51
|
Guo J, Gao S, Quan S, Zhang Y, Bu D, Wang J. Blood amino acids profile responding to heat stress in dairy cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:47-53. [PMID: 28231695 PMCID: PMC5756923 DOI: 10.5713/ajas.16.0428] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/07/2016] [Accepted: 02/19/2017] [Indexed: 12/28/2022]
Abstract
Objective The objective of this experiment was to investigate the effects of heat stress on milk protein and blood amino acid profile in dairy cows. Methods Twelve dairy cows with the similar parity, days in milk and milk yield were randomly divided into two groups with six cows raised in summer and others in autumn, respectively. Constant managerial conditions and diets were maintained during the experiment. Measurements and samples for heat stress and no heat stress were obtained according to the physical alterations of the temperature-humidity index. Results Results showed that heat stress significantly reduced the milk protein content (p<0.05). Heat stress tended to decrease milk yield (p = 0.09). Furthermore, heat stress decreased dry matter intake, the concentration of blood glucose and insulin, and glutathione peroxidase activity, while increased levels of non-esterified fatty acid and malondialdehyde (p<0.05). Additionally, the concentrations of blood Thr involved in immune response were increased under heat stress (p<0.05). The concentration of blood Ala, Glu, Asp, and Gly, associated with gluconeogenesis, were also increased under heat stress (p<0.05). However, the concentration of blood Lys that promotes milk protein synthesis was decreased under heat stress (p<0.05). Conclusion In conclusion, this study revealed that more amino acids were required for maintenance but not for milk protein synthesis under heat stress, and the decreased availability of amino acids for milk protein synthesis may be attributed to competition of immune response and gluconeogenesis.
Collapse
Affiliation(s)
- Jiang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Suyu Quan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dengpan Bu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Synergetic Innovation Center Of Food Safety and Nutrition, Harbin 150030, China.,World Agroforestry Centre, East and Central Asia, Beijing 100081, China
| | - Jiaqi Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
52
|
Zhou Y, Ren J, Song T, Peng J, Wei H. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca 2+-ERK1/2 Signal Transduction Process in C2C12 Cells. Int J Mol Sci 2016; 17:ijms17101684. [PMID: 27727170 PMCID: PMC5085716 DOI: 10.3390/ijms17101684] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser), arginine (Arg), threonine (Thr), alanine (Ala), methionine (Met), glutamine (Gln), and glycine (Gly), Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism.
Collapse
Affiliation(s)
- Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Jiao Ren
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| |
Collapse
|
53
|
Regulation of Nutritional Metabolism in Transition Dairy Cows: Energy Homeostasis and Health in Response to Post-Ruminal Choline and Methionine. PLoS One 2016; 11:e0160659. [PMID: 27501393 PMCID: PMC4976856 DOI: 10.1371/journal.pone.0160659] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/23/2016] [Indexed: 12/30/2022] Open
Abstract
This study investigated the effects of rumen-protected methionine (RPM) and rumen-protected choline (RPC) on energy balance, postpartum lactation performance, antioxidant capacity and immune response in transition dairy cows. Forty-eight multiparous transition cows were matched and divided into four groups: control, 15 g/d RPC, 15 g/d RPM or 15 g/d RPC + 15 g/d RPM. Diet samples were collected daily before feeding, and blood samples were collected weekly from the jugular vein before morning feeding from 21 days prepartum to 21 days postpartum. Postpartum dry matter intake (DMI) was increased by both additives (P < 0.05), and energy balance values in supplemented cows were improved after parturition (P < 0.05). Both RPC and RPM decreased the plasma concentrations of non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P < 0.05), but increased the plasma levels of glucose, very-low-density lipoprotein (VLDL) and apolipoprotein B100 (ApoB 100, P < 0.05). The supplements improved milk production (P < 0.05), and increased (P < 0.05) or tended to increase (0.05 < P < 0.10) the contents of milk fat and protein. The post-ruminal choline and methionine elevated the blood antioxidant status, as indicated by total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) activity and the vitamin E concentration (P < 0.05), and reduced the plasma malondialdehyde (MDA) level (P < 0.05). Furthermore, RPM and RPC elevated the plasma interleukin 2 (IL-2) concentration and the CD4+/CD8+ T lymphocyte ratio in peripheral blood (P < 0.05). Alternatively, the levels of tumor necrosis factor-α (TNF-α) and IL-6 were decreased by RPM and RPC (P < 0.05). Overall, the regulatory responses of RPC and RPM were highly correlated with time and were more effective in the postpartum cows. The results demonstrated that dietary supplementation with RPC and RPM promoted energy balance by increasing postpartal DMI and regulating hepatic lipid metabolism, improved postpartum lactation performance and enhanced antioxidant capacity and immune function of transition dairy cows.
