51
|
Majdalawieh AF, Ro HS. Sesamol and sesame (Sesamum indicum) oil enhance macrophage cholesterol efflux via up-regulation of PPARγ1 and LXRα transcriptional activity in a MAPK-dependent manner. Eur J Nutr 2014; 54:691-700. [DOI: 10.1007/s00394-014-0747-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
|
52
|
Min HS, Kim JE, Lee MH, Song HK, Lee MJ, Lee JE, Kim HW, Cha JJ, Hyun YY, Han JY, Cha DR, Kang YS. Effects of Toll-like receptor antagonist 4,5-dihydro-3-phenyl-5-isoxasole acetic acid on the progression of kidney disease in mice on a high-fat diet. Kidney Res Clin Pract 2014; 33:33-44. [PMID: 26877948 PMCID: PMC4714156 DOI: 10.1016/j.krcp.2013.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/23/2013] [Accepted: 10/17/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Obesity-related metabolic disorders are closely associated with inflammation induced by innate immunity. Toll-like receptors (TLRs) play a pivotal role in the innate immune system by activating proinflammatory signaling pathways. GIT27 (4,5-dihydro-3-phenyl-5-isoxasole acetic acid) is an active immunomodulatory agent that primarily targets macrophages and inhibits secretion of tumor necrosis factor α [as well as interleukin (IL)-1β, IL-10, and interferon γ]. However, the effect of TLR antagonist on kidney diseases has rarely been reported. We investigated whether the TLR antagonist GIT27 has beneficial effects on the progression of kidney disease in obese mice on a high-fat diet (HFD). METHODS Six-week-old male C57BL/6 mice were divided into three groups: mice fed with normal chow diet (N=4); mice fed with a HFD (60% of total calories from fat, 5.5% from soybean oil, and 54.5% from lard, N=4); and GIT27-treated mice fed with a HFD (N=7). RESULTS Glucose intolerance, oxidative stress, and lipid abnormalities in HFD mice were improved by GIT27 treatment. In addition, GIT27 treatment decreased the urinary excretion of albumin and protein in obesity-related kidney disease, urinary oxidative stress markers, and inflammatory cytokine levels. This treatment inhibited the expression of proinflammatory cytokines in the kidneys and adipose tissue, and improved extracellular matrix expansion and tubulointerstitial fibrosis in obesity-related kidney disease. CONCLUSION TLR inhibition by administering GIT27 improved metabolic parameters. GIT27 ameliorates abnormalities of lipid metabolism and may have renoprotective effects on obesity-related kidney disease through its anti-inflammatory properties.
Collapse
Affiliation(s)
- Hye Sook Min
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Jung Eun Kim
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Mi Hwa Lee
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Hye Kyoung Song
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Mi Jin Lee
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Ji Eun Lee
- Department of Internal Medicine, Wonkwang University College of Medicine, Sanbon, Korea
| | - Hyun Wook Kim
- Department of Internal Medicine, Wonkwang University College of Medicine, Sanbon, Korea
| | - Jin Joo Cha
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Young Youl Hyun
- Department of Internal Medicine, Sungkyunkwan University College of Medicine, Seoul, Korea
| | - Jee Young Han
- Department of Pathology, Inha University College of Medicine, Incheon, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Young Sun Kang
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
53
|
Kang YS. Obesity associated hypertension: new insights into mechanism. Electrolyte Blood Press 2013; 11:46-52. [PMID: 24627704 PMCID: PMC3950225 DOI: 10.5049/ebp.2013.11.2.46] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 02/06/2023] Open
Abstract
With excess nutrition, the burden of obesity is a growing problem worldwide. The imbalance between energy intake and expenditure leads to variable disorders as all major risk factors for cardiovascular disease. There are many hypothetical mechanisms to explain obesity-associated hypertension. Activation of the RAAS is a key contributing factor in obesity. Particularly, the RAAS in adipose tissue plays a crucial role in adipose tissue dysfunction and obesity-induced inflammation. The phenotypic changes of adipocytes occur into hypertrophy and an inflammatory response in an autocrine and paracrine manner to impair adipocyte function, including insulin signaling pathway. Adipose tissue produce and secretes several molecules such as leptin, resistin, adiponectin, and visfatin, as well as cytokines such as TNF-α, IL-6, MCP-1, and IL-1. These adipokines are stimulated via the intracellular signaling pathways that regulate inflammation of adipose tissue. Inflammation and oxidative stress in adipose tissue are important to interact with the microvascular endothelium in the mechanisms of obesity-associated hypertension. Increased microvascular resistance raises blood pressure. Therefore, a regulatory link between microvascular and perivascular adipose tissue inflammation and adipokine synthesis are provided to explain the mechanism of obesity-associated hypertension.
