51
|
Tesfaye AA, Kamgar M, Azmi A, Philip PA. The evolution into personalized therapies in pancreatic ductal adenocarcinoma: challenges and opportunities. Expert Rev Anticancer Ther 2018; 18:131-148. [PMID: 29254387 PMCID: PMC6121777 DOI: 10.1080/14737140.2018.1417844] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 12/12/2017] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer related mortality in the United States in 2030, with a 5-year overall survival of less than 10% despite decades of extensive research. Pancreatic cancer is marked by the accumulation of complex molecular changes, complex tumor-stroma interaction, and an immunosuppressive tumor microenvironment. PDAC has proven to be resistant to many cytotoxic, targeted and immunologic treatment approaches. Areas covered: In this paper, we review the major areas of research in PDAC, with highlights on the challenges and areas of opportunity for personalized treatment approaches. Expert commentary: The focus of research in pancreatic cancer has moved away from developing conventional cytotoxic combinations. The marked advances in understanding the molecular biology of this disease especially in the areas of the microenvironment, metabolism, and DNA repair have opened new opportunities for developing novel treatment strategies. Improved understanding of molecular abnormalities allows the development of personalized treatment approaches.
Collapse
Affiliation(s)
- Anteneh A Tesfaye
- Department of Oncology, Wayne State University, School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Mandana Kamgar
- Department of Oncology, Wayne State University, School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Asfar Azmi
- Department of Oncology, Wayne State University, School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Philip A Philip
- Department of Oncology, Wayne State University, School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, MI
| |
Collapse
|
52
|
Veenstra VL, Garcia-Garijo A, van Laarhoven HW, Bijlsma MF. Extracellular Influences: Molecular Subclasses and the Microenvironment in Pancreatic Cancer. Cancers (Basel) 2018; 10:cancers10020034. [PMID: 29382042 PMCID: PMC5836066 DOI: 10.3390/cancers10020034] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/21/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent form of pancreatic cancer and carries the worst prognosis of all common cancers. Five-year survival rates have not surpassed 6% for some decades and this lack of improvement in outcome urges a better understanding of the PDAC-specific features which contribute to this poor result. One of the most defining features of PDAC known to contribute to its progression is the abundance of non-tumor cells and material collectively known as the stroma. It is now well recognized that the different non-cancer cell types, signalling molecules, and mechanical properties within a tumor can have both tumor-promoting as well as –inhibitory effects. However, the net effect of this intratumour heterogeneity is not well understood. Heterogeneity in the stromal makeup between patients is even less well established. Such intertumour heterogeneity is likely to be affected by the relative contributions of individual stromal constituents, but how these contributions exactly relate to existing classifications that demarcate intertumour heterogeneity in PDAC is not fully known. In this review, we give an overview of the available evidence by delineating the elements of the PDAC stroma and their contribution to tumour growth. We do so by interpreting the heterogeneity at the gene expression level in PDAC, and how stromal elements contribute to, or interconnect, with this.
Collapse
Affiliation(s)
- Veronique L Veenstra
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Andrea Garcia-Garijo
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Hanneke W van Laarhoven
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
53
|
Seufferlein T, Ducreux M, Hidalgo M, Prager G, Cutsem EV. More than a Gel & Hyaluronic Acid, a Central Component in the Microenvironment of Pancreatic Cancer. ACTA ACUST UNITED AC 2018. [DOI: 10.17925/eoh.2018.14.1.40] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyaluronic acid or hyaluronan (HA) is a major stromal component and its accumulation has been shown to play a central role in promoting tumourigenesis and progression of disease. Thus, overexpression of HA in tumours is associated with poor prognosis. Therapeutic targeting of HA is therefore an attractive strategy, particularly in pancreatic ductal adenocarcinoma (PDA), which is associated with an extremely poor prognosis and less sensitivity towards chemotherapy. PDA is characterised by a high stromal content. The accumulation of dense, fibrotic extracellular matrix components within the stroma, termed desmoplasia, results in increased tumour interstitial fluid pressure and vascular compression that impair the delivery and efficacy of therapeutic agents. While some elements of the stroma may be protective for the patient and prevent a more aggressive phenotype of PDA, a pegylated recombinant human hyaluronidase (pegvorhyaluronidase alfa) has been found to inhibit tumour growth in preclinical studies. In a clinical phase II randomised trial, the addition of pegvorhyaluronidase alfa to nab-paclitaxel and gemcitabine suggested significantly longer progression-free survival in patients with advanced PDA compared with nab-paclitaxel and gemcitabine alone. This benefit was even more pronounced in a subgroup of patients who expressed high levels of tumour HA.
Collapse
Affiliation(s)
| | - Michel Ducreux
- Département de Médecine Oncologique, Institut Gustave Roussy, Villejuif, France and Université Paris-Saclay, Paris, France
| | - Manuel Hidalgo
- Harvard Medical School, Boston, Massachusetts, United States
| | - Gerald Prager
- Department of Medicine I, Comprehensive Cancer Centre Vienna, Medical University Vienna, Vienna, Austria
| | - Eric Van Cutsem
- Gastroenterology/Digestive Oncology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
54
|
Wang Z, Zhao K, Hackert T, Zöller M. CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression. Front Cell Dev Biol 2018; 6:97. [PMID: 30211160 PMCID: PMC6122270 DOI: 10.3389/fcell.2018.00097] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the leading cause of cancer death, tumor progression proceeding through emigration from the primary tumor, gaining access to the circulation, leaving the circulation, settling in distant organs and growing in the foreign environment. The capacity of a tumor to metastasize relies on a small subpopulation of cells in the primary tumor, so called cancer-initiating cells (CIC). CIC are characterized by sets of markers, mostly membrane anchored adhesion molecules, CD44v6 being the most frequently recovered marker. Knockdown and knockout models accompanied by loss of tumor progression despite unaltered primary tumor growth unraveled that these markers are indispensable for CIC. The unexpected contribution of marker molecules to CIC-related activities prompted research on underlying molecular mechanisms. This review outlines the contribution of CD44, particularly CD44v6 to CIC activities. A first focus is given to the impact of CD44/CD44v6 to inherent CIC features, including the crosstalk with the niche, apoptosis-resistance, and epithelial mesenchymal transition. Following the steps of the metastatic cascade, we report on supporting activities of CD44/CD44v6 in migration and invasion. These CD44/CD44v6 activities rely on the association with membrane-integrated and cytosolic signaling molecules and proteases and transcriptional regulation. They are not restricted to, but most pronounced in CIC and are tightly regulated by feedback loops. Finally, we discuss on the engagement of CD44/CD44v6 in exosome biogenesis, loading and delivery. exosomes being the main acteurs in the long-distance crosstalk of CIC with the host. In brief, by supporting the communication with the niche and promoting apoptosis resistance CD44/CD44v6 plays an important role in CIC maintenance. The multifaceted interplay between CD44/CD44v6, signal transducing molecules and proteases facilitates the metastasizing tumor cell journey through the body. By its engagement in exosome biogenesis CD44/CD44v6 contributes to disseminated tumor cell settlement and growth in distant organs. Thus, CD44/CD44v6 likely is the most central CIC biomarker.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Kun Zhao
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
- *Correspondence: Margot Zöller
| |
Collapse
|
55
|
