51
|
Chichirau BE, Scheidt T, Diechler S, Neuper T, Horejs-Hoeck J, Huber CG, Posselt G, Wessler S. Dissecting the Helicobacter pylori-regulated transcriptome of B cells. Pathog Dis 2020; 78:5899724. [DOI: 10.1093/femspd/ftaa049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Persistent infections with the bacterial group-I carcinogen Helicobacter pylori (H. pylori) have been associated with a broad range of gastric disorders, including gastritis, ulceration, gastric cancer or mucosa-associated lymphoid tissue (MALT) lymphoma. Pathogenesis of H. pylori requires a balance between immune tolerance and defense. Although H. pylori induces inflammatory responses, the immune system cannot eliminate the pathogen. The detailed molecular mechanisms of how H. pylori interferes with cells of the immune system, in particular infiltrated B cells, are not well investigated. Previously, it was shown that the bacterial effector and oncoprotein cytotoxin-associated gene A (CagA) is delivered into B cells followed by its tyrosine-phosphorylation. To investigate the functional consequences in B cells colonized by CagA-positive H. pylori, we analyzed the global transcriptome of H. pylori-infected Mec-1 cells by RNA sequencing. We found 889 differentially expressed genes (DEGs) and validated JUN, FOSL2, HSPA1B, SRC, CXCR3, TLR-4, TNF-α, CXCL8, CCL2, CCL4, MHC class I and MHC class II molecules by qPCR, western blot, flow cytometry and ELISA assays. The H. pylori-specific mRNA expression signature reveals a downregulation of inflammation- and migration-associated genes, whereas central signal transduction regulators of cell survival and death are upregulated.
Collapse
Affiliation(s)
- Bianca E Chichirau
- Department of Biosciences, Division of Microbiology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Tamara Scheidt
- Department of Biosciences, Bioanalytical Research Labs, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Sebastian Diechler
- Department of Biosciences, Division of Microbiology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Theresa Neuper
- Department of Biosciences, Division of Molecular Immunology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences, Division of Molecular Immunology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Gernot Posselt
- Department of Biosciences, Division of Microbiology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Silja Wessler
- Department of Biosciences, Division of Microbiology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
52
|
Garcia EG, Veloso A, Oliveira ML, Allen JR, Loontiens S, Brunson D, Do D, Yan C, Morris R, Iyer S, Garcia SP, Iftimia N, Van Loocke W, Matthijssens F, McCarthy K, Barata JT, Speleman F, Taghon T, Gutierrez A, Van Vlierberghe P, Haas W, Blackburn JS, Langenau DM. PRL3 enhances T-cell acute lymphoblastic leukemia growth through suppressing T-cell signaling pathways and apoptosis. Leukemia 2020; 35:679-690. [PMID: 32606318 PMCID: PMC8009053 DOI: 10.1038/s41375-020-0937-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes and is largely driven by the NOTCH/MYC pathway. Yet, additional oncogenic drivers are required for transformation. Here, we identify protein tyrosine phosphatase type 4 A3 (PRL3) as a collaborating oncogenic driver in T-ALL. PRL3 is expressed in a large fraction of primary human T-ALLs and is commonly co-amplified with MYC. PRL3 also synergized with MYC to initiate early-onset ALL in transgenic zebrafish and was required for human T-ALL growth and maintenance. Mass spectrometry phosphoproteomic analysis and mechanistic studies uncovered that PRL3 suppresses downstream T cell phosphorylation signaling pathways, including those modulated by VAV1, and subsequently suppresses apoptosis in leukemia cells. Taken together, our studies have identified new roles for PRL3 as a collaborating oncogenic driver in human T-ALL and suggest that therapeutic targeting of the PRL3 phosphatase will likely be a useful treatment strategy for T-ALL.