Collapse
Affiliation(s)
- Young Sun Kang
- Division of Nephrology, Department of Internal Medicine, Medical College of Korea University, Ansan Hospital, Ansan-city, Gyeonggi, Korea
| |
Collapse
|
54
|
IL-21 modulates release of proinflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Mediators Inflamm 2013; 2013:548073. [PMID: 24574581 PMCID: PMC3888770 DOI: 10.1155/2013/548073] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the anti-inflammatory effect of IL-21 on LPS-induced mouse peritoneal macrophages. The results showed that IL-21 significantly inhibited LPS-induced mRNA expression of IL-1β, TNF-α, and IL-6 in macrophages, but not of IFN-γ, IL-10, CCL5, or CXCL2. ELISA analysis showed that IL-21 also suppressed LPS-induced production of TNF-α and IL-6 in culture supernatants. Western blot analysis showed that IL-21 clearly inhibited ERK and IκBα phosphorylation and NF-κB translocation in LPS-stimulated macrophages, but it increased STAT3 phosphorylation. Flow cytometric and Western blot analysis showed that IL-21 decreased M1 macrophages surface markers expression of CD86, iNOS, and TLR4 in LPS-stimulated cells. All results suggested that IL-21 decreases IL-6 and TNF-α production via inhibiting the phosphorylation of ERK and translocation of NF-κB and promotes a shift from the M1 to M2 macrophage phenotype by decreasing the expression of CD86, iNOS, and TLR4 and by increasing STAT3 phosphorylation in LPS-stimulated cells.
Collapse
|
55
|
Tian-tian Z, Jun-feng Z, Heng G. Functions of cyclophilin A in atherosclerosis. Exp Clin Cardiol 2013; 18:e118-e124. [PMID: 23940449 PMCID: PMC3718612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cyclophilin A (CypA) is a ubiquitously distributed protein present both in intracellular and extracellular spaces. In atherosclerosis, various cells, including endothelial cells, monocytes, vascular smooth muscle cells and platelets, secrete CypA in response to excessive levels of reactive oxygen species. Atherosclerosis, a complicated disease, is the result of the interplay of different risk factors. Researchers have found that CypA links many risk factors, including hyperlipidemia, hypertension and diabetes, to atherosclerosis that develop into a vicious cycle. Furthermore, most studies have shown that secreted CypA participates in the developmental process of atherosclerosis via many important intracellular mechanisms. CypA can cause injury to and apoptosis of endothelial cells, leading to dysfunction of the endothelium. CypA may also induce the activation and migration of leukocytes, producing proinflammatory cytokines that promote inflammation in blood vessels. In addition, CypA can promote the proliferation of monocytes/macrophages and vascular smooth muscle cells, leading to the formation of foam cells and the remodelling of the vascular wall. Studies investigating the roles of CypA in atherosclerosis may provide new direction for preventive and interventional treatment strategies in atherosclerosis.
