51
|
Teckchandani A, Laszlo GS, Simó S, Shah K, Pilling C, Strait AA, Cooper JA. Cullin 5 destabilizes Cas to inhibit Src-dependent cell transformation. J Cell Sci 2013; 127:509-20. [PMID: 24284072 DOI: 10.1242/jcs.127829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation-dependent protein ubiquitylation and degradation provides an irreversible mechanism to terminate protein kinase signaling. Here, we report that mammary epithelial cells require cullin-5-RING-E3-ubiquitin-ligase complexes (Cul5-CRLs) to prevent transformation by a Src-Cas signaling pathway. Removal of Cul5 stimulates growth-factor-independent growth and migration, membrane dynamics and colony dysmorphogenesis, which are all dependent on the endogenous tyrosine kinase Src. Src is activated in Cul5-deficient cells, but Src activation alone is not sufficient to cause transformation. We found that Cul5 and Src together stimulate degradation of the Src substrate p130Cas (Crk-associated substrate). Phosphorylation stimulates Cas binding to the Cul5-CRL adaptor protein SOCS6 and consequent proteasome-dependent degradation. Cas is necessary for the transformation of Cul5-deficient cells. Either knockdown of SOCS6 or use of a degradation-resistant Cas mutant stimulates membrane ruffling, but not other aspects of transformation. Our results show that endogenous Cul5 suppresses epithelial cell transformation by several pathways, including inhibition of Src-Cas-induced ruffling through SOCS6.
Collapse
Affiliation(s)
- Anjali Teckchandani
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Doherty JR, Yang C, Scott KEN, Cameron MD, Fallahi M, Li W, Hall MA, Amelio AL, Mishra JK, Li F, Tortosa M, Genau HM, Rounbehler RJ, Lu Y, Dang CV, Kumar KG, Butler AA, Bannister TD, Hooper AT, Unsal-Kacmaz K, Roush WR, Cleveland JL. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis. Cancer Res 2013; 74:908-20. [PMID: 24285728 DOI: 10.1158/0008-5472.can-13-2034] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here, we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1 and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, reductions in glucose transport, and in levels of ATP, NADPH, and ultimately, glutathione (GSH). Reductions in GSH then lead to increases in hydrogen peroxide, mitochondrial damage, and ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies.
Collapse
Affiliation(s)
- Joanne R Doherty
- Authors' Affiliations: Departments of Cancer Biology, Chemistry, and Metabolism and Aging; The Translational Research Institute, The Scripps Research Institute, Scripps Florida, Jupiter, Florida; Institute of Biochemistry II, Goethe University Medical School, Frankfurt am Main, Germany; Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; The Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; and Pfizer Oncology, Pearl River, New Jersey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
A p53 drug response signature identifies prognostic genes in high-risk neuroblastoma. PLoS One 2013; 8:e79843. [PMID: 24348903 PMCID: PMC3865347 DOI: 10.1371/journal.pone.0079843] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy induces apoptosis and tumor regression primarily through activation of p53-mediated transcription. Neuroblastoma is a p53 wild type malignancy at diagnosis and repression of p53 signaling plays an important role in its pathogenesis. Recently developed small molecule inhibitors of the MDM2-p53 interaction are able to overcome this repression and potently activate p53 dependent apoptosis in malignancies with intact p53 downstream signaling. We used the small molecule MDM2 inhibitor, Nutlin-3a, to determine the p53 drug response signature in neuroblastoma cells. In addition to p53 mediated apoptotic signatures, GSEA and pathway analysis identified a set of p53-repressed genes that were reciprocally over-expressed in neuroblastoma patients with the worst overall outcome in multiple clinical cohorts. Multifactorial regression analysis identified a subset of four genes (CHAF1A, RRM2, MCM3, and MCM6) whose expression together strongly predicted overall and event-free survival (p<0.0001). The expression of these four genes was then validated by quantitative PCR in a large independent clinical cohort. Our findings further support the concept that oncogene-driven transcriptional networks opposing p53 activation are essential for the aggressive behavior and poor response to therapy of high-risk neuroblastoma.