Compagnone M, Gatti V, Presutti D, Ruberti G, Fierro C, Markert EK, Vousden KH, Zhou H, Mauriello A, Anemone L, Bongiorno-Borbone L, Melino G, Peschiaroli A. ΔNp63-mediated regulation of hyaluronic acid metabolism and signaling supports HNSCC tumorigenesis. Proc Natl Acad Sci U S A 2017; 114:13254-13259. [PMID: 29162693 PMCID: PMC5740608 DOI: 10.1073/pnas.1711777114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and several molecular pathways that underlie the molecular tumorigenesis of HNSCC have been identified. Among them, amplification or overexpression of ΔNp63 isoforms is observed in the majority of HNSCCs. Here, we unveiled a ΔNp63-dependent transcriptional program able to regulate the metabolism and the signaling of hyaluronic acid (HA), the major component of the extracellular matrix (ECM). We found that ∆Np63 is capable of sustaining the production of HA levels in cell culture and in vivo by regulating the expression of the HA synthase HAS3 and two hyaluronidase genes, HYAL-1 and HYAL-3. In addition, ∆Np63 directly regulates the expression of CD44, the major HA cell membrane receptor. By controlling this transcriptional program, ∆Np63 sustains the epithelial growth factor receptor (EGF-R) activation and the expression of ABCC1 multidrug transporter gene, thus contributing to tumor cell proliferation and chemoresistance. Importantly, p63 expression is positively correlated with CD44, HAS3, and ABCC1 expression in squamous cell carcinoma datasets and p63-HA pathway is a negative prognostic factor of HNSCC patient survival. Altogether, our data shed light on a ∆Np63-dependent pathway functionally important to the regulation of HNSCC progression.
Collapse
Affiliation(s)
- Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Veronica Gatti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy
| | - Dario Presutti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy
| | - Claudia Fierro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Elke Katrin Markert
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD United Kingdom
| | | | - Huiqing Zhou
- Radboud Institute for Molecular Life Sciences, Department of Human Genetics 855, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
- Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Alessandro Mauriello
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Lucia Anemone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Lucilla Bongiorno-Borbone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy;
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| | - Angelo Peschiaroli
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy;
| |
Collapse
|
56
|
Liang C, Shi S, Meng Q, Liang D, Ji S, Zhang B, Qin Y, Xu J, Ni Q, Yu X. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going. Exp Mol Med 2017; 49:e406. [PMID: 29611542 PMCID: PMC5750480 DOI: 10.1038/emm.2017.255] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/23/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies. The poor clinical outcome in PDAC is partly attributed to a growth-permissive tumor microenvironment. In the PDAC microenvironment, the stroma is characterized by the development of extensive fibrosis, with stromal components outnumbering pancreatic cancer cells. Each of the components within the stroma has a distinct role in conferring chemoresistance to PDAC, and intrinsic chemoresistance has further worsened this pessimistic prognosis. The nucleoside analog gemcitabine (GEM) is usually the recommended first-line chemotherapeutic agent for PDAC patients and is given alone or in combination with other agents. The mechanisms of intrinsic resistance to GEM are an active area of ongoing research. This review highlights the important role the complex structure of stroma in PDAC plays in the intrinsic resistance to GEM and discusses whether antistroma therapy improves the efficacy of GEM. The addition of antistroma therapy combined with GEM is expected to be a novel therapeutic strategy with significant survival benefits for PDAC patients.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Nguyen N, Kumar A, Chacko S, Ouellette RJ, Ghosh A. Human hyaluronic acid synthase-1 promotes malignant transformation via epithelial-to-mesenchymal transition, micronucleation and centrosome abnormalities. Cell Commun Signal 2017; 15:48. [PMID: 29137675 PMCID: PMC5686803 DOI: 10.1186/s12964-017-0204-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023] Open
Abstract
Background Human hyaluronic acid (HA) molecules are synthesized by three membrane spanning Hyaluronic Acid Synthases (HAS1, HAS2 and HAS3). Of the three, HAS1 is found to be localized more into the cytoplasmic space where it synthesizes intracellular HA. HA is a ubiquitous glycosaminoglycan, mainly present in the extracellular matrix (ECM) and on the cell surface, but are also detected intracellularly. Accumulation of HA in cancer cells, the cancer-surrounding stroma, and ECM is generally considered an independent prognostic factors for patients. Higher HA production also correlates with higher tumor grade and more genetic heterogeneity in multiple cancer types which is known to contribute to drug resistance and results in treatment failure. Tumor heterogeneity and intra-tumor clonal diversity are major challenges for diagnosis and treatment. Identification of the driver pathway(s) that initiate genomic instability, tumor heterogeneity and subsequent phenotypic/clinical manifestations, are fundamental for the diagnosis and treatment of cancer. Thus far, no evidence was shown to correlate intracellular HA status (produced by HAS1) and the generation of genetic diversity in tumors. Methods We tested different cell lines engineered to induce HAS1 expression. We measured the epithelial traits, centrosomal abnormalities, micronucleation and polynucleation of those HAS1-expressing cells. We performed real-time PCR, 3D cell culture assay, confocal microscopy, immunoblots and HA-capture methods. Results Our results demonstrate that overexpression of HAS1 induces loss of epithelial traits, increases centrosomal abnormalities, micronucleation and polynucleation, which together indicate manifestation of malignant transformation, intratumoral genetic heterogeneity, and possibly create suitable niche for cancer stem cells generation. Conclusions The intracellular HA produced by HAS1 can aggravate genomic instability and intratumor heterogeneity, pointing to a fundamental role of intracellular HA in cancer initiation and progression. Electronic supplementary material The online version of this article (10.1186/s12964-017-0204-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyet Nguyen
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada
| | - Awanit Kumar
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada
| | - Simi Chacko
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada. .,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
58
|
Alibardi L. Hyaluronic acid in the tail and limb of amphibians and lizards recreates permissive embryonic conditions for regeneration due to its hygroscopic and immunosuppressive properties. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:760-771. [DOI: 10.1002/jez.b.22771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/19/2017] [Accepted: 08/29/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab; Padova Italy
- Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
59
|
Pedron S, Hanselman JS, Schroeder MA, Sarkaria JN, Harley BAC. Extracellular Hyaluronic Acid Influences the Efficacy of EGFR Tyrosine Kinase Inhibitors in a Biomaterial Model of Glioblastoma. Adv Healthc Mater 2017; 6:10.1002/adhm.201700529. [PMID: 28766870 PMCID: PMC5726872 DOI: 10.1002/adhm.201700529] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/01/2017] [Indexed: 12/23/2022]
Abstract
3D biomaterial models have potential to explore the influence of the tumor microenvironment on aberrant signaling pathways and compensatory signals using patient-derived cells. Glioblastoma (GBM) tumors are highly heterogeneous, with both cell composition and extracellular matrix biophysical factors seen as key regulators of malignant phenotype and treatment outcomes. Amplification, overexpression, and mutation of the epidermal growth factor receptor (EGFR) tyrosine kinase have been identified in 50% of GBM patients. Here, hyaluronic acid (HA) decorated methacrylamide-functionalized gelatin (GelMA) hydrogels are used to examine the synergies between microenvironmental factors and a model EGFR tyrosine kinase inhibitor (TKI) using patient-derived xenograft cells. The in vitro behavior of 3 patient-derived xenografts that reflect a clinically relevant range of EGFR variants is characterized: GBM10 (EGFR, wild type), GBM12 (EGFR+), and GBM6 (EGFRvIII). GelMA hydrogels support xenograft culture; cells remain viable, active, respond to matrix-immobilized HA, and upregulate genes associated with matrix remodeling and tumor growth. Interestingly, matrix-immobilized HA alters the response of GBM cells to a model tyrosine kinase inhibitor, erlotinib. While constitutively activated EGFRvIII cells are sensitive to TKI in gelatin hydrogels, hyaluronic acid mediated adhesive signaling interacts with EGFRvIII signaling to increase cell metabolic activity, increase soluble hyaluronic acid synthesis, and modify response to erlotinib exposure.