Collapse
Affiliation(s)
- E G Garcia
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - A Veloso
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - M L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - J R Allen
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S Loontiens
- Cancer Research Institute Ghent, Ghent, Belgium
| | - D Brunson
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - D Do
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - C Yan
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - R Morris
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - S Iyer
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S P Garcia
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - N Iftimia
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - W Van Loocke
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - F Matthijssens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - K McCarthy
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J T Barata
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - F Speleman
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - T Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - A Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, USA
| | - P Van Vlierberghe
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - W Haas
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J S Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - D M Langenau
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA. .,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA. .,Harvard Stem Cell Institute, Boston, MA, 02114, USA. .,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
53
|
Du Preez CI, Gründemann C, Reinhardt JK, Mumbengegwi DR, Huber R. Immunomodulatory effects of some Namibian plants traditionally used for treating inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112683. [PMID: 32087321 DOI: 10.1016/j.jep.2020.112683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthosicyos naudininus, Gomphocarpus fruticosus, and Cryptolepis decidua are, according to the knowledge of traditional healers, used in Namibia to treat inflammatory disorders such as pain, fever and skin rashes. AIM OF THE STUDY The present study was conducted to evaluate the immunomodulatory effects and the possible underlying mechanisms of action of the plant extracts on peripheral blood mononuclear cells (PBMCs) such as T-lymphocytes. MATERIALS AND METHODS Methanolic and EtOAc extracts of A. naudinianus, G. fruticosus and C. decidua were analysed for their immunomodulatory potential. PBMCs were isolated from the blood of healthy donors and incubated with the plant extracts at concentrations 100, 30, 10, 3, 1 and 0.3 μg/mL. Effects on proliferation and viability of activated human lymphocytes were assessed in comparison to ciclosporin A by flow cytometry using carboxyfluorescein succinimidyl ester (CFSE) and WST-1 assay. Flow cytometry by annexin V/propidium iodide (PI) staining was performed to investigate the necrotic/apoptotic effect of the plant extracts on mitogen-activated human lymphocytes. In addition, analysis of the influence of plant extracts on the regulatory mechanisms of T-lymphocytes was performed using activation marker and cytokine production assays. An HPLC-PDA-ELSD-ESIMS profile was recorded for each of the extracts. RESULTS T-lymphocyte proliferation was inhibited in a dose-dependent manner by the extracts of A. naudinianus, G. fruticosus, and C. decidua in concentrations not causing apoptosis or necrosis. This effect was mediated by inhibition of lymphocyte activation, specifically the suppression of CD25 and CD69 surface receptor expression. Moreover, the extracts suppressed effector functions, as indicated by reduced production of IFN-γ and IL-2. Based on the HPLC profile, possible responsible compound classes could be identified for the extracts of A. naudinianus (cucurbitacins) and C. decidua (indole alkaloids), but not for G. fruticosus. CONCLUSIONS The data show that the extracts of A. naudinianus, G. fruticosus and C. decidua have in vitro immunomodulatory activity and they interfere with the function of immunocompetent cells, suggesting an anti-inflammatory mode-of-action. The present chemical determination and pattern recognition results explain the therapeutic potency. However, further studies to investigate the therapeutic potential of the plants in inflammatory disorders should be done.
Collapse
Affiliation(s)
- C I Du Preez
- Programme for Traditional Medicine and Drug Discovery, Multidisciplinary Research Centre, University of Namibia, 340 Mandume Ndemufayo Avenue, Pioneers Park, Windhoek, Namibia.
| | - C Gründemann
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - J K Reinhardt
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - D R Mumbengegwi
- Programme for Traditional Medicine and Drug Discovery, Multidisciplinary Research Centre, University of Namibia, 340 Mandume Ndemufayo Avenue, Pioneers Park, Windhoek, Namibia.
| | - R Huber
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Faculty of Medicine, Breisacherstr. 115B, 79106, Freiburg, Germany.
