51
|
|
52
|
|
53
|
|
54
|
Do we need two souls to explain cooperation? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
55
|
Acoustic reflex partitioning in the stapedius. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
56
|
Reflex partitioning and differential control of human motor units. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
57
|
Abstract
AbstractStudies have shown that in the mammalian neuromuscular system stretch reflexes are localized within individual muscles. Neuromuscular compartmentalization, the partitioning of sensory output from muscles, and the partitioning of segmental pathways to motor nuclei have also been demonstrated. This evidence indicates that individual motor nuclei and the muscles they innervate are not homogeneous functional units. An analysis of the functional significance of reflex localization and partitioning suggests that segmental control mechanisms are based on subdivisions of motor nuclei–muscle complexes. A partitioned organization of segmental control mechanisms could utilize (1) the potential functional diversity of muscle fiber types, (2) the variety of mechanical actions of individual muscles arising from their distributed origins and insertions, and (3) diverse architectural features such as intramuscular variations in pinnation and complex in-series and in-parallel arrangements of muscle fibers. The differentiated activity observed in some muscles during natural movements also calls for localized segmental control mechanisms. Partitioning may also play a role in mechanical interactions between contracting motor units and in increasing the stability of neuromuscular systems. The functional advantages of reflex localization and partitioning suggest they are probably common features of segmental systems, whose organization reflects the structure and function of their associated neuromuscular systems.
Collapse
|
58
|
On the regional distribution of muscle spindles. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x0002522x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
59
|
|
60
|
|
61
|
|
62
|
|
63
|
|
64
|
|
65
|
|
66
|
|
67
|
Central versus peripheral aspects of neuromuscular regionalization. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
68
|
Functional partitioning of motor unit populations. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
69
|
Is sensory-motor partitioning a good hypothesis? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
70
|
Clumping and splitting in the neuromuscular system. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
71
|
|
72
|
|
73
|
|
74
|
Winning “20 Questions” with mathematical models. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
75
|
Categorical/continuous perception: A phenomenon pressed into different models. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x0002570x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
76
|
|
77
|
|
78
|
Counting contributions. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
79
|
|
80
|
Multiple Book Review of Speech perception by ear and eye: A paradigm for psychological inquiry. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025619] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThis book is about the processing of information in face-to-face communication when a speaker makes both audible and visible information available to a perceiver. Both auditory and visual sources of information are evaluated and integrated to achieve speech perception. The evaluation of the information source provides information about the strength of alternative interpretations, rather than just all-or-none categorical information, as claimed by “categorical perception” theory. Information sources are evaluated independently; the integration process insures that the least ambiguous sources have the most influences on the judgment. Similar processes occur in a variety of other behaviors, ranging from personality judgments and categorization to sentence interpretation and decision making. The experimental results are consistent with a fuzzy logical model of perception, positing three operations in perceptual (primary) recognition: feature evaluation, feature integration, and pattern classification. Continuously valued features are first evaluated, then integrated and matched against prototype descriptions in memory; finally, an identification decision is made on the basis of the relative goodness-of-match of the stimulus information with the relevant prototype descriptions.