Collapse
Affiliation(s)
- Sara Pedron
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Jacob S Hanselman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Brendan A C Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Lab., 600 S. Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
60
|
Infante JR, Korn RL, Rosen LS, LoRusso P, Dychter SS, Zhu J, Maneval DC, Jiang P, Shepard HM, Frost G, Von Hoff DD, Borad MJ, Ramanathan RK. Phase 1 trials of PEGylated recombinant human hyaluronidase PH20 in patients with advanced solid tumours. Br J Cancer 2017; 118:153-161. [PMID: 28949957 PMCID: PMC5785735 DOI: 10.1038/bjc.2017.327] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/10/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Hyaluronan accumulation in tumour stroma is associated with reduced survival in preclinical cancer models. PEGPH20 degrades hyaluronan to facilitate tumour access for cancer therapies. Our objective was to assess safety and antitumour activity of PEGPH20 in patients with advanced solid tumours. Methods: In HALO-109-101 (N=14), PEGPH20 was administered intravenously once or twice weekly (0.5 or 50 μg kg−1) or once every 3 weeks (0.5–1.5 μg kg−1). In HALO-109-102 (N=27), PEGPH20 was administered once or twice weekly (0.5–5.0 μg kg−1), with dexamethasone predose and postdose. Results: Dose-limiting toxicities included grade ⩾3 myalgia, arthralgia, and muscle spasms; the maximum tolerated dose was 3.0 μg kg−1 twice weekly. Plasma hyaluronan increased in a dose-dependent manner, achieving steady state by Day 8 in multidose studies. A decrease in tumour hyaluronan level was observed in 5 of the 6 patients with pretreatment and posttreatment tumour biopsies. Exploratory imaging showed changes in tumour perfusion and decreased tumour metabolic activity, consistent with observations in animal models. Conclusions: The tumour stroma has emerging importance in the development of cancer therapeutics. PEGPH20 3.0 μg kg−1 administered twice weekly is feasible in patients with advanced cancers; exploratory analyses indicate antitumour activity supporting further evaluation of PEGPH20 in solid tumours.
Collapse
Affiliation(s)
- Jeffrey R Infante
- Early Development Oncology, Janssen Research & Development, LLC, Welsh & McKean Roads, Spring House, PA 19477, USA
| | - Ronald L Korn
- Scottsdale Medical Imaging, 9700 N. 91st Suite C-200, Scottsdale, AZ 85258, USA
| | - Lee S Rosen
- Division of Hematology-Oncology, University of California - Los Angeles, 2020 Santa Monica Boulevard, Suite 600, Santa Monica, CA 90404, USA
| | | | - Samuel S Dychter
- Fate Therapeutics, Inc., 3535 General Atomics Court, San Diego, CA 92121, USA
| | - Joy Zhu
- SBIO Pte, Ltd., 1 Science Park Road, #05-09, The Capricorn Science Park 2, Singapore, 117 528, Singapore
| | - Daniel C Maneval
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Ping Jiang
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Road, San Diego, CA 92121, USA
| | - H Michael Shepard
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Gregory Frost
- F1 Bioventures LLC, 505 S. Flagler Drive, West Palm Beach, FL 33401, USA
| | - Daniel D Von Hoff
- Translational Genomics Research Institute (TGen), 445 N. Fifth Street, Phoenix, AZ 85004, USA
| | - Mitesh J Borad
- Mayo Clinic, 13400 E. Shea Boulevard, Scottsdale, AZ 85259, USA
| | | |
Collapse
|
61
|
Alibardi L. Hyaluronate likely contributes to the immunesuppression of the regenerating tail blastema in lizards: Implications for organ regeneration in amniotes. ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
62
|
Gagliano N, Sforza C, Sommariva M, Menon A, Conte V, Sartori P, Procacci P. 3D-spheroids: What can they tell us about pancreatic ductal adenocarcinoma cell phenotype? Exp Cell Res 2017; 357:299-309. [PMID: 28571915 DOI: 10.1016/j.yexcr.2017.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 12/15/2022]
Abstract
We aimed at analyzing the effect of the 3D-arrangement on the expression of some genes and proteins which play a key role in pancreatic adenocarcinoma (PDAC) progression in HPAF-II, HPAC and PL45 PDAC cells cultured in either 2D-monolayers or 3D-spheroids. Cytokeratins 7, 8, 18, 19 were differently expressed in 3D-spheroids compared to 2D-monolayers. Syndecan 1 was upregulated in HPAF-II and PL45 3D-spheroids, and downregulated in HPAC. Heparanase mRNA levels were almost unchanged in HPAF-II, and increased in HPAC and PL45 3D-spheroids. Hyaluronan synthase (HAS) 2 and 3 mRNA increased in all 3D-spheroids compared to 2D-monolayers. CD44 and CD44s were expressed to a lower extent in HPAF-II and HPAC 3D-spheroids. By contrast, the CD44s/v3 and the CD44s/v6 ratio increased in HPAC and PL45 3D-spheroids, compared to 2D-monolayers. The expression of MMP-7 was strongly upregulated in 3D-spheroids. STAT3 was similarly expressed 3D-spheroids or 2D-monolayers, while pSTAT3 was almost undetectable in 2D-monolayers and strongly upregulated in 3D-spheroids. These results suggest that 3D-spheroids represent a cell culture model that allows the characterization of PDAC cell phenotype, adding new information that contributes to a better understanding of the biology and behavior of PDAC cells.
