51
|
McCormick SM, Heller NM. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins. Front Immunol 2015; 6:549. [PMID: 26579124 PMCID: PMC4621458 DOI: 10.3389/fimmu.2015.00549] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte-macrophage phenotype and function are highlighted.
Collapse
Affiliation(s)
- Sarah M McCormick
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| | - Nicola M Heller
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA ; Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
52
|
Vives-Pi M, Pujol-Autonell I. What potential is there for liposomal-based nanotherapy for the treatment of Type 1 diabetes? Nanomedicine (Lond) 2015; 10:2955-2958. [PMID: 26419917 DOI: 10.2217/nnm.15.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Marta Vives-Pi
- Immunology Department, CIBER of Diabetes & Associated Metabolic Diseases (CIBERDEM), Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Department, CIBER of Diabetes & Associated Metabolic Diseases (CIBERDEM), Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
53
|
Czaja AJ. Transitioning from Idiopathic to Explainable Autoimmune Hepatitis. Dig Dis Sci 2015; 60:2881-900. [PMID: 25999246 DOI: 10.1007/s10620-015-3708-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis lacks an identifiable cause, and its diagnosis requires the exclusion of etiologically defined diseases that resemble it. Insights into its pathogenesis are moving autoimmune hepatitis from an idiopathic to explainable disease, and the goal of this review is to describe the insights that are hastening this transition. Two types of autoimmune hepatitis are justified by serological markers, but they also have distinctive genetic associations (DRB1 and DQB1 genes) and autoantigens. DRB1 alleles are the principal susceptibility factors in white adults, and a six amino acid sequence encoded in the antigen-binding groove of class II molecules of the major histocompatibility complex can influence the selection of autoantigens. Polymorphisms, including variants of SH2B3 and CARD10 genes, may affect immune reactivity and disease severity. The cytochrome mono-oxygenase, CYP2D6, is the autoantigen associated with type 2 autoimmune hepatitis, and it shares homologies with multiple viruses that might promote self-intolerance by molecular mimicry. Chemokines, especially CXCL9 and CXCL10, orchestrate the migration of effector cells to sites of injury and are associated with disease severity. Cells of the innate and adaptive immune responses promote tissue damage, and possible deficiencies in the number and function of regulatory T cells may facilitate the injurious process. Receptor-mediated apoptosis is the principal mechanism of hepatocyte loss, and cell-mediated and antibody-dependent mechanisms of cytotoxicity also contribute. Insights that explain autoimmune hepatitis will allow triggering exogenous antigens to be characterized, risk management to be improved, prognostic indices to be refined, and site-specific therapeutic interventions to emerge.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
54
|
Mbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WHR. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines (Basel) 2015; 3:703-29. [PMID: 26378585 PMCID: PMC4586474 DOI: 10.3390/vaccines3030703] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase (IDO) is the first and rate limiting catabolic enzyme in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation products called "kynurenines" that are known to exert important immuno-regulatory functions. Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may exert profound effects by activating or inhibiting metabolism and immune responses. Important for survival, the regulation of IDO biosynthesis and its activity in cells of the immune system can critically alter their responses to immunological insults, such as infection, autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of tryptophan can modulate the immune system to arrest inflammation, suppress immunity to cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, we examine how vaccines may enhance immune suppression of autoimmunity through the upregulation of IDO biosynthesis in human dendritic cells.
Collapse
Affiliation(s)
- Jacques C Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Dequina A Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | | | - Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju 54896, Korea.
| | - Anthony F Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA.
| | - William H R Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
55
|
Regulation of Dendritic Cell Function in Inflammation. J Immunol Res 2015; 2015:743169. [PMID: 26229971 PMCID: PMC4503598 DOI: 10.1155/2015/743169] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells and link the innate and adaptive immune system. During steady state immune surveillance in skin, DC act as sentinels against commensals and invading pathogens. Under pathological skin conditions, inflammatory cytokines, secreted by surrounding keratinocytes, dermal fibroblasts, and immune cells, influence the activation and maturation of different DC populations including Langerhans cells (LC) and dermal DC. In this review we address critical differences in human DC subtypes during inflammatory settings compared to steady state. We also highlight the functional characteristics of human DC subsets in inflammatory skin environments and skin diseases including psoriasis and atopic dermatitis. Understanding the complex immunoregulatory role of distinct DC subsets in inflamed human skin will be a key element in developing novel strategies in anti-inflammatory therapy.