Collapse
|
81
|
|
82
|
|
83
|
|
84
|
The rationality of cooperation. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
85
|
Straw modules. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
86
|
How best to critique egoism? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
87
|
Properties of synaptic transmission from the reticular formation dorsal to the facial nucleus to trigeminal motoneurons during early postnatal development in rats. Neuroscience 2010; 166:1008-22. [PMID: 20060035 DOI: 10.1016/j.neuroscience.2009.12.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 11/30/2009] [Accepted: 12/26/2009] [Indexed: 11/20/2022]
Abstract
We previously reported that electrical stimulation of the reticular formation dorsal to the facial nucleus (RdVII) elicited excitatory masseter responses at short latencies and that RdVII neurons were antidromically activated by stimulation of the trigeminal motor nucleus (MoV), suggesting that excitatory premotor neurons targeting the MoV are likely located in the RdVII. We thus examined the properties of synaptic transmission from the RdVII to jaw-closing and jaw-opening motoneurons in horizontal brainstem preparations from developing rats using voltage-sensitive dye, patch-clamp recordings and laser photostimulation. Electrical stimulation of the RdVII evoked optical responses in the MoV. Combined bath application of the non-N-methyl-d-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (APV) reduced these optical responses, and addition of the glycine receptor antagonist strychnine and the GABA(A) receptor antagonist bicuculline further reduced the remaining responses. Electrical stimulation of the RdVII evoked postsynaptic currents (PSCs) in all 19 masseter motoneurons tested in postnatal day (P)1-4 rats, and application of CNQX and the NMDA receptor antagonist (+/-)-3(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) reduced the PSC amplitudes by more than 50%. In the presence of CNQX and CPP, the GABA(A) receptor antagonist SR95531 further reduced PSC amplitude, and addition of strychnine abolished the remaining PSCs. Photostimulation of the RdVII with caged glutamate also evoked PSCs in masseter motoneurons of P3-4 rats. In P8-11 rats, electrical stimulation of the RdVII also evoked PSCs in all 14 masseter motoneurons tested, and the effects of the antagonists on the PSCs were similar to those in P1-4 rats. On the other hand, RdVII stimulation evoked PSCs in only three of 16 digastric motoneurons tested. These results suggest that both neonatal and juvenile jaw-closing motoneurons receive strong synaptic inputs from the RdVII through activation of glutamate, glycine and GABA(A) receptors, whereas inputs from the RdVII to jaw-opening motoneurons seem to be weak.
Collapse
|
88
|
Satoh Y, Ishizuka K, Murakami T. Modulation of the masseteric monosynaptic reflex by stimulation of the vestibular nuclear complex in rats. Neurosci Lett 2009; 466:16-20. [PMID: 19781598 DOI: 10.1016/j.neulet.2009.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
The effect of stimulation of the vestibular nuclear complex (VN) on the masseteric monosynaptic reflex (MMR) was studied in anesthetized rats. The MMR was evoked by electrical stimulation of the mesencephalic trigeminal nucleus and was recorded, bilaterally, as the electromyographic responses of the masseter muscles. Conditioning electrical stimulation of the medial vestibular nucleus (MVN) facilitated the MMR bilaterally, as did microinjection of monosodium glutamate into the MVN. In contrast, conditioning electrical stimulation of the inferior vestibular nucleus (IVN) inhibited the MMR bilaterally. Microinjection of monosodium glutamate into the IVN also inhibited the MMR bilaterally. Conditioning electrical stimulation of the lateral and superior vestibular nuclei did not modulate the MMR. These results suggest that the MVN and the IVN are involved in modulation of the MMR and plays an important role in controlling jaw movements.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan.
| | | | | |
Collapse
|
89
|
Nakamura S, Inoue T, Nakajima K, Moritani M, Nakayama K, Tokita K, Yoshida A, Maki K. Synaptic Transmission From the Supratrigeminal Region to Jaw-Closing and Jaw-Opening Motoneurons in Developing Rats. J Neurophysiol 2008; 100:1885-96. [DOI: 10.1152/jn.01145.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The supratrigeminal region (SupV) receives abundant orofacial sensory inputs and descending inputs from the cortical masticatory area and contains premotor neurons that target the trigeminal motor nucleus (MoV). Thus it is possible that the SupV is involved in controlling jaw muscle activity via sensory inputs during mastication. We used voltage-sensitive dye, laser photostimulation, patch-clamp recordings, and intracellular biocytin labeling to investigate synaptic transmission from the SupV to jaw-closing and jaw-opening motoneurons in the MoV in brain stem slice preparations from developing rats. Electrical stimulation of the SupV evoked optical responses in the MoV. An antidromic optical response was evoked in the SupV by MoV stimulation, whereas synaptic transmission was suppressed by substitution of external Ca2+ with Mn2+. Photostimulation of the SupV with caged glutamate evoked rapid inward currents in the trigeminal motoneurons. Gramicidin-perforated and whole cell patch-clamp recordings from masseter motoneurons (MMNs) and digastric motoneurons (DMNs) revealed that glycinergic and GABAergic postsynaptic responses evoked in MMNs and DMNs by SupV stimulation were excitatory in P1–P4 neonatal rats and inhibitory in P9–P12 juvenile rats, whereas glutamatergic postsynaptic responses evoked by SupV stimulation were excitatory in both neonates and juveniles. Furthermore, the axons of biocytin-labeled SupV neurons that were antidromically activated by MoV stimulation terminated in the MoV. Our results suggest that inputs from the SupV excite MMNs and DMNs through activation of glutamate, glycine, and GABAA receptors in neonates, whereas glycinergic and GABAergic inputs from the SupV inhibit MMNs and DMNs in juveniles.