Collapse
Affiliation(s)
- Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy.
| | - Chiarella Sforza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| | - Michele Sommariva
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| | - Alessandra Menon
- 1st Department, Azienda Socio Sanitaria Territoriale Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122 Milan, Italy
| | - Vincenzo Conte
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| |
Collapse
|
63
|
Coppola S, Carnevale I, Danen EHJ, Peters GJ, Schmidt T, Assaraf YG, Giovannetti E. A mechanopharmacology approach to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2017; 31:43-51. [PMID: 28867243 DOI: 10.1016/j.drup.2017.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly chemoresistant malignancy. This chemoresistant phenotype has been historically associated with genetic factors. Major biomedical research efforts were concentrated that resulted in the identification of subtypes characterized by specific genetic lesions and gene expression signatures that suggest important biological differences. However, to date, these distinct differences could not be exploited for therapeutic interventions. Apart from these genetic factors, desmoplasia and tumor microenvironment have been recognized as key contributors to PDAC chemoresistance. However, while several strategies targeting tumor-stroma have been explored including drugs against members of the Hedgehog family, they failed to meet the expectations in the clinical setting. These unsatisfactory clinical results suggest that, an important link between genetics and the influence of tumor microenvironment on PDAC chemoresistance remains to be elucidated. In this respect, mechanobiology is an emerging multidisciplinary field that encompasses cell and developmental biology as well as biophysics and bioengineering. Herein we provide a comprehensive overview of the key players in pancreatic cancer chemoresistance from the perspective of mechanobiology, and discuss novel experimental avenues such as elastic micropillar arrays that could provide fresh insights for the development of mechanobiology-targeted therapeutic approaches (know as mechanopharmacology) to overcome anticancer drug resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Ilaria Carnevale
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University Hospital of Pisa, Pisa, Italy
| | - Erik H J Danen
- Division of Toxicology, LACDR, Leiden University, Leiden, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University Hospital of Pisa, Pisa, Italy; Institute for Nanoscience and Nanotechnologies, CNR-Nano, Pisa.
| |
Collapse
|
64
|
Kuo YZ, Fang WY, Huang CC, Tsai ST, Wang YC, Yang CL, Wu LW. Hyaluronan synthase 3 mediated oncogenic action through forming inter-regulation loop with tumor necrosis factor alpha in oral cancer. Oncotarget 2017; 8:15563-15583. [PMID: 28107185 PMCID: PMC5362506 DOI: 10.18632/oncotarget.14697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Hyaluronan (HA) is a major extracellular matrix component. However, its role and mediation in oral cancer remains elusive. Hyaluronan synthase 3 (HAS3), involved in pro-inflammatory short chain HA synthesis, was the predominant synthase in oral cancer cells and tissues. HAS3 overexpression significantly increased oral cancer cell migration, invasion and xenograft tumorigenesis accompanied with the increased expression of tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Conversely, HAS3 depletion abrogated HAS3-mediated stimulation. HAS3 induced oncogenic actions partly through activating EGFR-SRC signaling. HAS3-derived HA release into extracellular milieu enhanced transendothelial monocyte migration and MCP-1 expression, which was attenuated by anti-HAS3 antibodies or a HAS inhibitor, 4-Methylumbelliferone (4-MU). The NF-κB-binding site III at -1692 to -1682 bp upstream from the transcript 1 start site in HAS3 proximal promoter was the most responsive to TNF-α-stimulated transcription. ChIP-qPCR analysis confirmed the highest NF-κB-p65 enrichment on site III. Increased HAS3 mRNA expression was negatively correlated with the overall survival of oral cancer patients. A concomitant increase of TNF-α, a stimulus for HAS3 expression, with HAS3 expression was not only associated with lymph node metastasis but also negated clinical outcome. Together, HAS3 and TNF-α formed an inter-regulation loop to enhance tumorigenesis in oral cancer.
Collapse
Affiliation(s)
- Yi-Zih Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Wei-Yu Fang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Cheng-Chih Huang
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan 70428, Taiwan, R.O.C
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan 70428, Taiwan, R.O.C.,Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan 70428, Taiwan, R.O.C
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Chih-Li Yang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Li-Wha Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|
65
|
Maksimenko AV. Modified enzymes for pharmaceutical purposes. Extension of the goals and objectives for consistent investigation. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
66
|
Abstract
Hyaluronan (HA) accumulates in pancreatic ductal adenocarcinoma (PDAC), but functional significance of HA in the aggressive phenotype remains unknown. We used different models to investigate the effect of HA on PDAC cell motility by wound healing and transwell migration assay. Changes in cell motility were examined in 8 PDAC cell lines in response to inhibition of HA production by treatment with 4-methylumbelliferone (4-MU) and to promotion by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or by co-culture with tumor-derived stromal fibroblasts. We also investigated changes in cell motility by adding exogenous HA. Additionally, mRNA expressions of hyaluronan synthases and hyaluronidases were examined using real time RT-PCR. Inhibition of HA by 4-MU significantly decreased the migration, whereas promotion of HA by TPA or co-culture with tumor-derived fibroblasts significantly increased the migration of PDAC cells. The changes in HA production by these treatments tended to be associated with changes in HAS3 mRNA expression. Furthermore, addition of exogenous HA, especially low-molecular-weight HA, significantly increased the migration of PDAC cells. These findings suggest that HA stimulates PDAC cell migration and thus represents an ideal therapeutic target to prevent invasion and metastasis.
Collapse
|
67
|
Abstract
OBJECTIVES Increased production and processing (degradation) of hyaluronan (HA) is critical for cancer invasion and metastasis. Although HA is known to be overexpressed in pancreatic ductal adenocarcinoma (PDAC), little is known about the expression and biological significance of HA-degrading enzymes, hyaluronidases (HYALs), in PDAC. METHODS Expression of HYALs mRNA was examined in PDAC cells by quantitative real-time RT-PCR. HYAL1 protein expression was examined in primary PDAC tumors by enzyme-linked immuno-sorbent assay. The migratory ability of PDAC cells was determined by a transwell cell migration assay. RESULTS Screening of mRNA expression of three major HYAL genes (HYAL1, 2, and 3) identified HYAL1 as a gene overexpressed in PDAC cells. Treatment of PDAC cells with 5-aza-2'-deoxycytidine and/or trichostatin A further increased the HYAL1 expression, suggesting a possible involvement of epigenetic mechanisms in the transcriptional regulation of this gene. HYAL1 protein concentrations were significantly higher in primary PDAC tissues as compared with nontumor pancreatic tissues (P = 0.049). Importantly, inhibition of HYAL activity by dextran sulfate significantly inhibited the migration of PDAC cells showing strong HYAL1 expression (P = 0.002). CONCLUSIONS These findings suggest that overexpression of HYAL1 is a common mechanism that may contribute to the aggressive phenotype of PDAC.
