51
|
Rodriguez R, Durán P. Natural Holobiome Engineering by Using Native Extreme Microbiome to Counteract the Climate Change Effects. Front Bioeng Biotechnol 2020; 8:568. [PMID: 32582678 PMCID: PMC7287022 DOI: 10.3389/fbioe.2020.00568] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
In the current scenario of climate change, the future of agriculture is uncertain. Climate change and climate-related disasters have a direct impact on biotic and abiotic factors that govern agroecosystems compromising the global food security. In the last decade, the advances in high throughput sequencing techniques have significantly improved our understanding about the composition, function and dynamics of plant microbiome. However, despite the microbiome have been proposed as a new platform for the next green revolution, our knowledge about the mechanisms that govern microbe-microbe and microbe-plant interactions are incipient. Currently, the adaptation of plants to environmental changes not only suggests that the plants can adapt or migrate, but also can interact with their surrounding microbial communities to alleviate different stresses by natural microbiome selection of specialized strains, phenomenon recently called "Cry for Help". From this way, plants have been co-evolved with their microbiota adapting to local environmental conditions to ensuring the survival of the entire holobiome to improve plant fitness. Thus, the strong selective pressure of native extreme microbiomes could represent a remarkable microbial niche of plant stress-amelioration to counteract the negative effect of climate change in food crops. Currently, the microbiome engineering has recently emerged as an alternative to modify and promote positive interactions between microorganisms and plants to improve plant fitness. In the present review, we discuss the possible use of extreme microbiome to alleviate different stresses in crop plants under the current scenario of climate change.
Collapse
Affiliation(s)
- Rodrigo Rodriguez
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | - Paola Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
52
|
Corbin KR, Bolt B, Rodríguez López CM. Breeding for Beneficial Microbial Communities Using Epigenomics. Front Microbiol 2020; 11:937. [PMID: 32477316 PMCID: PMC7242621 DOI: 10.3389/fmicb.2020.00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Affiliation(s)
- Kendall R Corbin
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States.,Biosystems and Agricultural Engineering, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Bridget Bolt
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Carlos M Rodríguez López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
53
|
Ramírez-Ordorica A, Valencia-Cantero E, Flores-Cortez I, Carrillo-Rayas MT, Elizarraraz-Anaya MIC, Montero-Vargas J, Winkler R, Macías-Rodríguez L. Metabolomic effects of the colonization of Medicago truncatula by the facultative endophyte Arthrobacter agilis UMCV2 in a foliar inoculation system. Sci Rep 2020; 10:8426. [PMID: 32439840 PMCID: PMC7242375 DOI: 10.1038/s41598-020-65314-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Biofertilizer production and application for sustainable agriculture is already a reality. The methods for biofertilizers delivery in crop fields are diverse. Although foliar spray is gaining wide acceptance, little is known about the influence that the biochemical features of leaves have on the microbial colonization. Arthrobacter agilis UMCV2 is a rhizospheric and endophytic bacteria that promotes plant growth and health. In this study, we determined the capacity of the UMCV2 strain to colonize different leaves from Medicago truncatula in a foliar inoculation system. By using two powerful analytical methods based on mass spectrometry, we determined the chemical profile of the leaves in 15-d old plants. The metabolic signatures between the unifoliate leaf (m1) and the metameric units developing above (m2 and m3) were different, and interestingly, the highest colony forming units (CFU) was found in m1. The occurrence of the endophyte strongly affects the sugar composition in m1 and m2 leaves. Our results suggest that A. agilis UMCV2 colonize the leaves under a foliar inoculation system independently of the phenological age of the leaf and it is capable of modulating the carbohydrate metabolism without affecting the rest of the metabolome.