| |
Collapse
|
54
|
Oral Administration of Liquiritigenin Confers Protection from Atopic Dermatitis through the Inhibition of T Cell Activation. Biomolecules 2020; 10:biom10050786. [PMID: 32438694 PMCID: PMC7277419 DOI: 10.3390/biom10050786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
While liquiritigenin, isolated from Spatholobus suberectus Dunn, is known to possess anti-inflammatory activities, it still remains to be known whether liquiritigenin has a suppressive effect on T cell activation and T cell-mediated disease. Here, we used Jurkat T cells to explore an underlying mechanism of pre-treatment with liquiritigenin in activated T cell in vitro and used atopic dermatitis (AD) in vivo to confirm it. We found liquiritigenin blocks IL-2 and CD69 expression from activated T cells by PMA/A23187 or anti-CD3/CD28 antibodies. The expressions of surface molecules, including CD40L and CD25, were also reduced in activated T cells pre-treated with liquiritigenin. Western blot analysis indicated repressive effects by liquiritigenin are involved in NFκB and MAPK pathways. To assess the effects of liquiritigenin in vivo, an AD model was applied as T cell-mediated disease. Oral administration of liquiritigenin attenuates AD manifestations, including ear thickness, IgE level, and thicknesses of dermis and epidermis. Systemic protections by liquiritigenin were observed to be declined in size and weight of draining lymph nodes (dLNs) and expressions of effector cytokines from CD4+ T cells in dLNs. These results suggest liquiritigenin has an anti-atopic effect via control of T cell activation and exhibits therapeutic potential for T cell-mediated disorders.
Collapse
|
55
|
Bell OH, Carreño E, Williams EL, Wu J, Copland DA, Bora M, Kobayter L, Fruttiger M, Sim DA, Lee RWJ, Dick AD, Chu CJ. Intravenous indocyanine green dye is insufficient for robust immune cell labelling in the human retina. PLoS One 2020; 15:e0226311. [PMID: 32053618 PMCID: PMC7018502 DOI: 10.1371/journal.pone.0226311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/29/2020] [Indexed: 12/03/2022] Open
Abstract
It is not currently possible to reliably visualise and track immune cells in the human central nervous system or eye. Previous work demonstrated that indocyanine green (ICG) dye could label immune cells and be imaged after a delay during disease in the mouse retina. We report a pilot study investigating if ICG can similarly label immune cells within the human retina. Twelve adult participants receiving ICG angiography as part of routine standard of care were recruited. Baseline retinal images were obtained prior to ICG administration then repeated over a period ranging from 2 hours to 9 days. Matched peripheral blood samples were obtained to examine systemic immune cell labelling and activation from ICG by flow cytometry with human macrophage cultures as positive controls. Differences between the delayed near infrared ICG imaging and 488 nm autofluorescence was observed across pathologies, likely arising from the retinal pigment epithelium (RPE). Only one subject demonstrated ICG signal on peripheral blood myeloid cells and only three distinct cell-sized signals appeared over time within the retina of three participants. No significant increase in immune cell activation markers were detected after ICG administration. ICG accumulated in the endosomes of macrophage cultures and was detectable above a minimum concentration, suggesting cell labelling is possible. ICG can label RPE and may be used as an additional biomarker for RPE health across a range of retinal disorders. Standard clinical doses of intravenous ICG do not lead to robust immune cell labelling in human blood or retina and further optimisation in dose and route are required.