Collapse
|
68
|
Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol 2016; 59:3-22. [PMID: 27746219 DOI: 10.1016/j.matbio.2016.10.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
Synthesis, deposition, and interactions of hyaluronan (HA) with its cellular receptor CD44 are crucial events that regulate the onset and progression of tumors. The intracellular signaling pathways initiated by HA interactions with CD44 leading to tumorigenic responses are complex. Moreover, HA molecules may perform dual functions depending on their concentration and size. Overexpression of variant isoforms of CD44 (CD44v) is most commonly linked to cancer progression, whereas their loss is associated with inhibition of tumor growth. In this review, we highlight that the regulation of HA synthases (HASes) by post-translational modifications, such as O-GlcNAcylation and ubiquitination, environmental factors and the action of microRNAs is important for HA synthesis and secretion in the tumor microenvironment. Moreover, we focus on the roles and interactions of CD44 with various proteins that reside extra- and intracellularly, as well as on cellular membranes with particular reference to the CD44-HA axis in cancer stem cell functions, and the importance of CD44/CD44v6 targeting to inhibit tumorigenesis.
Collapse
|
69
|
Heeg S, Das KK, Reichert M, Bakir B, Takano S, Caspers J, Aiello NM, Wu K, Neesse A, Maitra A, Iacobuzio-Donahue CA, Hicks P, Rustgi AK. ETS-Transcription Factor ETV1 Regulates Stromal Expansion and Metastasis in Pancreatic Cancer. Gastroenterology 2016; 151:540-553.e14. [PMID: 27318148 PMCID: PMC5002361 DOI: 10.1053/j.gastro.2016.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 05/13/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The ETS-transcription factor ETV1 is involved in epithelial-mesenchymal transition during pancreatic development and is induced in mouse pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC). We investigated the function of ETV1 in stromal expansion of PDAC and metastasis, as well as its effects on a novel downstream target Sparc, which encodes a matricellular protein found in PDAC stroma that has been associated with invasiveness, metastasis and poor patient outcomes. METHODS Pancreatic ductal cells were isolated from Pdx1Cre;Kras(G12D/+) mice (PanIN), Pdx1Cre;Kras(G12D/+);p53(fl/+) and Pdx1Cre;Kras(G12D/+);p53(fl/+);Rosa26(YFP) mice (PDAC), and Pdx1Cre;Kras(G12D/+);p53(fl/+);Sparc(-/-) mice. Cells were grown in 3-dimensional organoid culture to analyze morphology, proliferation, and invasion. Human PanIN and PDAC tissues were evaluated for ETV1 expression. Orthotopic pancreatic transplants of ETV1-overexpressing PDAC and respective control cells were performed. RESULTS ETV1 expression was significantly increased in human PanINs and, even more so, in primary and metastatic PDAC. Analyses of mouse orthotopic xenografts revealed that ETV1 induced significantly larger primary tumors than controls, with significantly increased stromal expansion, ascites and metastases. In 3-dimensional organoids, ETV1 disrupted cyst architecture, induced EMT, and increased invasive capacity. Furthermore, we identified Sparc as a novel functional gene target of Etv1 by luciferase assays, and SPARC and ETV1 proteins co-localized in vivo. Disruption of Sparc abrogates the phenotype of stromal expansion and metastasis found with ETV1 overexpression in vivo. We identified hyaluronan synthase 2 (Has2) as another novel downstream factor of Etv1; that may mediate ETV1's significant expansion of hyaluronic acid in PDAC stroma. Conversely, disruption of Etv1 in PDAC mice (Pdx1Cre;Kras(G12D/+);p53(fl/+);Rosa26(YFP);Cre;Etv1(fl/fl)) reduced levels of SPARC and hyaluronic acid in the stroma. CONCLUSIONS ETV1 is critical in the desmoplastic stromal expansion and metastatic progression of pancreatic cancer in mice, mediated functionally in part through Sparc and Has2.
Collapse
Affiliation(s)
- Steffen Heeg
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine II, Medical Center, University of Freiburg; Freiburg, Germany
| | - Koushik K Das
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maximilian Reichert
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; II. Medizinische Klinik, Technical University of Munich, Munich, Germany
| | - Basil Bakir
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shigetsugu Takano
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Caspers
- Department of Medicine II, Medical Center, University of Freiburg; Freiburg, Germany
| | - Nicole M Aiello
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Albrecht Neesse
- Division of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Goettingen, Germany
| | - Anirban Maitra
- University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Philip Hicks
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW Pancreatic cancer is the most devastating of all cancers with an extremely poor prognosis. In US alone, over 50 000 new cases of pancreatic cancer are reported annually, and about the same number succumb to it, making pancreatic cancer the third most common cause of cancer deaths. Most patients with pancreatic cancer present with advanced disease, which cannot be resected surgically, and for these patients chemotherapy is the only option. Even patients who undergo resection require adjuvant therapy to decrease the risk of recurrence. Since the 1950s, a variety of different agents, like antimetabolites, nucleoside analogs, and DNA intercalating compounds, have been used against pancreatic cancer, alone or in combination, with little improvement in the survival statistics. The current article reviews the evolution of chemotherapy for pancreatic cancer, and discusses some novel therapeutic options that are emerging in recent times, with special emphasis on Minnelide, a novel HSP70 inhibitor, which is currently in clinical trials. RECENT FINDINGS Approaches towards developing therapies for pancreatic cancer have evolved tremendously over the past decade. Research has shown that apart from the inherent drug resistance, drug delivery to pancreatic cancer has also posed a major challenge. The extensive desmoplastic stroma of pancreatic cancer is believed to create inordinately high interstitial fluid pressures leading to vascular collapse and substantial barrier to perfusion of chemotherapeutics, thus creating an additional layer of protection for pancreatic cancer. Recent research thus is focused not only on understanding the biology and developing strategies to target cancer cells, but also is targeted towards the depletion of stroma in order to ensure better delivery of chemotherapeutic compounds to the tumor. SUMMARY The current article describes the novel therapies that are constantly being evaluated to address and overcome the challenges that make pancreatic cancer a difficult disease to treat.