Collapse
Affiliation(s)
- Zhang Tian-tian
- Department of Cardiology, No.3 People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhang Jun-feng
- Department of Cardiology, No.3 People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Heng
- Department of Cardiology, Ren Ji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
56
|
Chang FM, Reyna SM, Granados JC, Wei SJ, Innis-Whitehouse W, Maffi SK, Rodriguez E, Slaga TJ, Short JD. Inhibition of neddylation represses lipopolysaccharide-induced proinflammatory cytokine production in macrophage cells. J Biol Chem 2012; 287:35756-35767. [PMID: 22927439 PMCID: PMC3471689 DOI: 10.1074/jbc.m112.397703] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cullin-RING E3 ligases (CRLs) are a class of ubiquitin ligases that control the proteasomal degradation of numerous target proteins, including IκB, and the activity of these CRLs are positively regulated by conjugation of a Nedd8 polypeptide onto Cullin proteins in a process called neddylation. CRL-mediated degradation of IκB, which normally interacts with and retains NF-κB in the cytoplasm, permits nuclear translocation and transactivation of the NF-κB transcription factor. Neddylation occurs through a multistep enzymatic process involving Nedd8 activating enzymes, and recent studies have shown that the pharmacological agent, MLN4924, can potently inhibit Nedd8 activating enzymes, thereby preventing neddylation of Cullin proteins and preventing the degradation of CRL target proteins. In macrophages, regulation of NF-κB signaling functions as a primary pathway by which infectious agents such as lipopolysaccharides (LPSs) cause the up-regulation of proinflammatory cytokines. Here we have analyzed the effects of MLN4924, and compared the effects of MLN4924 with a known anti-inflammatory agent (dexamethasone), on certain proinflammatory cytokines (TNF-α and IL-6) and the NF-κB signaling pathway in LPS-stimulated macrophages. We also used siRNA to block neddylation to assess the role of this molecular process during LPS-induced cytokine responsiveness. Our results demonstrate that blocking neddylation, either pharmacologically or using siRNA, abrogates the increase in certain proinflammatory cytokines secreted from macrophages in response to LPS. In addition, we have shown that MLN4924 and dexamethasone inhibit LPS-induced cytokine up-regulation at the transcriptional level, albeit through different molecular mechanisms. Thus, neddylation represents a novel molecular process in macrophages that can be targeted to prevent and/or treat the LPS-induced up-regulation of proinflammatory cytokines and the disease processes associated with their up-regulation.
Collapse
Affiliation(s)
- Fang-Mei Chang
- Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541
| | - Sara M Reyna
- Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541; Department of Medicine/Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Jose C Granados
- Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541
| | - Sung-Jen Wei
- Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541; Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Wendy Innis-Whitehouse
- Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541
| | - Shivani K Maffi
- Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541; Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas 78245
| | - Edward Rodriguez
- Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541
| | - Thomas J Slaga
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - John D Short
- Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541; Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229.
| |
Collapse
|
57
|
Holloway RW, Bogachev O, Bharadwaj AG, McCluskey GD, Majdalawieh AF, Zhang L, Ro HS. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling. J Biol Chem 2012; 287:39171-81. [PMID: 22995915 DOI: 10.1074/jbc.m112.404293] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.
Collapse
Affiliation(s)
- Ryan W Holloway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
58
|
Lim W, Kim J, Kim S, Karna S, Won J, Jeon SM, Kim SY, Choi Y, Choi H, Kim O. Modulation of Lipopolysaccharide-Induced NF-κB Signaling Pathway by 635 nm IrradiationviaHeat Shock Protein 27 in Human Gingival Fibroblast Cells. Photochem Photobiol 2012; 89:199-207. [DOI: 10.1111/j.1751-1097.2012.01225.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/06/2012] [Indexed: 12/16/2022]
Affiliation(s)
- WonBong Lim
- Department of Oral Pathology; School of Dentistry; Dental Science Research Institute; Chonnam National University; Gwangju; Korea
| | - JiSun Kim
- Department of Oral Pathology; School of Dentistry; Dental Science Research Institute; Chonnam National University; Gwangju; Korea
| | - SangWoo Kim
- Department of Oral Pathology; School of Dentistry; Dental Science Research Institute; Chonnam National University; Gwangju; Korea
| | - Sandeep Karna
- Department of Oral Pathology; School of Dentistry; Dental Science Research Institute; Chonnam National University; Gwangju; Korea
| | - JaeWoong Won
- Department of Oral Pathology; School of Dentistry; Dental Science Research Institute; Chonnam National University; Gwangju; Korea
| | - Sang Mi Jeon
- Department of Oral Pathology; School of Dentistry; Dental Science Research Institute; Chonnam National University; Gwangju; Korea
| | - Seo Yeon Kim
- Department of Oral Pathology; School of Dentistry; Dental Science Research Institute; Chonnam National University; Gwangju; Korea
| | - YooDuk Choi
- Department of Pathology; Faculty of Medicine; Chonnam National University; Gwangju; Korea
| | - HongRan Choi
- Department of Oral Pathology; School of Dentistry; Dental Science Research Institute; Chonnam National University; Gwangju; Korea
| | - OkJoon Kim
- Department of Oral Pathology; School of Dentistry; Dental Science Research Institute; Chonnam National University; Gwangju; Korea
| |
Collapse
|
59
|
Saeed NM, El-Demerdash E, Abdel-Rahman HM, Algandaby MM, Al-Abbasi FA, Abdel-Naim AB. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicol Appl Pharmacol 2012; 264:84-93. [PMID: 22842335 DOI: 10.1016/j.taap.2012.07.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 12/20/2022]
Abstract
Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models.