Collapse
|
54
|
Abstract
Neuroblastoma is a genetically and clinically heterogeneous tumor of childhood, arising from precursor cells of the sympathetic nervous system. It is still a challenging cancer for pediatric oncology, as some tumors will spontaneously regress, while others will become refractory to all forms of therapy. The clinical course of this disease is greatly influenced by both patient age and the genetic abnormalities that occur within the tumors. MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)) amplification and loss of chromosome 11q heterozygosity have been known to be indicative of poor prognosis. In this article, we review how mutations and structural alterations in specific genes contribute to inheritable predisposition to neuroblastoma and/or to aggressive disease pathogenesis, as well as implications for diagnosis and therapy. These genes include PHOX2B (paired-like homeobox 2b), ALK (anaplastic lymphoma receptor tyrosine kinase), and ATRX (alpha thalassemia/mental retardation syndrome X-linked).
Collapse
|
55
|
Wilzén A, Krona C, Sveinbjörnsson B, Kristiansson E, Dalevi D, Øra I, De Preter K, Stallings RL, Maris J, Versteeg R, Nilsson S, Kogner P, Abel F. ERBB3 is a marker of a ganglioneuroblastoma/ganglioneuroma-like expression profile in neuroblastic tumours. Mol Cancer 2013; 12:70. [PMID: 23835063 PMCID: PMC3766266 DOI: 10.1186/1476-4598-12-70] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background Neuroblastoma (NB) tumours are commonly divided into three cytogenetic subgroups. However, by unsupervised principal components analysis of gene expression profiles we recently identified four distinct subgroups, r1-r4. In the current study we characterized these different subgroups in more detail, with a specific focus on the fourth divergent tumour subgroup (r4). Methods Expression microarray data from four international studies corresponding to 148 neuroblastic tumour cases were subject to division into four expression subgroups using a previously described 6-gene signature. Differentially expressed genes between groups were identified using Significance Analysis of Microarray (SAM). Next, gene expression network modelling was performed to map signalling pathways and cellular processes representing each subgroup. Findings were validated at the protein level by immunohistochemistry and immunoblot analyses. Results We identified several significantly up-regulated genes in the r4 subgroup of which the tyrosine kinase receptor ERBB3 was most prominent (fold change: 132–240). By gene set enrichment analysis (GSEA) the constructed gene network of ERBB3 (n = 38 network partners) was significantly enriched in the r4 subgroup in all four independent data sets. ERBB3 was also positively correlated to the ErbB family members EGFR and ERBB2 in all data sets, and a concurrent overexpression was seen in the r4 subgroup. Further studies of histopathology categories using a fifth data set of 110 neuroblastic tumours, showed a striking similarity between the expression profile of r4 to ganglioneuroblastoma (GNB) and ganglioneuroma (GN) tumours. In contrast, the NB histopathological subtype was dominated by mitotic regulating genes, characterizing unfavourable NB subgroups in particular. The high ErbB3 expression in GN tumour types was verified at the protein level, and showed mainly expression in the mature ganglion cells. Conclusions Conclusively, this study demonstrates the importance of performing unsupervised clustering and subtype discovery of data sets prior to analyses to avoid a mixture of tumour subtypes, which may otherwise give distorted results and lead to incorrect conclusions. The current study identifies ERBB3 as a clear-cut marker of a GNB/GN-like expression profile, and we suggest a 7-gene expression signature (including ERBB3) as a complement to histopathology analysis of neuroblastic tumours. Further studies of ErbB3 and other ErbB family members and their role in neuroblastic differentiation and pathogenesis are warranted.