Collapse
Affiliation(s)
- Oliver H. Bell
- Academic Unit of Ophthalmology, Department of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Ester Carreño
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Emily L. Williams
- Academic Unit of Ophthalmology, Department of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jiahui Wu
- Academic Unit of Ophthalmology, Department of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - David A. Copland
- Academic Unit of Ophthalmology, Department of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Monalisa Bora
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Lina Kobayter
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Dawn A. Sim
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Richard W. J. Lee
- Academic Unit of Ophthalmology, Department of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Andrew D. Dick
- Academic Unit of Ophthalmology, Department of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Colin J. Chu
- Academic Unit of Ophthalmology, Department of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
56
|
Mühlberger M, Unterweger H, Band J, Lehmann C, Heger L, Dudziak D, Alexiou C, Lee G, Janko C. Loading of Primary Human T Lymphocytes with Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Does Not Impair Their Activation after Polyclonal Stimulation. Cells 2020; 9:cells9020342. [PMID: 32024193 PMCID: PMC7072432 DOI: 10.3390/cells9020342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
For the conversion of immunologically cold tumors, characterized by a low T cell infiltration, into hot tumors, it is necessary to enrich T cells in the tumor area. One possibility is the use of magnetic fields to direct T cells into the tumor. For this purpose, primary T cells that were freshly isolated from human whole blood were loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate). Cell toxicity and particle uptake were investigated by flow cytometry and atomic emission spectroscopy. The optimum loading of the T cells without any major effect on their viability was achieved with a particle concentration of 75 µg Fe/mL and a loading period of 24 h. The cellular content of SPIONCitrate was sufficient to attract these T cells with a magnet which was monitored by live-cell imaging. The functionality of the T cells was only slightly influenced by SPIONCitrate, as demonstrated by in vitro stimulation assays. The proliferation rate as well as the expression of co-stimulatory and inhibitory surface molecules (programmed cell death 1 (PD-1), lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin and mucin domain containing 3 (Tim-3), C-C motif chemokine receptor 7 (CCR7), CD25, CD45RO, CD69) was investigated and found to be unchanged. Our results presented here demonstrate the feasibility of loading primary human T lymphocytes with superparamagnetic iron oxide nanoparticles without influencing their viability and functionality while achieving sufficient magnetizability for magnetically controlled targeting. Thus, the results provide a strong fundament for the transfer to tumor models and ultimately for new immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Marina Mühlberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
- Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
| | - Christian Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
| | - Geoffrey Lee
- Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
- Correspondence: ; Tel.: +49-9131-85-33142
| |
Collapse
|
57
|
Krewson EA, Sanderlin EJ, Marie MA, Akhtar SN, Velcicky J, Loetscher P, Yang LV. The Proton-Sensing GPR4 Receptor Regulates Paracellular Gap Formation and Permeability of Vascular Endothelial Cells. iScience 2020; 23:100848. [PMID: 32058960 PMCID: PMC6997876 DOI: 10.1016/j.isci.2020.100848] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 01/31/2023] Open
Abstract
GPR4 is a pH-sensing G protein-coupled receptor highly expressed in vascular endothelial cells and can be activated by protons in the inflamed tissue microenvironment. Herein, we report that acidosis-induced GPR4 activation increases paracellular gap formation and permeability of vascular endothelial cells through the Gα12/13/Rho GTPase signaling pathway. Evaluation of GPR4 in the inflammatory response using the acute hindlimb ischemia-reperfusion mouse model revealed that GPR4 mediates tissue edema, inflammatory exudate formation, endothelial adhesion molecule expression, and leukocyte infiltration in the inflamed tissue. Genetic knockout and pharmacologic inhibition of GPR4 alleviate tissue inflammation. These results suggest GPR4 is a pro-inflammatory receptor and could be targeted for therapeutic intervention. Acidosis/GPR4 regulates endothelial paracellular gap formation and permeability GPR4 exacerbates inflammation by increasing tissue edema and leukocyte infiltration Pharmacological inhibition of GPR4 reduces inflammatory responses
Collapse
Affiliation(s)
- Elizabeth A Krewson
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Shayan Nik Akhtar
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC 27834, USA
| | - Juraj Velcicky
- Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Pius Loetscher
- Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Li V Yang
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC 27834, USA; Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
58
|