Collapse
|
90
|
McDavid S, Verdier D, Lund JP, Kolta A. Electrical properties of interneurons found within the trigeminal motor nucleus. Eur J Neurosci 2008; 28:1136-45. [DOI: 10.1111/j.1460-9568.2008.06413.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
91
|
Transcranial magnetic stimulation reduces masseter motoneuron pool excitability throughout the cortical silent period. Clin Neurophysiol 2008; 119:1119-29. [PMID: 18313355 DOI: 10.1016/j.clinph.2007.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/11/2007] [Accepted: 12/21/2007] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the time-course of changes in masseter motoneuron pool excitability following transcranial magnetic stimulation of motor cortex, and relate this to the duration of the masseter cortical silent period (CSP). METHODS Surface EMG was recorded bilaterally from masseter and digastric muscles in 13 subjects. Focal TMS was applied at 1.3x active motor threshold (AMT) to motor cortex of one hemisphere to elicit a muscle evoked potential (MEP) and silent period bilaterally in masseter as subjects maintained an isometric bite at approximately 10% maximum. With jaw muscles relaxed, a servo-controlled stretcher evoked a stretch reflex in masseter which was conditioned by TMS (1.3x AMT) at 14 different conditioning-testing intervals. There were 20 trials at each interval, in random order. TMS evoked no MEP in resting masseter, but often produced a small MEP in digastric. RESULTS Mean (+/-SE) masseter CSP was 67+/-3ms. The masseter stretch reflex was facilitated when stretch preceded TMS by 8 and 10ms, which we attribute to spatial summation of corticobulbar and Ia-afferent excitatory inputs to masseter. Masseter stretch reflex amplitude was reduced when TMS was given up to 75ms before stretch, and for up to 2ms afterwards. CONCLUSIONS We conclude that descending corticobulbar activity evoked by TMS acts bilaterally on brainstem interneurons that either inhibit masseter motoneurons or increase pre-synaptic inhibition of Ia-afferent terminals for up to 75ms after TMS. The reduction of masseter motoneuron pool excitability following TMS has a similar time-course to the CSP. SIGNIFICANCE In contrast to the situation for spinal and facial (CN VII) muscles, the masseter CSP appears to have no component that can be attributed exclusively to cortical mechanisms. Abnormalities in the masseter cortical silent period observed in neurological conditions may be due to pathophysiological changes at cortical and/or sub-cortical levels.
Collapse
|
92
|
Ellrich J, Makowska A. Nerve growth factor and ATP excite different neck muscle nociceptors in anaesthetized mice. Cephalalgia 2007; 27:1226-35. [PMID: 17850351 DOI: 10.1111/j.1468-2982.2007.01431.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neck muscle nociception probably plays a major role in the pathophysiology of tension-type headache. Recent studies have demonstrated sustained facilitation of brainstem nociception due to noxious neck muscle input evoked by nerve growth factor (NGF) or alpha,beta-methylene ATP (ATP) in mice. Hypothesized different afferent pathways in NGF and ATP models were addressed by local application of tetrodotoxin (TTX) in neck muscles. Brainstem nociception was monitored in 55 anaesthetized mice by the jaw-opening reflex elicited by electrical tongue stimulation. Sole administration of 100 nmol/l ATP or 0.8 micromol/l NGF evoked sustained reflex facilitation for at least 95 min. Preceding TTX administration prevented ATP-induced facilitation, but was without effect on NGF. Subsequent administration of 100 nmol/l TTX reversed ATP-evoked facilitation, but was ineffective on NGF. Divergent effects of TTX suggest preferential excitation of group III muscle afferents by ATP and group IV by NGF. Thus, both models address different pathways in pericranial pain.