Collapse
Affiliation(s)
- Annica Wilzén
- Department of Clinical Genetics, Institution of Biomedicine, Box 413, S- 405 30, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
van Nes J, Chan A, van Groningen T, van Sluis P, Koster J, Versteeg R. A NOTCH3 transcriptional module induces cell motility in neuroblastoma. Clin Cancer Res 2013; 19:3485-94. [PMID: 23649002 DOI: 10.1158/1078-0432.ccr-12-3021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Neuroblastoma is a childhood tumor of the peripheral sympathetic nervous system with an often lethal outcome due to metastatic disease. Migration and epithelial-mesenchymal transitions have been implicated in metastasis but they are hardly investigated in neuroblastoma. EXPERIMENTAL DESIGN Cell migration of 16 neuroblastoma cell lines was quantified in Transwell migration assays. Gene expression profiling was used to derive a migration signature, which was applied to classify samples in a neuroblastoma tumor series. Differential expression of transcription factors was analyzed in the subsets. NOTCH3 was prioritized, and inducible transgene expression studies in cell lines were used to establish whether it functions as a master switch for motility. RESULTS We identified a 36-gene expression signature that predicts cell migration. This signature was used to analyse expression profiles of 88 neuroblastoma tumors and identified a group with distant metastases and a poor prognosis. This group also expressed a known mesenchymal gene signature established in glioblastoma. Neuroblastomas recognized by the motility and mesenchymal signatures strongly expressed genes of the NOTCH pathway. Inducible expression of a NOTCH intracellular (NOTCH3-IC) transgene conferred a highly motile phenotype to neuroblastoma cells. NOTCH3-IC strongly induced expression of motility- and mesenchymal marker genes. Many of these genes were significantly coexpressed with NOTCH3 in neuroblastoma, as well as colon, kidney, ovary, and breast tumor series. CONCLUSION The NOTCH3 transcription factor is a master regulator of motility in neuroblastoma. A subset of neuroblastoma with high expression of NOTCH3 and its downstream-regulated genes has mesenchymal characteristics, increased incidence of metastases, and a poor prognosis.
Collapse
Affiliation(s)
- Johan van Nes
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
57
|
Watters KM, Bryan K, Foley NH, Meehan M, Stallings RL. Expressional alterations in functional ultra-conserved non-coding RNAs in response to all-trans retinoic acid--induced differentiation in neuroblastoma cells. BMC Cancer 2013; 13:184. [PMID: 23565812 PMCID: PMC3626850 DOI: 10.1186/1471-2407-13-184] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 03/20/2013] [Indexed: 12/02/2022] Open
Abstract
Background Ultra-conserved regions (UCRs) are segments of the genome (≥ 200 bp) that exhibit 100% DNA sequence conservation between human, mouse and rat. Transcribed UCRs (T-UCRs) have been shown to be differentially expressed in cancers versus normal tissue, indicating a possible role in carcinogenesis. All-trans-retinoic acid (ATRA) causes some neuroblastoma (NB) cell lines to undergo differentiation and leads to a significant decrease in the oncogenic transcription factor MYCN. Here, we examine the impact of ATRA treatment on T-UCR expression and investigate the biological significance of these changes. Methods We designed a custom tiling microarray to profile the expression of 481 T-UCRs in sense and anti-sense orientation (962 potential transcripts) in untreated and ATRA-treated neuroblastoma cell lines (SH-SY5Y, SK-N-BE, LAN-5). Following identification of significantly differentially expressed T-UCRs, we carried out siRNA knockdown and gene expression microarray analysis to investigate putative functional roles for selected T-UCRs. Results Following ATRA-induced differentiation, 32 T-UCRs were differentially expressed (16 up-regulated, 16 down-regulated) across all three cell lines. Further insight into the possible role of T-UC.300A, an independent transcript whose expression is down-regulated following ATRA was achieved by siRNA knockdown, resulting in the decreased viability and invasiveness of ATRA-responsive cell lines. Gene expression microarray analysis following knockdown of T-UC.300A revealed a number of genes whose expression was altered by changing T-UC.300A levels and that might play a role in the increased proliferation and invasion of NB cells prior to ATRA-treatment. Conclusions Our results indicate that significant numbers of T-UCRs have altered expression levels in response to ATRA. While the precise roles that T-UCRs might play in cancer or in normal development are largely unknown and an important area for future study, our findings strongly indicate that the function of non-coding RNA T-UC.300A is connected with proliferation, invasion and the inhibition of differentiation of neuroblastoma cell lines prior to ATRA treatment.