Collapse
|
71
|
Wu RL, Huang L, Zhao HC, Geng XP. Hyaluronic acid in digestive cancers. J Cancer Res Clin Oncol 2016; 143:1-16. [DOI: 10.1007/s00432-016-2213-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/27/2016] [Indexed: 01/03/2023]
|
72
|
Deen AJ, Arasu UT, Pasonen-Seppänen S, Hassinen A, Takabe P, Wojciechowski S, Kärnä R, Rilla K, Kellokumpu S, Tammi R, Tammi M, Oikari S. UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cell Mol Life Sci 2016; 73:3183-204. [PMID: 26883802 PMCID: PMC11108457 DOI: 10.1007/s00018-016-2158-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Abstract
Hyaluronan content is a powerful prognostic factor in many cancer types, but the molecular basis of its synthesis in cancer still remains unclear. Hyaluronan synthesis requires the transport of hyaluronan synthases (HAS1-3) from Golgi to plasma membrane (PM), where the enzymes are activated. For the very first time, the present study demonstrated a rapid recycling of HAS3 between PM and endosomes, controlled by the cytosolic levels of the HAS substrates UDP-GlcUA and UDP-GlcNAc. Depletion of UDP-GlcNAc or UDP-GlcUA shifted the balance towards HAS3 endocytosis, and inhibition of hyaluronan synthesis. In contrast, UDP-GlcNAc surplus suppressed endocytosis and lysosomal decay of HAS3, favoring its retention in PM, stimulating hyaluronan synthesis, and HAS3 shedding in extracellular vesicles. The concentration of UDP-GlcNAc also controlled the level of O-GlcNAc modification of HAS3. Increasing O-GlcNAcylation reproduced the effects of UDP-GlcNAc surplus on HAS3 trafficking, while its suppression showed the opposite effects, indicating that O-GlcNAc signaling is associated to UDP-GlcNAc supply. Importantly, a similar correlation existed between the expression of GFAT1 (the rate limiting enzyme in UDP-GlcNAc synthesis) and hyaluronan content in early and deep human melanomas, suggesting the association of UDP-sugar metabolism in initiation of melanomagenesis. In general, changes in glucose metabolism, realized through UDP-sugar contents and O-GlcNAc signaling, are important in HAS3 trafficking, hyaluronan synthesis, and correlates with melanoma progression.
Collapse
Affiliation(s)
- Ashik Jawahar Deen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland.
| | - Uma Thanigai Arasu
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Piia Takabe
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka Kärnä
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Raija Tammi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Markku Tammi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sanna Oikari
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland.
- Institute of Dentistry, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
73
|
Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma. Pharm Res 2016; 33:2059-77. [DOI: 10.1007/s11095-016-1947-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
|
74
|
Vennin C, Herrmann D, Lucas MC, Timpson P. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression. F1000Res 2016; 5. [PMID: 27239290 PMCID: PMC4870995 DOI: 10.12688/f1000research.8090.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression.
Collapse
Affiliation(s)
- Claire Vennin
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Morghan C Lucas
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
75
|
Rankin KS, Frankel D. Hyaluronan in cancer - from the naked mole rat to nanoparticle therapy. SOFT MATTER 2016; 12:3841-8. [PMID: 27079782 DOI: 10.1039/c6sm00513f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyaluronan, a glycosaminoglycan, abundant in the tumour microenvironment, is a key player in many processes associated with cancer. Recently the cancer resistance of the naked mole rat has been attributed to the presence of an ultra-high molecular weight form of this molecule. The physical properties of this multifunctional biopolymer have been extensively studied in the context of synovial joints. However, relatively little has been reported with regard to the soft matter properties of hyaluronan in relation to cancer. In this review we examine the role of hyaluronan in cancer, paying particular attention to its mechanical interactions with malignant cells and its soft matter properties. In addition we discuss the use of hyaluronan based gels to study cancer invasion as well as nanoparticle based strategies for disease treatment.
Collapse
Affiliation(s)
- Kenneth S Rankin
- Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
76
|
Widening and Elaboration of Consecutive Research into Therapeutic Antioxidant Enzyme Derivatives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3075695. [PMID: 27148430 PMCID: PMC4842371 DOI: 10.1155/2016/3075695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/16/2016] [Accepted: 03/16/2016] [Indexed: 01/03/2023]
Abstract
Undiminishing actuality of enzyme modification for therapeutic purposes has been confirmed by application of modified enzymes in clinical practice and numerous research data on them. Intravenous injection of the superoxide dismutase-chondroitin sulfate-catalase (SOD-CHS-CAT) conjugate in preventive and medicative regimes in rats with endotoxin shock induced with a lipopolysaccharide bolus has demonstrated that antioxidant agents not only effectively prevent damage caused by oxidative stress (as believed previously) but also can be used for antioxidative stress therapy. The results obtained emphasize the importance of investigation into the pathogenesis of vascular damage and the role of oxidative stress in it. The effects of intravenous medicative injection of SOD-CHS-CAT in a rat model of endotoxin shock have demonstrated a variety in the activity of this conjugate in addition to prevention of NO conversion in peroxynitrite upon interaction with O2∙− superoxide radical. Together with the literature data, these findings offer a prospect for the study of NO-independent therapeutic effects of SOD-CHS-CAT, implying the importance of a better insight into the mechanisms of the conjugate activity in modeled cardiovascular damage involving vasoactive agents other than NO.
Collapse
|
77
|
Chanmee T, Ontong P, Itano N. Hyaluronan: A modulator of the tumor microenvironment. Cancer Lett 2016; 375:20-30. [DOI: 10.1016/j.canlet.2016.02.031] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
|
78
|
Sato N, Kohi S, Hirata K, Goggins M. Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight. Cancer Sci 2016; 107:569-75. [PMID: 26918382 PMCID: PMC4970823 DOI: 10.1111/cas.12913] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/02/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains the most deadly disease worldwide, with the lowest survival rate among all cancer types. Recent evidence suggests that hyaluronan (HA), a major component of ECM, provides a favorable microenvironment for cancer progression. Pancreatic ductal adenocarcinoma is typically characterized by a dense desmoplastic stroma containing a large amount of HA. Accumulation of HA promotes tumor growth in mice and correlates with poor prognosis in patients with PDAC. Because HA is involved in various malignant behaviors of cancer (such as increased cell proliferation, migration, invasion, angiogenesis, and chemoresistance), inhibiting HA synthesis/signaling or depleting HA in tumor stroma could represent a promising therapeutic strategy against PDAC. In this review article, we summarize our current understanding of the role of HA in the progression of PDAC and discuss possible therapeutic approaches targeting HA.