Collapse
Affiliation(s)
- J Ellrich
- Experimental Neurosurgery Section, Department of Neurosurgery, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
93
|
Türker KS, Schmied A, Rossi A, Mazzocchio R, Sowman PF, Vedel JP. Is the human masticatory system devoid of recurrent inhibition? Exp Brain Res 2006; 179:131-44. [PMID: 17136531 DOI: 10.1007/s00221-006-0774-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Accepted: 10/22/2006] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to investigate the existence or otherwise of a functional recurrent inhibitory system (Renshaw cell system) in the motoneurons that innervate human masticatory muscles. In a previous study, L: -acetylcarnitine (L: -Ac), a substance known to potentiate recurrent inhibition in humans was found to alter, in a specific way, the discharge variability, and the synchronous activity of motor units depending on the presence or absence of recurrent inhibition in the corresponding motoneuron pool. Using a similar paradigm, we have recorded the tonic discharge activity of motor unit pairs from the masseter muscle during voluntary isometric contraction while subjects were undergoing continuous intravenous saline (SAL, NaCl 0.9%) perfusion. Following a brief baseline-recording period, the subjects were given a test injection of either L: -Ac or isotonic saline (SAL) in a double blind manner. The variability, synchronization, and coherence between the motor unit discharges were analysed during three successive periods: pre-injection, during injection, and post-injection, each lasting 2-3 min. Neither L: -Ac nor SAL injection induced a significant change in the inter-spike interval (ISI) or the coefficient of variation of the ISIs in the motor units tested. There were also no significant changes in the pattern of synchronous activity or in the coherence, which reflects the common frequency content of the unit discharges. Reminiscent of what had been observed previously with motoneurons without recurrent inhibition in the Abductor Digitorum Minimi muscle, the lack of effects of L: -Ac injection on the firing behaviour of masseter motoneurons may suggest that classical Renshaw cell inhibition is lacking in this motoneuron pool.
Collapse
Affiliation(s)
- K S Türker
- Research Centre for Human Movement Control, Discipline of Physiology, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | | | | | |
Collapse
|
94
|
Jaberzadeh S, Miles TS, Nordstrom MA. Organisation of common inputs to motoneuron pools of human masticatory muscles. Clin Neurophysiol 2006; 117:1931-40. [PMID: 16854619 DOI: 10.1016/j.clinph.2006.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/05/2006] [Accepted: 05/21/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the pattern of organization of common inputs to the motoneuron pools of individual muscles in the masticatory system. METHODS Six subjects bit on a rubber-coated wooden splint placed between the upper and lower incisor teeth. We recorded the surface electromyogram (EMG) of co-contracting masseter, temporalis and digastric muscles bilaterally during isometric jaw closing at 5%, 10%, 20% and 40% of maximal voluntary masseter EMG. RESULTS The cross-correlograms of the EMGs of homologous muscle pairs indicate that there are common synaptic inputs to the motoneuron pools of the left and right masseter, and left and right digastric muscles, but not to left and right temporalis. The amplitude of the central peak in masseter and digastric correlograms increased with bite force. When the activity of ipsilateral muscle pairs was cross-correlated, central peaks were prominent for masseter-digastric and masseter-temporalis muscle pairs, and the peak amplitudes increased significantly with bite force. In contrast, no significant central peak was observed for temporalis-digastric muscle pairs at any level of voluntary biting. CONCLUSIONS We conclude that there is synchronous modulation of input bilaterally to the masseter muscles and to the digastric muscles but not to the temporalis muscles. There is synchronous modulation of input to ipsilateral masseter-digastric and masseter-temporalis muscle pairs but not to temporalis and digastric muscles. SIGNIFICANCE The extent of common input to motoneuron pools of muscles acting around a common joint varies for different muscle pairs, and is not simply a function of whether the muscles of the pair are synergists or antagonists.
