characterized by increased representation of distal forelimb movements. Results suggest basal ganglia dopamine deficiency can affect the topographic organization of sensorimotor neocortex and lead to significant reduction in the size of motor representations. We conclude that the neurophysiologic model is supported but that bilateral loss of dopamine is required to see a reduction in the size of motor maps.
Collapse
Affiliation(s)
- Andrew R Brown
- Department of Neuroscience, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
54
|
Kimchi EY, Torregrossa MM, Taylor JR, Laubach M. Neuronal correlates of instrumental learning in the dorsal striatum. J Neurophysiol 2009; 102:475-89. [PMID: 19439679 DOI: 10.1152/jn.00262.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded neuronal activity simultaneously in the medial and lateral regions of the dorsal striatum as rats learned an operant task. The task involved making head entries into a response port followed by movements to collect rewards at an adjacent reward port. The availability of sucrose reward was signaled by an acoustic stimulus. During training, animals showed increased rates of responding and came to move rapidly and selectively, following the stimulus, from the response port to the reward port. Behavioral "devaluation" studies, pairing sucrose with lithium chloride, established that entries into the response port were habitual (insensitive to devaluation of sucrose) from early in training and entries into the reward port remained goal-directed (sensitive to devaluation) throughout training. Learning-related changes in behavior were paralleled by changes in neuronal activity in the dorsal striatum, with an increasing number of neurons showing task-related firing over the training period. Throughout training, we observed more task-related neurons in the lateral striatum compared with those in the medial striatum. Many of these neurons fired at higher rates during initiation of movements in the presence of the stimulus, compared with similar movements in the absence of the stimulus. Learning was also accompanied by progressive increases in movement-related potentials and transiently increased theta-band oscillations (5-8 Hz) in simultaneously recorded field potentials. Together, these data suggest that representations of task-relevant stimuli and movements develop in the dorsal striatum during instrumental learning.
Collapse
Affiliation(s)
- Eyal Y Kimchi
- Interdepartmental Neuroscience Program, Yale University, Connecticut Mental Health Center, Abraham Ribicoff Research Facilities, John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06519, USA
| | | | | | | |
Collapse
|
55
|
Abstract
Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives input from a neuronal timer that paces end-effector motion along its path. Within this dynamics, virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity vectors that do not. Moreover, the sensed real joint configuration is coupled back into this neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations from the dynamic movement plan. Experimental data from participants who perform in the same task setting as the model are compared in detail to the model predictions. We discover that joint velocities contain a substantial amount of self-motion that does not move the end effector. This is caused by the low impedance of muscle joint systems and by coupling among muscle joint systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We establish a link between the amount of self-motion and how curved the end-effector path is. We show that models in which an inverse dynamics cancels interaction torques predict too little self-motion and too straight end-effector paths.
Collapse
Affiliation(s)
- V. Martin
- Institut für Neuroinformatik, Ruhr-Universität Bochum NRW 44801, Germany
| | - J. P. Scholz
- Department of Physical Therapy and Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, U.S.A
| | - G. Schöner
- Institut für Neuroinformatik, Ruhr-Universität Bochum NRW 44801, Germany
| |
Collapse
|
56
|
Viviani P, Burkhard PR, Catalano Chiuvé S, Corradi-Dell'Acqua C, Vindras P. Velocity control in Parkinson's disease: a quantitative analysis of isochrony in scribbling movements. Exp Brain Res 2009; 194:259-83. [PMID: 19153724 DOI: 10.1007/s00221-008-1695-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
An experiment was conducted to contrast the motor performance of three groups (N = 20) of participants: (1) patients with confirmed Parkinson Disease (PD) diagnose; (2) age-matched controls; (3) young adults. The task consisted of scribbling freely for 10 s within circular frames of different sizes. Comparison among groups focused on the relation between the figural elements of the trace (overall size and trace length) and the velocity of the drawing movements. Results were analysed within the framework of previous work on normal individuals showing that instantaneous velocity of drawing movements depends jointly on trace curvature (Two-thirds Power Law) and trace extent (Isochrony principle). The motor behaviour of PD patients exhibited all classical symptoms of the disease (reduced average velocity, reduced fluency, micrographia). At a coarse level of analysis both isochrony and the dependence of velocity on curvature, which are supposed to reflect cortical mechanisms, were spared in PD patients. Instead, significant differences with respects to the control groups emerged from an in-depth analysis of the velocity control suggesting that patients did not scale average velocity as effectively as controls. We factored out velocity control by distinguishing the influence of the broad context in which movement is planned--i.e. the size of the limiting frames--from the influence of the local context--i.e. the linear extent of the unit of motor action being executed. The balance between the two factors was found to be distinctively different in PD patients and controls. This difference is discussed in the light of current theorizing on the role of cortical and sub-cortical mechanisms in the aetiology of PD. We argue that the results are congruent with the notion that cortical mechanisms are responsible for generating a parametric template of the desired movement and the BG specify the actual spatio-temporal parameters through a multiplicative gain factor acting on both size and velocity.
Collapse
Affiliation(s)
- Paolo Viviani
- Faculty of Psychology and Educational Sciences, University of Geneva, 40, Boulevard du Pont d'Arve 1205, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
57
|
Abstract
Non-human primates have been used to model psychiatric disease for several decades. The success of this paradigm has issued from comparable cognitive skills, brain morphology, and social complexity in adult monkeys and humans. Recently, interest in biological psychiatry has focused on similar brain, social, and emotional developmental processes in monkeys. In part, this is related to evidence that early postnatal experiences in human development may have profound implications for subsequent mental health. Non-human primate studies of postnatal phenomenon have generally fallen into three basic categories: experiential manipulation (largely manipulations of rearing), pharmacological manipulation (eg drug-induced psychosis), and anatomical localization (defined by strategic surgical damage). Although these efforts have been very informative each of them has certain limitations. In this review we highlight general findings from the non-human primate postnatal developmental literature and their implications for primate models in psychiatry. We argue that primates are uniquely capable of uncovering interactions between genes, environmental challenges, and development resulting in altered risk for psychopathology.
Collapse
|
58
|
Nambu A. Seven problems on the basal ganglia. Curr Opin Neurobiol 2008; 18:595-604. [PMID: 19081243 DOI: 10.1016/j.conb.2008.11.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/27/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
Abstract
Our knowledge on the functions of the basal ganglia has increased enormously during the last two decades. However, we still do not completely understand the primary function of the basal ganglia. In this article, I review fundamental problems on the basal ganglia that have emerged from recent findings, and propose their solutions in the following seven topics: first, organization of the cortico-basal ganglia loop, second, limitations of the 'direct and indirect pathways model', third, feedforward inhibition in the striatum, fourth, contribution of the basal ganglia to cortical activity through the thalamus, fifth, focused selection of movements and learning, sixth, firing rate model versus firing pattern model for the pathophysiology of movement disorders, and lastly mechanisms of stereotaxic surgery.
Collapse
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan.
| |
Collapse
|
59
|
|