Guess TE, Rosen J, Castro-Lopez N, Wormley FL, McClelland EE. An inherent T cell deficit in healthy males to C. neoformans infection may begin to explain the sex susceptibility in incidence of cryptococcosis. Biol Sex Differ 2019; 10:44. [PMID: 31477151 PMCID: PMC6720413 DOI: 10.1186/s13293-019-0258-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cryptococcus neoformans, the causative agent of cryptococcosis, causes ~ 181,000 deaths annually, with males having a higher incidence of disease than females (7M:3F). The reason for this sex bias remains unclear. We hypothesized that this disparity was due to biological differences between the male and female immune response. Methods Peripheral blood mononuclear cells (PBMCs) from healthy donors were isolated and infected with C. neoformans ± exogenous testosterone or 17-β-estradiol. C. neoformans, B, T, and NK cell proliferation was quantified by flow cytometry. Cytokine analysis was conducted via protein array or ELISA. Serological testing was conducted to determine previous exposure to C. neoformans. Results C. neoformans proliferated more in male PBMCs. T cell percentages in both sexes were lower in infected versus uninfected cells. Male PBMCs had lower CD3+, CD4+, and CD8+ T cells percentages during infection compared to females. Cytokine profiles showed differences in uninfected male and female PBMCs, which subsided during infection. Only one donor was sero-negative for prior C. neoformans exposure. There was an effect of estrogen in one dataset. Conclusions These results suggest that males show an inherent deficit in T cell response during infection, which may contribute to the increased incidence of disease in males. Electronic supplementary material The online version of this article (10.1186/s13293-019-0258-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tiffany E Guess
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Joseph Rosen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Natalia Castro-Lopez
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Erin E McClelland
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
59
|
Role of Inflammatory Cell Subtypes in Heart Failure. J Immunol Res 2019; 2019:2164017. [PMID: 31565659 PMCID: PMC6745095 DOI: 10.1155/2019/2164017] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a well-known feature of heart failure. Studies have shown that while some inflammation is required for repair during injury and is protective, prolonged inflammation leads to myocardial remodeling and apoptosis of cardiac myocytes. Various types of immune cells are implicated in myocardial inflammation and include neutrophils, macrophages, eosinophils, mast cells, natural killer cells, T cells, and B cells. Recent clinical trials have targeted inflammatory cascades as therapy for heart failure with limited success. A better understanding of the temporal course of the infiltration of the different immune cells and their contribution to the inflammatory process may improve the success for therapy. This brief review outlines the major cell types involved in heart failure, and some of their actions are summarized in the supplementary figure.
Collapse
|
60
|
Receptor occupancy measurement of anti-PD-1 antibody drugs in support of clinical trials. Bioanalysis 2019; 11:1347-1358. [DOI: 10.4155/bio-2019-0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: The reliable measurement of receptor occupancy (RO) provides informative data for efficacy and safety evaluation. This study aimed to assess factors affecting RO measurement of anti-PD-1 antibodies in clinical studies. Materials & methods: RO performance was assessed using different T-cell activation markers measured by flow cytometry. The validated methodology was then used in support of a clinical study. Results: The optimized active cell population was comprised of CD45RO+ or CD45RA− T cells. The bioanalytical method was validated for inter- and intra-assay precision (coefficient of variation ≤30%) and sample storage stability for 3 days. Consistent RO saturation was observed in Phase Ia clinical trial, although receptor regulation appeared to be different. The formation of anti-drug antibodies had markedly influenced pharmacokinetics and RO. Conclusion: RO measurement in combination with pharmacokinetics and anti-drug antibodies data could allow the integrated evaluation and better understanding of efficacy and safety.
Collapse
|
61
|
Pharmacological inhibition of GPR4 remediates intestinal inflammation in a mouse colitis model. Eur J Pharmacol 2019; 852:218-230. [PMID: 30930250 DOI: 10.1016/j.ejphar.2019.03.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic, recurring inflammation of the digestive tract. Current therapeutic approaches are limited and include biologics and steroids such as anti-TNFα monoclonal antibodies and corticosteroids, respectively. Significant adverse drug effects can occur for chronic usage and include increased risk of infection in some patients. GPR4, a pH-sensing G protein-coupled receptor, has recently emerged as a potential therapeutic target for intestinal inflammation. We have assessed the effects of a GPR4 antagonist, 2-(4-((2-Ethyl-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)methyl)phenyl)-5-(piperidin-4-yl)-1,3,4-oxadiazole (GPR4 antagonist 13, also known as NE-52-QQ57) in the dextran sulfate sodium (DSS)-induced acute colitis mouse model. The GPR4 antagonist 13 inhibited intestinal inflammation. The clinical parameters such as body weight loss and fecal score were reduced in the GPR4 antagonist 13 treatment group compared to vehicle control. Macroscopic disease indicators such as colon shortening, splenic expansion, and mesenteric lymph node enlargement were all reduced in severity in the GPR4 antagonist 13 treated mice. Histopathological features of active colitis were alleviated in GPR4 antagonist 13 treatment groups compared to vehicle control. Finally, inflammatory gene expression in the colon tissues and vascular adhesion molecule expression in the intestinal endothelia were attenuated by GPR4 antagonist 13. Our results indicate that GPR4 antagonist 13 provides a protective effect in the DSS-induced acute colitis mouse model, and inhibition of GPR4 can be explored as a novel anti-inflammatory approach.