Collapse
Affiliation(s)
- Noha M Saeed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
60
|
Feldkamp ML, Bowles NE, Botto LD. AEBP1gene variants in infants with gastroschisis. ACTA ACUST UNITED AC 2012; 94:738-42. [DOI: 10.1002/bdra.23041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 01/16/2023]
|
61
|
Park EJ, Pezzuto JM, Jang KH, Nam SJ, Bucarey SA, Fenical W. Suppression of nitric oxide synthase by thienodolin in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Nat Prod Commun 2012; 7:789-794. [PMID: 22816309 PMCID: PMC3678979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
The measurement of nitric oxide in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells is used as a model for evaluating the anti-inflammatory or chemopreventive potential of substances. Thienodolin, isolated from a Streptomyces sp. derived from Chilean marine sediment, inhibited nitric oxide production in LPS-stimulated RAW 264.7 cells (IC50 = 17.2 +/- 1.2 microM). At both the mRNA and protein levels, inducible nitric oxide synthase (iNOS) was suppressed in a dose-dependent manner. Mitogen-activated protein kinases (MAPKs), one major upstream signaling pathway involved in the transcription of iNOS, were not affected by treatment of thienodolin. However, the compound blocked the degradation of IkappaBa resulting in inhibition of NF-kappaB p65 nuclear translocation, and inhibited the phosphorylation of signal transducers and activators of transcription 1 (STAT1) at Tyr701. This study supports further exploration of thienodolin as a potential therapeutic agent with a unique mechanistic activity.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720-4019, USA
| | - John M. Pezzuto
- College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720-4019, USA
| | - Kyoung Hwa Jang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093-0204, USA
| | - Sang-Jip Nam
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093-0204, USA
| | - Sergio A. Bucarey
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093-0204, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
62
|
Park EJ, Pezzuto JM, Jang KH, Nam SJ, Bucarey SA, Fenical W. Suppression of Nitric Oxide Synthase by Thienodolin in Lipopolysaccharide-stimulated RAW 264.7 Murine Macrophage Cells. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The measurement of nitric oxide in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells is used as a model for evaluating the anti-inflammatory or chemopreventive potential of substances. Thienodolin, isolated from a Streptomyces sp. derived from Chilean marine sediment, inhibited nitric oxide production in LPS-stimulated RAW 264.7 cells (IC50 = 17.2 ± 1.2 μM). At both the mRNA and protein levels, inducible nitric oxide synthase (iNOS) was suppressed in a dose-dependent manner. Mitogen-activated protein kinases (MAPKs), one major upstream signaling pathway involved in the transcription of iNOS, were not affected by treatment of thienodolin. However, the compound blocked the degradation of IκBα resulting in inhibition of NF-κB p65 nuclear translocation, and inhibited the phosphorylation of signal transducers and activators of transcription 1 (STAT1) at Tyr701. This study supports further exploration of thienodolin as a potential therapeutic agent with a unique mechanistic activity.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720-4019, USA
| | - John M. Pezzuto
- College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720-4019, USA
| | - Kyoung Hwa Jang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093-0204, USA
| | - Sang-Jip Nam
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093-0204, USA
| | - Sergio A. Bucarey
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093-0204, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
63
|
Li YY, Bao YL, Song ZB, Sun LG, Wu P, Zhang Y, Fan C, Huang YX, Wu Y, Yu CL, Sun Y, Zheng LH, Wang GN, Li YX. The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. PLoS One 2012; 7:e35030. [PMID: 22574111 PMCID: PMC3344824 DOI: 10.1371/journal.pone.0035030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/11/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Testes-specific protease 50 (TSP50), a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO) cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.