Collapse
Affiliation(s)
- Karen M Watters
- Cancer Genetics, Department of Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
58
|
Ulfenborg B, Klinga-Levan K, Olsson B. Classification of tumor samples from expression data using decision trunks. Cancer Inform 2013; 12:53-66. [PMID: 23467331 PMCID: PMC3579425 DOI: 10.4137/cin.s10356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We present a novel machine learning approach for the classification of cancer samples using expression data. We refer to the method as “decision trunks,” since it is loosely based on decision trees, but contains several modifications designed to achieve an algorithm that: (1) produces smaller and more easily interpretable classifiers than decision trees; (2) is more robust in varying application scenarios; and (3) achieves higher classification accuracy. The decision trunk algorithm has been implemented and tested on 26 classification tasks, covering a wide range of cancer forms, experimental methods, and classification scenarios. This comprehensive evaluation indicates that the proposed algorithm performs at least as well as the current state of the art algorithms in terms of accuracy, while producing classifiers that include on average only 2–3 markers. We suggest that the resulting decision trunks have clear advantages over other classifiers due to their transparency, interpretability, and their correspondence with human decision-making and clinical testing practices.
Collapse
Affiliation(s)
- Benjamin Ulfenborg
- Systems Biology Research Centre, School of Life Sciences, University of Skövde, Skövde, Sweden
| | | | | |
Collapse
|
59
|
Domingo-Fernandez R, Watters K, Piskareva O, Stallings RL, Bray I. The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis. Pediatr Surg Int 2013; 29:101-19. [PMID: 23274701 PMCID: PMC3557462 DOI: 10.1007/s00383-012-3239-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths. Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over 30 years, however, recent methodological advances including miRNA and mRNA profiling, comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic markers and better patient stratification. In this review, we will describe the main genetic factors responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their discovery, and the impact on patient prognosis.
Collapse
Affiliation(s)
- Raquel Domingo-Fernandez
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Karen Watters
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Olga Piskareva
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Raymond L. Stallings
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Isabella Bray
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
60
|
Võsa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T. Meta-analysis of microRNA expression in lung cancer. Int J Cancer 2012; 132:2884-93. [PMID: 23225545 DOI: 10.1002/ijc.27981] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/19/2012] [Indexed: 12/14/2022]
Abstract
The prognostic and diagnostic value of microRNA (miRNA) expression aberrations in lung cancer has been studied intensely in recent years. However, due to the application of different technological platforms and small sample size, the miRNA expression profiling efforts have led to inconsistent results between the studies. We performed a comprehensive meta-analysis of 20 published miRNA expression studies in lung cancer, including a total of 598 tumor and 528 non-cancerous control samples. Using a recently published robust rank aggregation method, we identified a statistically significant miRNA meta-signature of seven upregulated (miR-21, miR-210, miR-182, miR-31, miR-200b, miR-205 and miR-183) and eight downregulated (miR-126-3p, miR-30a, miR-30d, miR-486-5p, miR-451a, miR-126-5p, miR-143 and miR-145) miRNAs. We conducted a gene set enrichment analysis to identify pathways that are most strongly affected by altered expression of these miRNAs. We found that meta-signature miRNAs cooperatively target functionally related and biologically relevant genes in signaling and developmental pathways. We have shown that such meta-analysis approach is suitable and effective solution for identification of statistically significant miRNA meta-signature by combining several miRNA expression studies. This method allows the analysis of data produced by different technological platforms that cannot be otherwise directly compared or in the case when raw data are unavailable.
Collapse
Affiliation(s)
- Urmo Võsa
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Neuroblastomas are tumors of peripheral sympathetic neurons and are the most common solid tumor in children. To determine the genetic basis for neuroblastoma we performed whole-genome sequencing (6 cases), exome sequencing (16 cases), genome-wide rearrangement analyses (32 cases), and targeted analyses of specific genomic loci (40 cases) using massively parallel sequencing. On average each tumor had 19 somatic alterations in coding genes (range, 3–70). Among genes not previously known to be involved in neuroblastoma, chromosomal deletions and sequence alterations of chromatin remodeling genes, ARID1A and ARID1B, were identified in 8 of 71 tumors (11%) and were associated with early treatment failure and decreased survival. Using tumor-specific structural alterations, we developed an approach to identify rearranged DNA fragments in sera, providing personalized biomarkers for minimal residual disease detection and monitoring. These results highlight dysregulation of chromatin remodeling in pediatric tumorigenesis and provide new approaches for the management of neuroblastoma patients.