Collapse
|
62
|
Parsonidis P, Ntanovasilis DA, Papasotiriou I. MUC1 Antigen-Specific CD8 T Lymphocytes Targeting MCF7 and MDA-MB-231 Human Breast Adenocarcinoma Cell Lines. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jct.2019.107041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
63
|
Zhou Y, Du J, Hou HY, Lu YF, Yu J, Mao LY, Wang F, Sun ZY. Application of ImmunoScore Model for the Differentiation between Active Tuberculosis and Latent Tuberculosis Infection as Well as Monitoring Anti-tuberculosis Therapy. Front Cell Infect Microbiol 2017; 7:457. [PMID: 29164066 PMCID: PMC5670161 DOI: 10.3389/fcimb.2017.00457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/12/2017] [Indexed: 01/17/2023] Open
Abstract
Tuberculosis (TB) is a leading global public health problem. To achieve the end TB strategy, non-invasive markers for diagnosis and treatment monitoring of TB disease are urgently needed, especially in high-endemic countries such as China. Interferon-gamma release assays (IGRAs) and tuberculin skin test (TST), frequently used immunological methods for TB detection, are intrinsically unable to discriminate active tuberculosis (ATB) from latent tuberculosis infection (LTBI). Thus, the specificity of these methods in the diagnosis of ATB is dependent upon the local prevalence of LTBI. The pathogen-detecting methods such as acid-fast staining and culture, all have limitations in clinical application. ImmunoScore (IS) is a new promising prognostic tool which was commonly used in tumor. However, the importance of host immunity has also been demonstrated in TB pathogenesis, which implies the possibility of using IS model for ATB diagnosis and therapy monitoring. In the present study, we focused on the performance of IS model in the differentiation between ATB and LTBI and in treatment monitoring of TB disease. We have totally screened five immunological markers (four non-specific markers and one TB-specific marker) and successfully established IS model by using Lasso logistic regression analysis. As expected, the IS model can effectively distinguish ATB from LTBI (with a sensitivity of 95.7% and a specificity of 92.1%) and also has potential value in the treatment monitoring of TB disease.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Du
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Hong-Yan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Fang Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Yan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Yong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
64
|
The Distribution of Activation Markers and Selectins on Peripheral T Lymphocytes in Preeclampsia. Mediators Inflamm 2017; 2017:8045161. [PMID: 28555090 PMCID: PMC5438859 DOI: 10.1155/2017/8045161] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/13/2017] [Indexed: 12/23/2022] Open
Abstract
Introduction Impaired maternal immune tolerance resulting in systemic inflammation plays a pivotal role in the pathogenesis of preeclampsia. Phenotypical changes of monocytes and neutrophil granulocytes have already been studied in preeclampsia, and some studies also included T lymphocyte activation markers; however, the results are controversial and a comprehensive analysis of activation markers is lacking. The characteristics of cellular adhesion molecules in preeclampsia are yet to be described. Material and Methods Peripheral blood samples of 18 preeclamptic patients and 20 healthy pregnant women in the third trimester were evaluated using flow cytometry to characterize the cell surface expression of T lymphocyte activation markers and selectins. Results We found an elevated ratio of HLA-DR and CD122-, CD62E-, and CD62L-expressing cells among the CD4+ T lymphocytes in PE in comparison to healthy pregnancy. No alterations were found in the prevalence of CD69-, CD25-, and CD62P-expressing lymphocytes and CD11c-expressing monocytes. Conclusions Our findings support the role of activated T lymphocytes and specific cell adhesion molecules in the pathogenesis of preeclampsia.
Collapse
|