Collapse
Affiliation(s)
- Norihiro Sato
- Department of Surgery 1School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Shiro Kohi
- Department of Surgery 1School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Keiji Hirata
- Department of Surgery 1School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Michael Goggins
- Department of PathologyJohns Hopkins Medical InstitutionsBaltimoreMarylandUSA
| |
Collapse
|
79
|
Sato N, Cheng XB, Kohi S, Koga A, Hirata K. Targeting hyaluronan for the treatment of pancreatic ductal adenocarcinoma. Acta Pharm Sin B 2016; 6:101-5. [PMID: 27006892 PMCID: PMC4788704 DOI: 10.1016/j.apsb.2016.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/12/2015] [Accepted: 12/31/2015] [Indexed: 01/04/2023] Open
Abstract
Progression of cancer is often associated with interactions between cancer cells and extracellular matrix (ECM) surrounding them. Increasing evidence has suggested that accumulation of hyaluronan (HA), a major component of ECM, provides a favorable microenvironment for cancer progression. Pancreatic ductal adenocarcinoma (PDAC) is characterized typically by a dense desmoplastic stroma with a large amount of HA, making this molecule as an attractive target for therapy. Several studies have shown efficacy of inhibitors of HA synthesis or signaling for the treatment of PDAC. Recent studies have also demonstrated substantial improvements in the effects of chemotherapy by a targeted depletion of stromal HA in PDAC using an enzymatic agent. Thus, targeting HA has been recognized as a promising therapeutic strategy to treat this highly aggressive neoplasm. In this review article, we summarize our current understanding of the role of HA in the progression of PDAC and discuss possible therapeutic approaches targeting HA.
Collapse
|
80
|
Scodeller P. Extracellular Matrix Degrading Enzymes for Nanocarrier-Based Anticancer Therapy. INTRACELLULAR DELIVERY III 2016. [DOI: 10.1007/978-3-319-43525-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
81
|
Kurniawan NA, Chaudhuri PK, Lim CT. Mechanobiology of cell migration in the context of dynamic two-way cell-matrix interactions. J Biomech 2015; 49:1355-1368. [PMID: 26747513 DOI: 10.1016/j.jbiomech.2015.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022]
Abstract
Migration of cells is integral in various physiological processes in all facets of life. These range from embryonic development, morphogenesis, and wound healing, to disease pathology such as cancer metastasis. While cell migratory behavior has been traditionally studied using simple assays on culture dishes, in recent years it has been increasingly realized that the physical, mechanical, and chemical aspects of the matrix are key determinants of the migration mechanism. In this paper, we will describe the mechanobiological changes that accompany the dynamic cell-matrix interactions during cell migration. Furthermore, we will review what is to date known about how these changes feed back to the dynamics and biomechanical properties of the cell and the matrix. Elucidating the role of these intimate cell-matrix interactions will provide not only a better multi-scale understanding of cell motility in its physiological context, but also a more holistic perspective for designing approaches to regulate cell behavior.
Collapse
Affiliation(s)
- Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands; Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands.
| | | | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
82
|
Kohi S, Sato N, Cheng XB, Koga A, Higure A, Hirata K. A novel epigenetic mechanism regulating hyaluronan production in pancreatic cancer cells. Clin Exp Metastasis 2015; 33:225-30. [PMID: 26589701 DOI: 10.1007/s10585-015-9771-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant stroma enriched with hyaluronan (HA), a major component of extracellular matrix known to play a critical role in tumor progression. The mechanisms that regulate HA synthesis in PDAC are poorly understood. To investigate whether DNA methylation and HA production from PDAC cells are associated, we studied the effect of 5-aza-2'-deoxycitidine (5-aza-dC), an inhibitor of DNA methylation, or DNA methyltransferase 1 (DNMT1) knockdown by small interfering RNA, on the HA production from PDAC cells. HA production into the conditioned medium was evaluated in PDAC cells treated with 5-aza-dC or DNMT1 knockdown. mRNA expression of HA synthase (HAS) genes was investigated by real-time RT-PCR. Treatment of PDAC cells with 5-aza-dC led to a significant increase in the HA production (up to 2.5-fold increase) in all 4 cell lines tested. This enhanced HA production by 5-aza-dC treatment was accompanied by increased mRNA expression of HAS2 and HAS3. Furthermore, increased HA production and HAS2/HAS3 mRNA expression was also observed in PDAC cells by knockdown of DNMT1. These findings provide evidence, for the first time, that epigenetic mechanism is involved in the regulation of HA synthesis in PDAC cells.
Collapse
Affiliation(s)
- Shiro Kohi
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Norihiro Sato
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| | - Xiao-Bo Cheng
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Atsuhiro Koga
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Aiichiro Higure
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Keiji Hirata
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| |
Collapse
|
83
|
Venning FA, Wullkopf L, Erler JT. Targeting ECM Disrupts Cancer Progression. Front Oncol 2015; 5:224. [PMID: 26539408 PMCID: PMC4611145 DOI: 10.3389/fonc.2015.00224] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 12/18/2022] Open
Abstract
Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.
Collapse
Affiliation(s)
- Freja A. Venning
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Lena Wullkopf
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| |
Collapse
|
84
|
Neesse A, Algül H, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 2015; 64:1476-84. [PMID: 25994217 DOI: 10.1136/gutjnl-2015-309304] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/20/2015] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) exhibits one of the poorest prognosis of all solid tumours and poses an unsolved problem in cancer medicine. Despite the recent success of two combination chemotherapies for palliative patients, the modest survival benefits are often traded against significant side effects and a compromised quality of life. Although the molecular events underlying the initiation and progression of PDA have been intensively studied and are increasingly understood, the reasons for the poor therapeutic response are hardly apprehended. One leading hypothesis over the last few years has been that the pronounced tumour microenvironment in PDA not only promotes carcinogenesis and tumour progression but also mediates therapeutic resistance. To this end, targeting of various stromal components and pathways was considered a promising strategy to biochemically and biophysically enhance therapeutic response. However, none of the efforts have yet led to efficacious and approved therapies in patients. Additionally, recent data have shown that tumour-associated fibroblasts may restrain rather than promote tumour growth, reinforcing the need to critically revisit the complexity and complicity of the tumour-stroma with translational implications for future therapy and clinical trial design.
Collapse
Affiliation(s)
- Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Georg August University Goettingen, Goettingen, Germany
| | - Hana Algül
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Infectiology and Metabolism, Philipps-University, Marburg, Germany
| |
Collapse
|
85
|
Shepard HM. Breaching the Castle Walls: Hyaluronan Depletion as a Therapeutic Approach to Cancer Therapy. Front Oncol 2015; 5:192. [PMID: 26380222 PMCID: PMC4551830 DOI: 10.3389/fonc.2015.00192] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022] Open
Abstract
Hyaluronan (HA) has many functions in the extracellular milieu of normal and diseased tissues. Disease-associated HA accumulation has been shown to predict a worsened prognosis in cancer patients, with tumors having a high-extracellular HA content (HA-high) being more aggressive than their HA-low counterparts. HA-high tumor aggressiveness is derived from the specialized biomechanical and molecular properties of the HA-based assembly of HA binding proteins and the growth-promoting factors that accumulate in it. Biophysical characteristics of an HA-high tumor microenvironment include high tumor interstitial pressure, compression of tumor vasculature, and resulting tumor hypoxia. Within the tumor cell membrane, HA receptors, primarily CD44 and RHAMM, anchor the HA-high extracellular network. HA-CD44 association on the tumor cell surface enhances receptor tyrosine kinase activity to drive tumor progression and treatment resistance. Together, malignant cells in this HA-high matrix may evolve dependency on it for growth. This yields the hypothesis that depleting HA in HA-high tumors may be associated with a therapeutic benefit. A pegylated form of recombinant human hyaluronidase PH20 (PEGPH20) has been deployed as a potential cancer therapeutic in HA-high tumors. PEGPH20 can collapse this matrix by degrading the HA-assembled tumor extracellular framework, leading to tumor growth inhibition, preferentially in HA-high tumors. Enzymatic depletion of HA by PEGPH20 results in re-expansion of the tumor vasculature, reduction in tumor hypoxia, and increased penetration of therapeutic molecules into the tumor. Finally, HA-depletion results in reduced signaling via CD44/RHAMM. Taken together, HA-depletion strategies accomplish their antitumor effects by multiple mechanisms that include targeting both biophysical and molecular signaling pathways. Ongoing clinical trials are examining the potential of PEGPH20 in combination with partner therapeutics in several cancers.