Collapse
|
56
|
Hayashi T, Yao S, Crain B, Promessi VJ, Shyu L, Sheng C, Kang M, Cottam HB, Carson DA, Corr M. Induction of Tolerogenic Dendritic Cells by a PEGylated TLR7 Ligand for Treatment of Type 1 Diabetes. PLoS One 2015; 10:e0129867. [PMID: 26076454 PMCID: PMC4468074 DOI: 10.1371/journal.pone.0129867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/13/2015] [Indexed: 01/23/2023] Open
Abstract
Autoimmune diabetes mellitus (DM) results from the destruction of pancreatic islet cells by activated T lymphocytes, which have been primed by activated dendritic cells (DC). Individualized therapy with ex vivo DC manipulation and reinfusion has been proposed as a treatment for DM, but this treatment is limited by cost, and requires specialized facilities. A means of in situ modulation of the DC phenotype in the host would be more accessible. Here we report a novel innate immune modulator, 1Z1, generated by conjugating a TLR7 ligand to six units of polyethylene glycol (PEG), which skews DC phenotype in vivo. 1Z1 was less potent in inducing cytokine production by DC than the parent ligand in vitro and in vivo. In addition, this drug only modestly increased DC surface expression of activation markers such as MHC class II, CD80, and CD86; however, the expression of negative regulatory molecules, such as programmed death ligand 1 (PD-L1), and interleukin-1 receptor-associated kinase M (IRAK-M) were markedly increased. In vivo transfer of 1Z1 treated DC into prediabetic NOD mice delayed pancreatic insulitis. Daily administration of 1Z1 effectively prevented the clinical onset of hyperglycemia and reduced histologic islet inflammation. Daily treatment with 1Z1 increased PD-L1 expression in the CD11c+ population in peri-pancreatic lymph nodes; however, it did not induce an increase in regulatory T cells. Pharmaceutical modulation of DC maturation and function in situ, thus represents an opportunity to treat autoimmune disease.
Collapse
Affiliation(s)
- Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Shiyin Yao
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Brian Crain
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Victor J Promessi
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Luke Shyu
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Caroline Sheng
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - McNancy Kang
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Howard B Cottam
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Dennis A Carson
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Maripat Corr
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, United States of America
| |
Collapse
|
57
|
Wang YZ, Feng XG, Wang Q, Xing CY, Shi QG, Kong QX, Cheng PP, Zhang Y, Hao YL, Yuki N. Increased plasmacytoid dendritic cells in Guillain-Barré syndrome. J Neuroimmunol 2015; 283:1-6. [PMID: 26004148 DOI: 10.1016/j.jneuroim.2015.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/15/2022]
Abstract
Guillain-Barré syndrome (GBS) is a post-infectious autoimmune disease. Dendritic cells (DCs) can recognize the pathogen and modulate the host immune response. Exploring the role of DCs in GBS will help our understanding of the disease development. In this study, we aimed to analyze plasmacytoid and conventional DCs in peripheral blood of patients with GBS at different stages of the disease: acute phase as well as early and late recovery phases. There was a significant increase of plasmacytoid DCs in the acute phase (p=0.03 vs healthy donors). There was a positive correlation between percentage of plasmacytoid DCs and the clinical severity of patients with GBS (r=0.61, p<0.001). Quantitative polymerase chain reaction and flow cytometry confirmed the aberrant plasmacytoid DCs in GBS. Thus, plasmacytoid DCs may participate in the development of GBS.
Collapse
Affiliation(s)
- Yu-Zhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China; Central Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Xun-Gang Feng
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Qian Wang
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Chun-Ye Xing
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Qi-Guang Shi
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Pan-Pan Cheng
- Department of Haemotology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, PR China
| | - Yan-Lei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China.