Collapse
Affiliation(s)
- Yu-Yin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
- * E-mail: (YLB); (YXL)
| | - Zhen-Bo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lu-Guo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ping Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yu Zhang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Cong Fan
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yan-Xin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yin Wu
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Chun-Lei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ying Sun
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Li-Hua Zheng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Guan-Nan Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu-Xin Li
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail: (YLB); (YXL)
| |
Collapse
|
64
|
Mutou-Yoshihara Y, Funayama T, Yokota Y, Kobayashi Y. Involvement of bystander effect in suppression of the cytokine production induced by heavy-ion broad beams. Int J Radiat Biol 2011; 88:258-66. [PMID: 22040060 DOI: 10.3109/09553002.2012.636138] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Immune cells accumulate in and around cancers and cooperate with each other using specific cytokines to attack the cancer cells. The heavy-ion beams for cancer therapy may stimulate immune cells and affect on the immune system. However, it is still poorly understood how the immune cells are stimulated by ion-beams. Here, we irradiated immune cells using heavy-ion beams and analyzed changes in production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) that are important cytokine for the cancer treatment. MATERIALS AND METHODS The human THP-1 monocytes were differentiated into macrophages and then irradiated using carbon-ion broad-beams (108 keV μm(-1)). To examine the bystander response after heavy-ion irradiation, a very small fraction (approx. 0.45%) of the cell population was irradiated using heavy-ion microbeams. After irradiation, we examined the cytokine productions. RESULTS When cells were irradiated with 5 Gy, cytokine levels were reduced after both microbeam irradiation and broad-beam irradiation. TNF-α production of macrophages with the nitric oxide (NO) inhibitor-treatment increased after carbon-ion broad-beam. NO was involved in the radiation-induced suppression of TNF-α production. CONCLUSIONS The suppression of cytokine production arose after irradiation with heavy-ions, and may also be induced in the surrounding non-irradiated cells via the bystander effect.
Collapse
Affiliation(s)
- Yasuko Mutou-Yoshihara
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | | | | | | |
Collapse
|
65
|
Huang Z, Meng S, Wang L, Wang Y, Chen T, Wang C. Suppression of oxLDL-induced MMP-9 and EMMPRIN expression by berberine via inhibition of NF-κB activation in human THP-1 macrophages. Anat Rec (Hoboken) 2011; 295:78-86. [PMID: 22140092 DOI: 10.1002/ar.21489] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/20/2011] [Indexed: 01/07/2023]
Abstract
Upregulation of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) by macrophages leads to atherosclerotic plaque rupture by degradation of the extracellular matrix. NF-κB activation regulates many key inflammatory genes linked to atherosclerosis. In the present study, the function of berberine, a natural extract from Rhizoma coptidis, on MMP-9 and EMMPRIN expression, the role of NF-κB activation in oxLDL-stimulated macrophages, and the possible mechanism in which NF-κB activation is involved were investigated. Berberine inhibited the expression of MMP-9 and EMMPRIN at both mRNA and protein levels. The phosphorylation of IκB-α and nuclear translocation of p65 protein were reduced by berberine, suggesting that NF-κB activation was inhibited by berberine in oxLDL-stimulated macrophages. Overall, berberine suppressed the expression of MMP-9 and EMMPRIN by at least reducing partly the activity of NF-κB in oxLDL-induced macrophages.