Collapse
|
62
|
|
63
|
Mayol G, Martín-Subero JI, Ríos J, Queiros A, Kulis M, Suñol M, Esteller M, Gómez S, Garcia I, de Torres C, Rodríguez E, Galván P, Mora J, Lavarino C. DNA hypomethylation affects cancer-related biological functions and genes relevant in neuroblastoma pathogenesis. PLoS One 2012; 7:e48401. [PMID: 23144874 PMCID: PMC3492354 DOI: 10.1371/journal.pone.0048401] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/01/2012] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation.
Collapse
Affiliation(s)
- Gemma Mayol
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - José I. Martín-Subero
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - José Ríos
- Laboratory of Biostatistics and Epidemiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Pharmacology Service, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Ana Queiros
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - Marta Kulis
- Hematopathology Unit, Hospital Clinic, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL),L'Hospitalet, Barcelona, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Soledad Gómez
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Idoia Garcia
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Eva Rodríguez
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Patricia Galván
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
- * E-mail:
| |
Collapse
|
64
|
Lawlor ER, Thiele CJ. Epigenetic changes in pediatric solid tumors: promising new targets. Clin Cancer Res 2012; 18:2768-79. [PMID: 22589485 DOI: 10.1158/1078-0432.ccr-11-1921] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer is being reinterpreted in the light of recent discoveries related to the histone code and the dynamic nature of epigenetic regulation and control of gene programs during development, as well as insights gained from whole cancer genome sequencing. Somatic mutations in or deregulated expression of genes that encode chromatin-modifying enzymes are being identified with high frequency. Nowhere is this more relevant than in pediatric embryonal solid tumors. A picture is emerging that shows that classic genetic alterations associated with these tumors ultimately converge on the epigenome to dysregulate developmental programs. In this review, we relate how alterations in components of the transcriptional machinery and chromatin modifier genes contribute to the initiation and progression of pediatric solid tumors. We also discuss how dramatic progress in our understanding of the fundamental mechanisms that contribute to epigenetic deregulation in cancer is providing novel avenues for targeted cancer therapy.
Collapse
Affiliation(s)
- Elizabeth R Lawlor
- Department of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
65
|
Szabó PM, Pintér M, Szabó DR, Zsippai A, Patócs A, Falus A, Rácz K, Igaz P. Integrative analysis of neuroblastoma and pheochromocytoma genomics data. BMC Med Genomics 2012; 5:48. [PMID: 23106811 PMCID: PMC3495658 DOI: 10.1186/1755-8794-5-48] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 10/26/2012] [Indexed: 12/26/2022] Open
Abstract
Background Pheochromocytoma and neuroblastoma are the most common neural crest-derived tumors in adults and children, respectively. We have performed a large-scale in silico analysis of altogether 1784 neuroblastoma and 531 pheochromocytoma samples to establish similarities and differences using analysis of mRNA and microRNA expression, chromosome aberrations and a novel bioinformatics analysis based on cooperative game theory. Methods Datasets obtained from Gene Expression Omnibus and ArrayExpress have been subjected to a complex bioinformatics analysis using GeneSpring, Gene Set Enrichment Analysis, Ingenuity Pathway Analysis and own software. Results Comparison of neuroblastoma and pheochromocytoma with other tumors revealed the overexpression of genes involved in development of noradrenergic cells. Among these, the significance of paired-like homeobox 2b in pheochromocytoma has not been reported previously. The analysis of similar expression patterns in neuroblastoma and pheochromocytoma revealed the same anti-apoptotic strategies in these tumors. Cancer regulation by stathmin turned out to be the major difference between pheochromocytoma and neuroblastoma. Underexpression of genes involved in neuronal cell-cell interactions was observed in unfavorable neuroblastoma. By the comparison of hypoxia- and Ras-associated pheochromocytoma, we have found that enhanced insulin like growth factor 1 signaling may be responsible for the activation of Src homology 2 domain containing transforming protein 1, the main co-factor of RET. Hypoxia induced factor 1α and vascular endothelial growth factor signaling included the most prominent gene expression changes between von Hippel-Lindau- and multiple endocrine neoplasia type 2A-associated pheochromocytoma. Conclusions These pathways include previously undescribed pathomechanisms of neuroblastoma and pheochromocytoma and associated gene products may serve as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Peter M Szabó