Collapse
Affiliation(s)
- Shapour Jaberzadeh
- Research Centre for Human Movement Control and School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
95
|
Makowska A, Panfil C, Ellrich J. ATP induces sustained facilitation of craniofacial nociception through P2X receptors on neck muscle nociceptors in mice. Cephalalgia 2006; 26:697-706. [PMID: 16686909 DOI: 10.1111/j.1468-2982.2006.01095.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noxious input from neck muscles probably plays a key role in tension-type headache pathophysiology. ATP selectively excites group III and IV muscle afferents in vitro. Accordingly, ATP infusion into trapezius muscle induces strong pain and local tenderness in healthy man. The present study addresses the impact of ATP on neck muscle nociception in anaesthetized mice. Craniofacial nociceptive processing was tested by the jaw-opening reflex via noxious electrical tongue stimulation. Within 2 h after injection of 100 nmol/l or 1 micromol/l ATP into semispinal neck muscles, reflex integrals significantly increased by 114% or 328%, respectively. Preceding intramuscular administration of the P2X receptor antagonist PPADS (3-100 nmol/l) suppressed the ATP effect. Subsequent application of PPADS (100 nmol/l) caused a total recovery of facilitated reflex to baseline values. ATP induces sustained facilitation of craniofacial nociception by prolonged excitation of P2X receptors in neck muscles.
Collapse
Affiliation(s)
- A Makowska
- Department of Neurosurgery, Experimental Neurosurgery Section, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
96
|
Kondo M, Tsuboi Y, Yamamoto T, Inage T, Iwamoto Y, Kamogawa H. The location of brainstem neurons with bilateral projections to the motor nuclei of jaw openers in the cat. Neurosci Lett 2006; 403:250-5. [PMID: 16777326 DOI: 10.1016/j.neulet.2006.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/28/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
Symmetrical motor output is the rule in the masticatory system. We examined morphologically how this functional symmetry might be reflected in the organization of premotor neurons that could mediate excitation of jaw-opener motoneurons. Premotor neurons projecting bilaterally to jaw-opener motoneurons by way of axon collaterals were identified by retrograde dual-labeling with cholera toxin B-conjugated fluorescein isothiocyanate (CTb-FITC) and tetramethylrhodamine (TMR). In each cat, CTb-FITC and TMR were injected into the digastric motoneuron pools, respectively, on the left and right sides. In three animals, 69-147 neurons were labeled with both tracers, comprising approximately 44% of all retrogradely labeled cells. Double-labeled cells were located bilaterally in the trigeminal oral nucleus (Vo) and the adjacent reticular formation (RF), the former containing a larger number of cells. Neurons labeled with only one tracer were also distributed bilaterally in the Vo and RF. The results indicated that the bilaterally projecting premoter neurons identified mainly in the Vo and RF represent neuronal substrates for the symmetry that characterizes most jaw movements.
Collapse
Affiliation(s)
- Masahiro Kondo
- Department of Physiology, Nihon University School of Dentistry, Kanda-surugadai, Chiyoda-ku, Tokyo 101-8301, Japan
| | | | | | | | | | | |
Collapse
|
97
|
Satoh Y, Ishizuka K, Murakami T. Modulation of cortically induced rhythmical jaw movements by stimulation of the red nucleus in the rat. Brain Res 2006; 1087:114-22. [PMID: 16616053 DOI: 10.1016/j.brainres.2006.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 11/30/2022]
Abstract
We study whether stimulation of the red nucleus (RN) can modulate rhythmical jaw movements in rats anesthetized by urethane. Rhythmical jaw movements were induced by repetitive electrical stimulation of the two cortical masticatory areas (area A: the orofacial motor cortex; area P: the insular cortex). Stimuli applied to the RN did influence rhythmical jaw movements induced by stimulation of the A-area. Stimuli applied in the jaw-closing phase increased the amplitude of the jaw-closing movement. Stimuli applied in the jaw-opening phase disturbed the rhythm of jaw movements and induced a small jaw-closing movement. Stimuli applied to the RN did not influence rhythmical jaw movements induced by stimulation of the P-area. These results indicate that the RN is involved in the modulation of rhythmical jaw movements induced by stimulation of the A-area.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Dentistry at Niigata, Niigata 951-8580, Japan.