Collapse
Affiliation(s)
- Arturo Ramírez-Ordorica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edifico B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edifico B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Idolina Flores-Cortez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edifico B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - María Teresa Carrillo-Rayas
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato. Km. 9.6 Libramiento Norte Carr. Irapuato-León. C. P. 36824, Irapuato, Guanajuato, México
| | - Ma Isabel Cristina Elizarraraz-Anaya
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato. Km. 9.6 Libramiento Norte Carr. Irapuato-León. C. P. 36824, Irapuato, Guanajuato, México
| | - Josaphat Montero-Vargas
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato. Km. 9.6 Libramiento Norte Carr. Irapuato-León. C. P. 36824, Irapuato, Guanajuato, México
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato. Km. 9.6 Libramiento Norte Carr. Irapuato-León. C. P. 36824, Irapuato, Guanajuato, México
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edifico B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México.
| |
Collapse
|
54
|
Peng C, Zhang A, Wang Q, Song Y, Zhang M, Ding X, Li Y, Geng Q, Zhu C. Ultrahigh-activity immune inducer from Endophytic Fungi induces tobacco resistance to virus by SA pathway and RNA silencing. BMC PLANT BIOLOGY 2020; 20:169. [PMID: 32293278 PMCID: PMC7160901 DOI: 10.1186/s12870-020-02386-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/05/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant viruses cause severe economic losses in agricultural production. An ultrahigh activity plant immune inducer (i.e., ZhiNengCong, ZNC) was extracted from endophytic fungi, and it could promote plant growth and enhance resistance to bacteria. However, the antiviral function has not been studied. Our study aims to evaluate the antiviral molecular mechanisms of ZNC in tobacco. RESULTS Here, we used Potato X virus (PVX), wild-type tobacco and NahG transgenic tobacco as materials to study the resistance of ZNC to virus. ZNC exhibited a high activity in enhancing resistance to viruses and showed optimal use concentration at 100-150 ng/mL. ZNC also induced reactive oxygen species accumulation, increased salicylic acid (SA) content by upregulating the expression of phenylalanine ammonia lyase (PAL) gene and activated SA signaling pathway. We generated transcriptome profiles from ZNC-treated seedlings using RNA sequencing. The first GO term in biological process was positive regulation of post-transcriptional gene silencing, and the subsequent results showed that ZNC promoted RNA silencing. ZNC-sprayed wild-type leaves showed decreased infection areas, whereas ZNC failed to induce a protective effect against PVX in NahG leaves. CONCLUSION All results indicate that ZNC is an ultrahigh-activity immune inducer, and it could enhance tobacco resistance to PVX at low concentration by positively regulating the RNA silencing via SA pathway. The antiviral mechanism of ZNC was first revealed in this study, and this study provides a new antiviral bioagent.
Collapse
Affiliation(s)
- Chune Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Ailing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Yang Li
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
| | - Quanzheng Geng
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China.
| |
Collapse
|
55
|
Genre A, Bonfante P. A Rice Receptor for Mycorrhizal Fungal Signals Opens New Opportunities for the Development of Sustainable Agricultural Practices. MOLECULAR PLANT 2020; 13:181-183. [PMID: 31981734 DOI: 10.1016/j.molp.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Affiliation(s)
- A Genre
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Torino, Italy.
| | - P Bonfante
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
56
|
Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. Arch Microbiol 2019; 202:665-676. [DOI: 10.1007/s00203-019-01779-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
|
57
|
Abstract
AbstractFungal species of morel (genus Morchella) have recently been found to form a symbiotic relationship with grasses. Our previous study documented that M. crassipes from Shaanxi, northwest China, increased growth of sweet corn Zea mays var. saccharata and suppressed Fusarium infections. In the present study, we examined the effect of M. crassipes inoculation on dent corn, Zea mays var. indentata cv. Plant growth response indexes and variables and soil variables were used to demonstrate how M. crassipes inoculation stimulates maize growth. Three suspensions of M. crassipes mycelium (50, 100, 150 mL) were inoculated into Zea may var. indentata. The results showed that M. crassipes inoculation significantly affected growth of all the inoculated maize plants and influenced some variables and indexes that are related to tissue specificity and dose dependence. Soil moisture, available K and P accumulation by M. crassipes were affected in inoculated plants and resulted in growth enhancements that were equal to that of the plants treated with urea. Our findings reveal that inoculation with M. crassipes had a positive effect on maize yield, making the crop system more sustainable. Thus M. crassipes has the potential to become a supplement or an alternative to urea fertilizers.