| | - Nobuhiro Yuki
- Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
58
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
59
|
Abstract
Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W, Rochester, MN 55905, USA
| |
Collapse
|
60
|
Montano-Loza AJ, Czaja AJ. Cell mediators of autoimmune hepatitis and their therapeutic implications. Dig Dis Sci 2015; 60:1528-42. [PMID: 25487192 DOI: 10.1007/s10620-014-3473-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Autoimmune hepatitis is associated with interactive cell populations of the innate and adaptive immune systems, and these populations are amenable to therapeutic manipulation. The goals of this review are to describe the key cell populations implicated in autoimmune hepatitis and to identify investigational opportunities to develop cell-directed therapies for this disease. Studies cited in PubMed from 1972 to 2014 for autoimmune hepatitis, innate and adaptive immune systems, and therapeutic interventions were examined. Dendritic cells can promote immune tolerance to self-antigens, present neo-antigens that enhance the immune response, and expand the regulatory T cell population. Natural killer cells can secrete pro-inflammatory and anti-inflammatory cytokines and modulate the activity of dendritic cells and antigen-specific T lymphocytes. T helper 2 lymphocytes can inhibit the cytotoxic activities of T helper 1 lymphocytes and limit the expansion of T helper 17 lymphocytes. T helper 17 lymphocytes can promote inflammatory activity, and they can also up-regulate genes that protect against oxidative stress and hepatocyte apoptosis. Natural killer T cells can expand the regulatory T cell population; gamma delta lymphocytes can secrete interleukin-10, stimulate hepatic regeneration, and induce the apoptosis of hepatic stellate cells; and antigen-specific regulatory T cells can dampen immune cell proliferation and function. Pharmacological agents, neutralizing antibodies, and especially the adoptive transfer of antigen-specific regulatory T cells that have been freshly generated ex vivo are evolving as management strategies. The cells within the innate and adaptive immune systems are key contributors to the occurrence of autoimmune hepatitis, and they are attractive therapeutic targets.
Collapse
Affiliation(s)
- Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | | |
Collapse
|
61
|
Wang YZ, Lv H, Hao YL, Zhang HQ, Li L, Cai GM, Hu M, Jia CX, Feng XG, Kong QX. Suppressive oligodeoxynucleotides induced tolerogenic plasmacytoid dendritic cells and ameliorated the experimental autoimmune neuritis. Immunol Lett 2015; 166:13-8. [PMID: 25952624 DOI: 10.1016/j.imlet.2015.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/05/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Toll-like receptor (TLR) 9, recognizing different ligands, confers distinct features of plasmacytoid dendritic cells (pDCs). Our previous study demonstrated a role for TLR9 in the mechanism of experimental autoimmune neuritis (EAN). In this study, we explored whether suppressive oligodeoxynucleotides (sODN) could induce tolerogenic pDCs via TLR9 and thus promote the recovery of EAN. Effects of different TLR9 ligands, CpG ODN and sODN on P0 180-199 peptide-stimulated pDCs were measured by detecting the expression of co-stimulatory molecules, indoleamine 2,3-dioxygenase (IDO), secretion of Th1- and Th2-type cytokines and the TLR9 signaling pathway. CpG ODN- or sODN-treated pDCs were intravenously injected into the EAN mice and their effects were compared. Our data showed that P0180-199 peptides significantly promoted mRNA expression of co-stimulatory molecules (CD40, CD80 and CD86) in pDCs and induced secretion of Th1-type cytokines. Treatment of CpG ODN aggravated the effects of P0 180-199 peptides on pDCs; however, sODN had the opposite effects and significantly upregulated the IDO expression in pDCs. Further analysis showed that MYD88 is necessary for sODN to modulate the TLR9/NF-κB signaling in pDCs. Finally, the sODN-treated pDCs significantly promoted recovery of the EAN mice. Taken together, sODN could induce tolerogenic pDCs and thus ameliorate the EAN.
Collapse
Affiliation(s)
- Yu-Zhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China; Central Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China
| | - Hui Lv
- Graduate School of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yan-Lei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China
| | - Hai-Qing Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China
| | - Ling Li
- Department of Hematology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China
| | - Gao-Mei Cai
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China
| | - Ming Hu
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China
| | - Chun-Xiang Jia
- Department of Surgical Operating Room, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China
| | - Xun-Gang Feng
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China.
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, People's Republic of China.
| |
Collapse
|
62
|
Mbongue JC, Nicholas DA, Zhang K, Kim NS, Hamilton BN, Larios M, Zhang G, Umezawa K, Firek AF, Langridge WHR. Induction of indoleamine 2, 3-dioxygenase in human dendritic cells by a cholera toxin B subunit-proinsulin vaccine. PLoS One 2015; 10:e0118562. [PMID: 25714914 PMCID: PMC4340906 DOI: 10.1371/journal.pone.0118562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/20/2015] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1 diabetes autoimmunity.
Collapse
Affiliation(s)
- Jacques C. Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Physiology, Loma Linda, CA, United States of America
| | - Dequina A. Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
| | - Kangling Zhang
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju, Republic of Korea
| | - Brittany N. Hamilton
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Microbiology and Molecular Genetics, Loma Linda, CA, United States of America
| | - Marco Larios
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Guangyu Zhang
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
| | - Kazuo Umezawa
- Aichi Medical University, School of Medicine, Department of Molecular Target Medicine Screening, Nagakute, Aichi, Japan
| | - Anthony F. Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, CA, United States of America
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
- * E-mail:
| |
Collapse
|