Collapse
|
86
|
Takabe P, Bart G, Ropponen A, Rilla K, Tammi M, Tammi R, Pasonen-Seppänen S. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion. Exp Cell Res 2015. [PMID: 26222208 DOI: 10.1016/j.yexcr.2015.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells.
Collapse
Affiliation(s)
- Piia Takabe
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland.
| | - Geneviève Bart
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland
| | - Antti Ropponen
- University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio, Finland
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland
| | - Markku Tammi
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland
| | - Raija Tammi
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland
| | | |
Collapse
|
87
|
HAS3 underexpression as an indicator of poor prognosis in patients with urothelial carcinoma of the upper urinary tract and urinary bladder. Tumour Biol 2015; 36:5441-50. [PMID: 25934334 DOI: 10.1007/s13277-015-3210-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/03/2015] [Indexed: 02/01/2023] Open
Abstract
Via data mining a published transcriptomic database of UBUC (GSE31684), we discovered hyaluronan synthase-3 (HAS3) as the most significant gene stepwise downregulated from early tumorigenesis to progression among those associated with hyaluronan synthase activity (GO:0050501). We consequently analyzed HAS3 protein expression and their association with clinicopathological factors and survival in our well-characterized cohort of urothelial carcinoma of upper urinary tract (UTUC) and urinary bladder (UBUC). HAS3 expression was assessed by immunohistochemistry and evaluated by using H score method in 295 UBUCs and 340 UTUCs, respectively. HAS3 protein expression statuses were further correlated with clinicopathological parameters and evaluated the prognostic significance for disease-specific survival (DSS) and metastasis-free survival (MeFS). HAS3 protein underexpression was significantly associated with advanced pT status, nodal metastasis, high histological grade, vascular invasion, and frequent mitoses in both groups of UCs. HAS3 underexpression not only predicted poorer DSS and MeFS with univariate analysis, but also indicated dismal DSS and MeFS in multivariate analysis. HAS3 underexpression is associated with advanced tumor stage and adverse pathological features, as well as implies inferior clinical outcomes for both groups of patients with UTUCs and UBUCs, suggesting its critical role in tumor progression in UCs and may serve as a prospective prognostic biomarker and a novel therapeutic target in UCs.
Collapse
|
88
|
Wang S, Zhen L, Liu Z, Ai Q, Ji Y, Du G, Wang Y, Bu Y. Identification and analysis of the promoter region of the human HAS3 gene. Biochem Biophys Res Commun 2015; 460:1008-14. [PMID: 25843802 DOI: 10.1016/j.bbrc.2015.03.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/18/2023]
Abstract
Hyaluronan (HA) is a key component of the vertebrate extracellular matrix that is synthesized at the plasma membrane by the hyaluronan synthases including HAS1, HAS2 and HAS3. The expression and regulation of HAS1-3 are implicated in numerous physiological and pathological processes. The promoters of human HAS1 and HAS2 genes have been identified previously whereas HAS3 promoter remains unclear. In the present study, we have for the first time identified and characterized the human HAS3 gene promoter region. 5' RACE assay revealed two novel transcriptional variants of HAS3 gene with distinct transcription start sites. Progressive deletion analysis of the 5'-flanking region of HAS3 gene demonstrated that HAS3 proximal promoter is mainly restricted to a 450-bp region (i.e. -761 to -305 bp upstream of the major HAS3 transcription start site), whereas its core promoter is located to a minimal 129-bp region (i.e. -433 to -305 bp upstream of the major HAS3 transcription start site). Transcriptional factor binding analysis indicated that HAS3 gene promoter lacks of canonical TATA box, but contains classical GC box as well as other putative binding sites for transcriptional factors such as C/EBP and NFκB. In addition, site-directed mutagenesis assay demonstrated that the proximal Sp1 binding site is essential for the robust proximal promoter activity of HAS3 gene whereas the core MTE (core promoter motif ten elements) motif is required for the basic core promoter activity of HAS3 gene. Our present study should facilitate further studies on the mechanism regulating the expression of this important gene.
Collapse
Affiliation(s)
- Sen Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Lei Zhen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhu Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Qing Ai
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Gang Du
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
89
|
Nykopp TK, Pasonen-Seppänen S, Tammi MI, Tammi RH, Kosma VM, Anttila M, Sironen R. Decreased hyaluronidase 1 expression is associated with early disease recurrence in human endometrial cancer. Gynecol Oncol 2015; 137:152-9. [DOI: 10.1016/j.ygyno.2015.01.525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 01/09/2023]
|
90
|
Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol 2015; 33:230-6. [PMID: 25708906 DOI: 10.1016/j.tibtech.2015.01.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) provides structural and biochemical signals that regulate cell function. A well-controlled balance between cells and surroundings (i.e., dynamic reciprocity) is crucial for regulating ECM architecture. During cancer progression, epithelial cells undergo genetic alterations which, together with stromal changes including ECM remodeling, disturb the homeostatic dynamics of the epithelium. A parallel organization of stromal ECM fibrils is associated with tumorigenic responses. In an emerging paradigm, continuous and progressive regulation via mechanical forces and aberrant signaling are believed to be responsible for tumor-associated ECM remodeling. In this review we discuss the discrete biomechanical and biochemical mechanisms that underlie these architectural changes and highlight their particular relevance to the regulation of the alignment of ECM in the mesenchymal stroma.
Collapse
|
91
|
Barnes J, Dweik RA. Is pulmonary hypertension a metabolic disease? Am J Respir Crit Care Med 2014; 190:973-5. [PMID: 25360726 DOI: 10.1164/rccm.201409-1702ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jarrod Barnes
- 1 Lerner Research Institute Cleveland Clinic Cleveland, Ohio and
| | | |
Collapse
|