Collapse
Affiliation(s)
- Zhouqing Huang
- Department of Cardiology, First Affiliated Hospital, Wenzhou Medical College, China
| | | | | | | | | | | |
Collapse
|
66
|
Lactation defect with impaired secretory activation in AEBP1-null mice. PLoS One 2011; 6:e27795. [PMID: 22114697 PMCID: PMC3218051 DOI: 10.1371/journal.pone.0027795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/25/2011] [Indexed: 01/14/2023] Open
Abstract
Adipocyte enhancer binding protein 1 (AEBP1) is a multifunctional protein that negatively regulates the tumor suppressor PTEN and IκBα, the inhibitor of NF-κB, through protein-protein interaction, thereby promoting cell survival and inflammation. Mice homozygous for a disrupted AEBP1 gene developed to term but showed defects in growth after birth. AEBP1−/− females display lactation defect, which results in the death of 100% of the litters nursed by AEBP1−/− dams. Mammary gland development during pregnancy appears normal in AEBP1−/− dams; however these mice exhibit expansion of the luminal space and the appearance of large cytoplasmic lipid droplets (CLDs) in the mammary epithelial cells at late pregnancy and parturition, which is a clear sign of failed secretory activation, and accumulation of milk proteins in the mammary gland, presumably reflecting milk stasis following failed secretory activation. Eventually, AEBP1−/− mammary gland rapidly undergoes involution at postpartum. Stromal restoration of AEBP1 expression by transplanting wild-type bone marrow (BM) cells is sufficient to rescue the mammary gland defect. Our studies suggest that AEBP1 is critical in the maintenance of normal tissue architecture and function of the mammary gland tissue and controls stromal-epithelial crosstalk in mammary gland development.
Collapse
|
67
|
The characteristic long-term upregulation of hippocampal NF-κB complex in PTSD-like behavioral stress response is normalized by high-dose corticosterone and pyrrolidine dithiocarbamate administered immediately after exposure. Neuropsychopharmacology 2011; 36:2286-302. [PMID: 21734649 PMCID: PMC3176566 DOI: 10.1038/npp.2011.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nuclear factor-κB (NF-κB) is a ubiquitously expressed transcription factor for genes involved in cell survival, differentiation, inflammation, and growth. This study examined the role of NF-κB pathway in stress-induced PTSD-like behavioral response patterns in rats. Immunohistochemical technique was used to detect the expression of the NF-κB p50 and p65 subunits, I-κBα, p38, and phospho-p38 in the hippocampal subregions at 7 days after exposure to predator scent stress. Expression of p65 nuclear translocation was quantified by western blot as the level of NF-κB activation. The effects of intraperitoneally administered corticosterone or a selective NF-κB inhibitor (pyrrolidine dithiocarbamate (PDTC)) at 1 h post exposure on behavioral tests (elevated plus-maze and acoustic startle response) were evaluated 7 days later. Hippocampal expressions of those genes were subsequently evaluated. All data were analyzed in relation to individual behavior patterns. Extreme behavioral responder animals displayed significant upregulation of p50 and p65 with concomitant downregulation of I-κBα, p38, and phospho-p38 levels in hippocampal structures compared with minimal behavioral responders and controls. Immediate post-exposure treatment with high-dose corticosterone and PDTC significantly reduced prevalence rates of extreme responders and normalized the expression of those genes. Stress-induced upregulation of NF-κB complex in the hippocampus may contribute to the imbalance between what are normally precisely orchestrated and highly coordinated physiological and behavioral processes, thus associating it with stress-related disorders.
