51
|
Souilem S, Fki I, Kobayashi I, Khalid N, Neves MA, Isoda H, Sayadi S, Nakajima M. Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1834-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
52
|
Iwasaki K, Zheng YW, Murata S, Ito H, Nakayama K, Kurokawa T, Sano N, Nowatari T, Villareal MO, Nagano YN, Isoda H, Matsui H, Ohkohchi N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J Gastroenterol 2016; 22:9765-9774. [PMID: 27956800 PMCID: PMC5124981 DOI: 10.3748/wjg.v22.i44.9765] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/05/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anticancer mechanisms of the monoterpenoid alcohol linalool in human colon cancer cells.
METHODS The cytotoxic effect of linalool on the human colon cancer cell lines and a human fibroblast cell line was examined using the WST-8 assay. The apoptosis-inducing effect of linalool was measured using the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and flow cytometry with Annexin V. Oxidative stress was investigated by staining for diphenyl-1-pyrenylphosphine, which is a cellular lipid peroxidation marker, and electron spin resonance spectroscopy. Sixteen SCID mice xenografted with human cancer cells were randomized into 3 groups for in vivo analysis: control and low-dose and high-dose linalool groups. The control group was administered tap water orally every 3 d. The linalool treatment groups were administered 100 or 200 μg/kg linalool solution orally for the same period. All mice were sacrificed under anesthesia 21 d after tumor inoculation, and tumors and organs were collected for immunohistochemistry using an anti-4-hydroxynonenal antibody. Tumor weights were measured and compared between groups.
RESULTS Linalool induced apoptosis of cancer cells in vitro, following the cancer-specific induction of oxidative stress, which was measured based on spontaneous hydroxyl radical production and delayed lipid peroxidation. Mice in the high-dose linalool group exhibited a 55% reduction in mean xenograft tumor weight compared with mice in the control group (P < 0.05). In addition, tumor-specific lipid peroxidation was observed in the in vivo model.
CONCLUSION Linalool exhibited an anticancer effect via cancer-specific oxidative stress, and this agent has potential for application in colon cancer therapy.
Collapse
|
53
|
Sierra-Rivera CA, Franco-Molina MA, Mendoza-Gamboa E, Zapata-Benavides P, Santaolalla-Tapia J, Coronado-Cerda EE, Tamez-Guerra RS, Rodríguez-Padilla C. Effect of bovine dialyzable leukocyte extract on induction of cell differentiation and death in K562 human chronic myelogenous leukemia cells. Oncol Lett 2016; 12:4449-4460. [PMID: 28101208 PMCID: PMC5228060 DOI: 10.3892/ol.2016.5285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Differentiation induction therapy is an attractive approach in leukemia treatment due to the fact that in blast crisis stage, leukemic cells lose their differentiation capacity. Therefore, it has been proposed as a therapeutic strategy to induce terminal differentiation of leukemic blast cells into a specific lineage, leading to prevention of high proliferation rates. The aim of the present study was to demonstrate the potential of cell differentiation and death induced by bovine dialyzable leukocyte extract (bDLE) in the K562 cell line. For this purpose K562 and MOLT-3 human leukemic cell lines and primary human monocytes and murine peritoneal macrophages were exposed to bDLE, phorbol myristate acetate (PMA) and dimethyl sulfoxide for 96 h, and the viability, proliferation and cell cycle were evaluated. To determine the lineage that led to cell differentiation, Romanowsky staining was performed to observe the morphological changes following the treatments, and the expression of the surface markers cluster of differentiation (CD)14+, CD68+, CD163+ and CD42a+, as well as the phagocytic activity, and the production of nitric oxide (NO) (assessed by colorimetric assay), cytokines [interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α] and chemokines [chemokine (C-C motif) ligand (CCL)2, CCL5 and chemokine (C-X-C motif) ligand 8] in cell supernatants was assessed by flow cytometry. The results of the present study reveal that high doses of bDLE increase the cell death in K562 and MOLT-3 lines, without affecting the viability of human monocytes and murine peritoneal macrophages. Furthermore, low doses of bDLE induce differentiation in K562 cells towards a monocyte/macrophage lineage with an M2 phenotype, and induced moderately upregulated expression of CD42+, a megakaryocytic marker. Cell cycle arrest in the S and G2/M phases was observed in bDLE-treated K562 cells, which demonstrated similar phagocytic activity, NO levels and cytokine and chemokine production to that of PMA-treated cells. The present study demonstrates that bDLE exhibits an antileukemia effect, suggesting that it may be an effective candidate for leukemia treatment.