Collapse
|
54
|
Osorio JS, Lohakare J, Bionaz M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 2016; 48:231-56. [DOI: 10.1152/physiolgenomics.00016.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Collapse
Affiliation(s)
| | - Jayant Lohakare
- Oregon State University, Corvallis, Oregon; and
- Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|
55
|
Bionaz M, Osorio J, Loor JJ. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques1,2. J Anim Sci 2015; 93:5531-53. [DOI: 10.2527/jas.2015-9192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
56
|
Jiang N, Wang Y, Yu Z, Hu L, Liu C, Gao X, Zheng S. WISP3 (CCN6) Regulates Milk Protein Synthesis and Cell Growth Through mTOR Signaling in Dairy Cow Mammary Epithelial Cells. DNA Cell Biol 2015; 34:524-33. [DOI: 10.1089/dna.2015.2829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Nan Jiang
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yu Wang
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhiqiang Yu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Lijun Hu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chaonan Liu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xueli Gao
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shimin Zheng
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
57
|
Haque MN, Guinard-Flament J, Lamberton P, Mustière C, Lemosquet S. Changes in mammary metabolism in response to the provision of an ideal amino acid profile at 2 levels of metabolizable protein supply in dairy cows: Consequences on efficiency. J Dairy Sci 2015; 98:3951-68. [PMID: 25864055 DOI: 10.3168/jds.2014-8656] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/04/2015] [Indexed: 11/19/2022]
Abstract
The aim of this study was to compare the modifications in mammary gland metabolism by supplying an ideal versus an imbalanced essential AA (EAA) profile at low and high metabolizable protein (or PDIE, its equivalent in the INRA feeding system). Four lactating, multiparous Holstein cows received 4 treatments composed of 2 basal diets containing 2 levels of PDIE (LP or HP) and 2 different infusions of AA mixtures (AA- or AA+) in the duodenum. The AA+ mixture contained Lys, Met, Leu, His, Ile, Val, Phe, Arg, Trp, and Glu, whereas the AA- mixture contained Glu, Pro, and Ser. The infusion mixtures were iso-PDIE. The diet plus infusions provided 13.9 versus 15.8% of crude protein that corresponded to 102 versus 118g/kg of dry matter of PDIE in LP and HP treatments, respectively. The treatments were designed as a 2×2 crossover design of 2 levels of PDIE supply (LP vs. HP) with 28-d periods. Infusions of AA in the duodenum (AA- vs. AA+) were superimposed to diet within each 28-d period according to 2×2 crossover designs with 14-d subperiods. Increasing the PDIE supply tended to increase milk protein yield; however, the efficiency of PDIE utilization decreased and the plasma urea concentration increased, indicating a higher catabolism of AA. The AA+ treatments increased milk protein yield and content similarly at both levels of protein supply. This was explained by an increase in the mammary uptake of all EAA except His and Trp. The mammary uptake of non-EAA (NEAA) was altered to the increase in EAA uptake so that the total AA uptake was almost equal to milk protein output on a nitrogen basis. The ratio between NEAA to total AA uptake decreased from 46% in LPAA- to 40% in LPAA+, HPAA-, and HPAA+ treatments. The PDIE efficiency tended to increase in the AA+ versus the AA- treatments because the NEAA supply and the amount of NEAA not used by the mammary both decreased. Nevertheless, our AA+ treatments seemed not to be the ideal profile: the mammary uptake-to-output ratio for Thr was higher than 1 in LPAA-, but it decreased to 1 in all the other treatments, suggesting that Thr was deficient in these treatments. Conversely, an excess of His was indicated because its uptake was similar in AA+ and AA- treatments. In conclusion, balancing the EAA profile increased milk protein yield and metabolizable protein efficiency at both levels of protein supply by increasing the mammary uptake of EAA and altering the NEAA uptake, leading to less AA available for catabolism.
Collapse
Affiliation(s)
- M N Haque
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France; Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - J Guinard-Flament
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France; Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - P Lamberton
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France; Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - C Mustière
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France; Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - S Lemosquet
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France; Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France.
| |
Collapse
|
58
|
Aboelenain M, Kawahara M, Balboula AZ, Montasser AEM, Zaabel SM, Okuda K, Takahashi M. Status of autophagy, lysosome activity and apoptosis during corpus luteum regression in cattle. J Reprod Dev 2015; 61:229-36. [PMID: 25819401 PMCID: PMC4498366 DOI: 10.1262/jrd.2014-135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Corpus luteum (CL) regression is required during the estrous cycle. During CL regression, luteal cells stop producing progesterone and are degraded by apoptosis. However, the detailed mechanism of CL regression in cattle has not been fully elucidated. The aim of this study was to evaluate autophagy, lysosome activity, and apoptosis during CL regression in cattle. The expression of autophagy-related genes (LC3α, LC3β, Atg3, and Atg7) and the protein LC3-II was significantly higher in the late CL than in the mid CL. In addition, autophagy activity was significantly increased in the late CL. Moreover, gene expression of the autophagy inhibitor mammalian target of rapamycin (mTOR) was significantly lower in the late CL than in the mid CL. Lysosome activation and expression of cathepsin-related genes (CTSB, CTSD, and CTSZ) showed significant increases in the late CL and were associated with an
increase in cathepsin B protein. In addition, mRNA expression and activity of caspase 3 (CASP3), an apoptotic enzyme, were significantly higher in the late CL than in the mid CL. These results suggest simultaneous upregulation of autophagy-related factors, lysosomal enzymes and apoptotic mediators, which are involved in regression of the bovine CL.
Collapse
Affiliation(s)
- Mansour Aboelenain
- Laboratory of Animal Breeding and Reproduction, Department of Animal Science, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
Bu D, Nan X, Wang F, Loor J, Wang J. Identification and characterization of microRNA sequences from bovine mammary epithelial cells. J Dairy Sci 2015; 98:1696-705. [DOI: 10.3168/jds.2014-8217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/22/2014] [Indexed: 11/19/2022]
|