Collapse
|
68
|
Bogachev O, Majdalawieh A, Pan X, Zhang L, Ro HS. Adipocyte enhancer-binding protein 1 (AEBP1) (a novel macrophage proinflammatory mediator) overexpression promotes and ablation attenuates atherosclerosis in ApoE (-/-) and LDLR (-/-) mice. Mol Med 2011; 17:1056-64. [PMID: 21687917 DOI: 10.2119/molmed.2011.00141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/09/2011] [Indexed: 11/06/2022] Open
Abstract
Atherogenesis is a long-term process that involves inflammatory response coupled with metabolic dysfunction. Foam cell formation and macrophage inflammatory response are two key events in atherogenesis. Adipocyte enhancer-binding protein 1 (AEBP1) has been shown to impede macrophage cholesterol efflux, promoting foam cell formation, via peroxisome proliferator-activated receptor (PPAR)-γ1 and liver X receptor α (LXRα) downregulation. Moreover, AEBP1 has been shown to promote macrophage inflammatory responsiveness by inducing nuclear factor (NF)-κB activity via IκBα downregulation. Lipopolysaccharide (LPS)-induced suppression of pivotal macrophage cholesterol efflux mediators, leading to foam cell formation, has been shown to be mediated by AEBP1. Herein, we showed that AEBP1-transgenic mice (AEBP1(TG)) with macrophage-specific AEBP1 overexpression exhibit hyperlipidemia and develop atherosclerotic lesions in their proximal aortas. Consistently, ablation of AEBP1 results in significant attenuation of atherosclerosis (males: 3.2-fold, P = 0.001 [en face]), 2.7-fold, P = 0.0004 [aortic roots]; females: 2.1-fold, P = 0.0026 [en face], 1.7-fold, P = 0.0126 [aortic roots]) in the AEBP1(-/-)/low-density lipoprotein receptor (LDLR )(-/-) double-knockout (KO) mice. Bone marrow (BM) transplantation experiments further revealed that LDLR (-/-) mice reconstituted with AEBP1(-/-)/LDLR (-/-) BM cells (LDLR (-/-)/KO-BM chimera) display significant reduction of atherosclerosis lesions (en face: 2.0-fold, P = 0.0268; aortic roots: 1.7-fold, P = 0.05) compared with control mice reconstituted with AEBP1(+/+)/LDLR (-/-) BM cells (LDLR (-/-)/WT-BM chimera). Furthermore, transplantation of AEBP1(TG) BM cells with the normal apolipoprotein E (ApoE) gene into ApoE (-/-) mice (ApoE (-/-)/TG-BM chimera) leads to significant development of atherosclerosis (males: 2.5-fold, P = 0.0001 [en face], 4.7-fold, P = 0.0001 [aortic roots]; females: 1.8-fold, P = 0.0001 [en face], 3.0-fold, P = 0.0001 [aortic roots]) despite the restoration of ApoE expression. Macrophages from ApoE (-/-)/TG-BM chimeric mice express reduced levels of PPARγ1, LXRα, ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) and increased levels of the inflammatory mediators interleukin (IL)-6 and tumor necrosis factor (TNF)-α compared with macrophages of control chimeric mice (ApoE (-/-)/NT-BM ) that received AEBP1 nontransgenic (AEBP1(NT) ) BM cells. Our in vivo experimental data strongly suggest that macrophage AEBP1 plays critical regulatory roles in atherogenesis, and it may serve as a potential therapeutic target for the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Oleg Bogachev
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
69
|
Kang YS, Cha JJ, Hyun YY, Cha DR. Novel C-C chemokine receptor 2 antagonists in metabolic disease: a review of recent developments. Expert Opin Investig Drugs 2011; 20:745-56. [PMID: 21466412 DOI: 10.1517/13543784.2011.575359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1, and its receptor, C-C chemokine receptor 2 (CCR2), play important roles in various inflammatory diseases. Recently, it has been reported that the CCL2/CCR2 pathway also has an important role in the pathogenesis of metabolic syndrome through its association with obesity and related systemic complications. AREAS COVERED This review focuses on the roles of CCR2 in the pathogenesis of adipose tissue inflammation and other organ damage associated with metabolic syndrome, which is still a matter of debate in many studies. It also covers the use of novel CCR2 antagonists as therapies in such conditions. EXPERT OPINION There is abundant experimental evidence that the CCL2/CCR2 pathway may be involved in chronic low-grade inflammation of adipose tissue in obesity and related metabolic diseases. Although animal models of diabetes and obesity, as well as human trials, have produced controversial results, there is continued interest in the roles of CCR2 inhibition in metabolic disease. Further identification of the mechanisms for recruitment and activation of phagocytes and determination of the roles of other chemokines are needed. Future study of these fundamental questions will provide a clearer understanding of adipose tissue biology and potential therapeutic targets for treatment of obesity-related metabolic disease, including diabetic nephropathy.
Collapse
Affiliation(s)
- Young Sun Kang
- Medical College of Korea University, Ansan Hospital, Division of Nephrology, Department of Internal Medicine, Ansan City, Korea
| | | | | | | |
Collapse
|