Collapse
Affiliation(s)
- Crystel A Sierra-Rivera
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, University Autonomous of Nuevo León (UANL), San Nicolás de los Garza, Nuevo León 66450, Mexico
| | - Moisés A Franco-Molina
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, University Autonomous of Nuevo León (UANL), San Nicolás de los Garza, Nuevo León 66450, Mexico
| | - Edgar Mendoza-Gamboa
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, University Autonomous of Nuevo León (UANL), San Nicolás de los Garza, Nuevo León 66450, Mexico
| | - Pablo Zapata-Benavides
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, University Autonomous of Nuevo León (UANL), San Nicolás de los Garza, Nuevo León 66450, Mexico
| | - Jesús Santaolalla-Tapia
- Laboratory of Stem Cell Biology, Faculty of Medicine, University Autonomous of Morelos, Cuernavaca, Morelos 62350, Mexico
| | - Erika E Coronado-Cerda
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, University Autonomous of Nuevo León (UANL), San Nicolás de los Garza, Nuevo León 66450, Mexico
| | - Reyes S Tamez-Guerra
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, University Autonomous of Nuevo León (UANL), San Nicolás de los Garza, Nuevo León 66450, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, University Autonomous of Nuevo León (UANL), San Nicolás de los Garza, Nuevo León 66450, Mexico
| |
Collapse
|
54
|
Boss A, Bishop KS, Marlow G, Barnett MPG, Ferguson LR. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients 2016; 8:nu8080513. [PMID: 27548217 PMCID: PMC4997426 DOI: 10.3390/nu8080513] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/28/2022] Open
Abstract
The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.
Collapse
Affiliation(s)
- Anna Boss
- Discipline of Nutrition, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
| | - Karen S Bishop
- Auckland Cancer Society Research Centre, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
| | - Gareth Marlow
- Discipline of Nutrition, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
| | - Matthew P G Barnett
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Lynnette R Ferguson
- Discipline of Nutrition, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
- Auckland Cancer Society Research Centre, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
55
|
Özcan MM, Matthäus B. A review: benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2726-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
56
|
Martín-Vertedor D, Garrido M, Pariente JA, Espino J, Delgado-Adámez J. Bioavailability of Bioactive Molecules from Olive Leaf Extracts and its Functional Value. Phytother Res 2016; 30:1172-9. [PMID: 27137173 DOI: 10.1002/ptr.5625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/27/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022]
Abstract
Olive leaves are an important low-cost source of bioactive compounds. The present study aimed to examine the effect of in vitro digestibility of an olive leaf aqueous extract so as to prove the availability of its phenolic compounds as well as its antioxidant, antimicrobial, and anticancer activity after a simulated digestion process. The total phenolic content was significantly higher in the pure lyophilized extract. Phenolic compounds, however, decreased by 60% and 90% in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), respectively. Regarding antioxidant activity, it was reduced by 10% and 50% after gastric and intestinal digestion, respectively; despite this fact, high antioxidant capacity was found in both SGF and SIF. Moreover, the olive leaf extract showed an unusual combined antimicrobial action at low concentration, which suggested their great potential as nutraceuticals, particularly as a source of phenolic compounds. Finally, olive leaf extracts produced a general dose-dependent cytotoxic effect against U937 cells. To sum up, these findings suggest that the olive leaf aqueous extract maintains its beneficial properties after a simulated digestion process, and therefore its regular consumption could be helpful in the management and the prevention of oxidative stress-related chronic disease, bacterial infection, or even cancer. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (INTAEX), Extremadura Government, Avda. Adolfo Suárez s/n, 06007, Badajoz, Spain
| | - María Garrido