Collapse
|
58
|
Mukherjee PK, Mehetre ST, Sherkhane PD, Muthukathan G, Ghosh A, Kotasthane AS, Khare N, Rathod P, Sharma KK, Nath R, Tewari AK, Bhattacharyya S, Arya M, Pathak D, Wasnikar AR, Tiwari RKS, Saxena DR. A Novel Seed-Dressing Formulation Based on an Improved Mutant Strain of Trichoderma virens, and Its Field Evaluation. Front Microbiol 2019; 10:1910. [PMID: 31543866 PMCID: PMC6730527 DOI: 10.3389/fmicb.2019.01910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Using gamma-ray-induced mutagenesis, we have developed a mutant (named G2) of Trichoderma virens that produced two- to three-fold excesses of secondary metabolites, including viridin, viridiol, and some yet-to-be identified compounds. Consequently, this mutant had improved antibiosis against the oomycete test pathogen Pythium aphanidermatum. A transcriptome analysis of the mutant vis-à-vis the wild-type strain showed upregulation of several secondary-metabolism-related genes. In addition, many genes predicted to be involved in mycoparasitism and plant interactions were also upregulated. We used tamarind seeds as a mass multiplication medium in solid-state fermentation and, using talcum powder as a carrier, developed a novel seed dressing formulation. A comparative evaluation of the wild type and the mutant in greenhouse under high disease pressure (using the test pathogen Sclerotium rolfsii) revealed superiority of the mutant over wild type in protecting chickpea (Cicer arietinum) seeds and seedlings from infection. We then undertook extensive field evaluation (replicated micro-plot trials, on-farm demonstration trials, and large-scale trials in farmers' fields) of our mutant-based formulation (named TrichoBARC) for management of collar rot (S. rolfsii) in chickpea and lentil (Lens culinaris) over multiple locations in India. In certain experiments, other available formulations were included for comparison. This formulation consistently, over multiple locations and years, improved seed germination, reduced seedling mortality, and improved plant growth and yield. We also noticed growth promotion, improved pod bearing, and early flowering (7-10 days) in TrichoBARC-treated chickpea and lentil plants under field conditions. In toxicological studies in animal models, this formulation exhibited no toxicity to mammals, birds, or fish.
Collapse
Affiliation(s)
- Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sayaji T Mehetre
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - P D Sherkhane
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Gopi Muthukathan
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ananya Ghosh
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - A S Kotasthane
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - N Khare
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Parshuram Rathod
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Kishan Kumar Sharma
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Rajib Nath
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Anand K Tewari
- Department of Plant Pathology, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | | | - Meenakshi Arya
- Department of Plant Pathology, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - D Pathak
- Regional Agricultural Research Station, Assam Agricultural University, Shillongani, India
| | - A R Wasnikar
- Department of Plant Pathology, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, India
| | - R K S Tiwari
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - D R Saxena
- R.A.K. College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Sehore, India
| |
Collapse
|
59
|
Doni F, Mispan MS, Suhaimi NSM, Ishak N, Uphoff N. Roles of microbes in supporting sustainable rice production using the system of rice intensification. Appl Microbiol Biotechnol 2019; 103:5131-5142. [PMID: 31101941 DOI: 10.1007/s00253-019-09879-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
The system of rice intensification (SRI) is an agroecological approach to rice cultivation that seeks to create optimal conditions for healthy plant growth by minimizing inter-plant competition, transplanting widely spaced young single seedlings, and optimizing favorable soil conditions with organic amendments, increased soil aeration by weeding, and controlled water management. These practices improve rice plant growth with yields up to three times more than with conventional cultivation methods, and increase crop resilience under biotic and abiotic stresses. This review discusses the roles of beneficial microbes in improving rice plant growth, yield, and resilience when SRI practices are used, and how these modifications in plant, soil, water, and nutrient management affect the populations and diversity of soil microorganisms. Mechanisms whereby symbiotic microbes support rice plants' growth and performance are also discussed.
Collapse
Affiliation(s)
- Febri Doni
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Nazri Ishak
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Norman Uphoff
- SRI International Network and Resources Center, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|