| | | | | |
Collapse
|
98
|
Satoh Y, Ishizuka K, Oskutyte D, Murakami T. Role of the parvicellular reticular formation in facilitating the jaw-opening reflex in rats by stimulation of the red nucleus. Brain Res 2006; 1083:145-50. [PMID: 16529727 DOI: 10.1016/j.brainres.2006.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 01/01/2023]
Abstract
In a previous study, we have shown that electrical and chemical stimulation of the red nucleus (RN) facilitates the jaw-opening reflex (JOR). The RN sends projection fibers bilaterally, with contralateral dominance, to the part of the parvicellular reticular formation (RFp) containing premotor neurons projecting to the trigeminal motor nucleus. This implies that RN-induced facilitation of the JOR might be mediated via last-order neurons in the RFp. Here, we address this issue by investigating whether microinjection of lidocaine or l-glutamate into the RFp affects RN-induced modulation of the JOR. Experiments were performed on rats anesthetized with urethane-chloralose. The JOR was evoked by electrical stimulation of the inferior alveolar (IA) nerve and was recorded as an electromyographic response from the anterior belly of the digastric muscle. Conditioning stimulation was delivered unilaterally to the RN 12 ms before the IA test stimulation. We found that local injections of 2% lidocaine (0.5 microl) into the RFp, contralateral to the RN, significantly (P < 0.05) reduce RN-induced facilitation of the JOR, whereas corresponding injections of 0.1 mM l-glutamate (0.5 microl) significantly (P < 0.05) increase it. These results suggest that the facilitatory effect of RN stimulation on the JOR is mediated partly by a relay in the RFp.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Dentistry at Niigata, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | | | | | |
Collapse
|
99
|
Takamatsu J, Inoue T, Tsuruoka M, Suganuma T, Furuya R, Kawawa T. Involvement of reticular neurons located dorsal to the facial nucleus in activation of the jaw-closing muscle in rats. Brain Res 2006; 1055:93-102. [PMID: 16087167 DOI: 10.1016/j.brainres.2005.06.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Revised: 06/27/2005] [Accepted: 06/29/2005] [Indexed: 11/18/2022]
Abstract
The location of excitatory premotor neurons for jaw-closing motoneurons was examined by the use of electrical and chemical stimulation and extracellular single-unit recording techniques in the anesthetized rat. Single-pulse electrical stimulation of the supratrigeminal region (SupV) and the reticular formation dorsal to the facial nucleus (RdVII) elicited masseter EMG response at mean (+/-SD) latencies of 2.22 +/- 0.59 ms and 3.10 +/- 1.14 ms, respectively. Microinjection (0.1-0.3 microl) of glutamate (50 mM) or kainate (0.5-100 microM) into RdVII increased masseter nerve activity in artificially ventilated and immobilized rats by 30.2 +/- 40.5% and 50.7 +/- 46.8% compared to baseline values, respectively. Forty reticular neurons were antidromically activated by stimulation of the ipsilateral trigeminal motor nucleus (MoV). Twenty neurons were found in RdVII, and the remaining 20 neurons were located in SupV, or areas adjacent to SupV or RdVII. Eleven neurons in RdVII responded to at least either passive jaw opening or light pressure applied to the teeth or tongue. Nine neurons responded to passive jaw opening. Five of the nine neurons responded to multiple stimulus categories. A monosynaptic excitatory projection from one neuron in RdVII was detected by spike-triggered averaging of the rectified masseter nerve activity. We suggest that reticular neurons in RdVII are involved in increasing masseter muscle activity and that excitatory premotor neurons for masseter motoneurons are likely located in this area. RdVII could be an important candidate for controlling activity of jaw-closing muscles via peripheral inputs.
Collapse
Affiliation(s)
- Junichi Takamatsu
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | | | | | | | | | | |
Collapse
|
100
|
Affiliation(s)
- Jens Ellrich
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| |
Collapse
|