- Department of Physiology, Neuroimmunophysiology, and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Avda. Elvas s/n, 06006, Badajoz, Spain
| | - José Antonio Pariente
- Department of Physiology, Neuroimmunophysiology, and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Avda. Elvas s/n, 06006, Badajoz, Spain
| | - Javier Espino
- Department of Physiology, Neuroimmunophysiology, and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Avda. Elvas s/n, 06006, Badajoz, Spain
| | - Jonathan Delgado-Adámez
- Technological Institute of Food and Agriculture (INTAEX), Extremadura Government, Avda. Adolfo Suárez s/n, 06007, Badajoz, Spain
| |
Collapse
|
57
|
Seçme M, Eroğlu C, Dodurga Y, Bağcı G. Investigation of anticancer mechanism of oleuropein via cell cycle and apoptotic pathways in SH-SY5Y neuroblastoma cells. Gene 2016; 585:93-99. [PMID: 27032461 DOI: 10.1016/j.gene.2016.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
Neuroblastoma is one of the most common types of pediatric tumors that can spread quickly in neuronal tissues. Oleuropein which is active compound of olive leaves, belongs to polyphenols group and has antioxidant, anti-microbial, anti-inflammatory, anti-hypertensive and anti-carcinogenic effects. The aim of the study is to determine the therapeutic effects of oleuropein on cell proliferation, invasion, colony formation, cell cycle and apoptotic mechanisms in SH-SY5Y neuroblastoma cell line under in vitro conditions. The effect of oleuropein on cell viability was determined by XTT method. 84 cell cycle control and 84 apoptosis related genes were evaluated by RT-PCR. Effects of oleuropein on apoptosis were researched by TUNEL assay. Protein expressions were determined by western blot analysis. Effects of oleuropein on cell invasion, colony formation and migration were detected by matrigel-chamber, colony formation assay and wound-healing assay, respectively. IC50 value of oleuropein in SH-SY5Y cells was detected as 350 μM at 48th hours. It is determined that oleuropein causes cell cycle arrest by down-regulating of CylinD1,CylinD2,CyclinD3,CDK4,CDK6 and up-regulating of p53 and CDKN2A, CDKN2B, CDKN1A gene expressions. Oleuropein also induces apoptosis by inhibiting of Bcl-2 and activating of Bax,caspase-9 and caspase-3 gene expressions. Apoptotic cell ratio was found 36.4 ± 3.27% in oleuropein dose group. Oleuropein decreased invasion in SH-SY5Y cells and suppressed colony numbers in ratio of 53.6 ± 4.71%.Our results demonstrated that oleuropein can be a therapeutic agent in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Mücahit Seçme
- Pamukkale University, School of Medicine, Department of Medical Biology, Denizli, Turkey
| | - Canan Eroğlu
- Necmettin Erbakan University, School of Medicine, Department of Medical Biology, Konya, Turkey
| | - Yavuz Dodurga
- Pamukkale University, School of Medicine, Department of Medical Biology, Denizli, Turkey.
| | - Gülseren Bağcı
- Pamukkale University, School of Medicine, Department of Medical Biology, Denizli, Turkey
| |
Collapse
|
58
|
Talhaoui N, Taamalli A, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.09.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
59
|
Samet I, Villareal MO, Motojima H, Han J, Sayadi S, Isoda H. Olive leaf components apigenin 7-glucoside and luteolin 7-glucoside direct human hematopoietic stem cell differentiation towards erythroid lineage. Differentiation 2015; 89:146-55. [DOI: 10.1016/j.diff.2015.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/07/2015] [Accepted: 07/07/2015] [Indexed: 02/02/2023]
|
60
|
Dry olive leaf extract counteracts L-thyroxine-induced genotoxicity in human peripheral blood leukocytes in vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:762192. [PMID: 25789081 PMCID: PMC4350944 DOI: 10.1155/2015/762192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/08/2015] [Indexed: 11/18/2022]
Abstract
The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger.
Collapse
|
61
|
Yu W, Park T. AucPR: an AUC-based approach using penalized regression for disease prediction with high-dimensional omics data. BMC Genomics 2014; 15 Suppl 10:S1. [PMID: 25559769 PMCID: PMC4304290 DOI: 10.1186/1471-2164-15-s10-s1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MOTIVATION It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. RESULTS We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. CONCLUSION We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.
Collapse
|