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str, 46, Budapest, H-1088, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Rounbehler RJ, Fallahi M, Yang C, Steeves MA, Li W, Doherty JR, Schaub FX, Sanduja S, Dixon DA, Blackshear PJ, Cleveland JL. Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell 2012; 150:563-74. [PMID: 22863009 DOI: 10.1016/j.cell.2012.06.033] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 10/10/2011] [Accepted: 06/14/2012] [Indexed: 12/27/2022]
Abstract
Myc oncoproteins directly regulate transcription by binding to target genes, yet this only explains a fraction of the genes affected by Myc. mRNA turnover is controlled via AU-binding proteins (AUBPs) that recognize AU-rich elements (AREs) found within many transcripts. Analyses of precancerous and malignant Myc-expressing B cells revealed that Myc regulates hundreds of ARE-containing (ARED) genes and select AUBPs. Notably, Myc directly suppresses transcription of Tristetraprolin (TTP/ZFP36), an mRNA-destabilizing AUBP, and this circuit is also operational during B lymphopoiesis and IL7 signaling. Importantly, TTP suppression is a hallmark of cancers with MYC involvement, and restoring TTP impairs Myc-induced lymphomagenesis and abolishes maintenance of the malignant state. Further, there is a selection for TTP loss in malignancy; thus, TTP functions as a tumor suppressor. Finally, Myc/TTP-directed control of select cancer-associated ARED genes is disabled during lymphomagenesis. Thus, Myc targets AUBPs to regulate ARED genes that control tumorigenesis.
Collapse
Affiliation(s)
- Robert J Rounbehler
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Decock A, Ongenaert M, Hoebeeck J, De Preter K, Van Peer G, Van Criekinge W, Ladenstein R, Schulte JH, Noguera R, Stallings RL, Van Damme A, Laureys G, Vermeulen J, Van Maerken T, Speleman F, Vandesompele J. Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers. Genome Biol 2012; 13:R95. [PMID: 23034519 PMCID: PMC3491423 DOI: 10.1186/gb-2012-13-10-r95] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/03/2012] [Indexed: 01/06/2023] Open
Abstract
Background Accurate outcome prediction in neuroblastoma, which is necessary to enable the optimal choice of risk-related therapy, remains a challenge. To improve neuroblastoma patient stratification, this study aimed to identify prognostic tumor DNA methylation biomarkers. Results To identify genes silenced by promoter methylation, we first applied two independent genome-wide methylation screening methodologies to eight neuroblastoma cell lines. Specifically, we used re-expression profiling upon 5-aza-2'-deoxycytidine (DAC) treatment and massively parallel sequencing after capturing with a methyl-CpG-binding domain (MBD-seq). Putative methylation markers were selected from DAC-upregulated genes through a literature search and an upfront methylation-specific PCR on 20 primary neuroblastoma tumors, as well as through MBD- seq in combination with publicly available neuroblastoma tumor gene expression data. This yielded 43 candidate biomarkers that were subsequently tested by high-throughput methylation-specific PCR on an independent cohort of 89 primary neuroblastoma tumors that had been selected for risk classification and survival. Based on this analysis, methylation of KRT19, FAS, PRPH, CNR1, QPCT, HIST1H3C, ACSS3 and GRB10 was found to be associated with at least one of the classical risk factors, namely age, stage or MYCN status. Importantly, HIST1H3C and GNAS methylation was associated with overall and/or event-free survival. Conclusions This study combines two genome-wide methylation discovery methodologies and is the most extensive validation study in neuroblastoma performed thus far. We identified several novel prognostic DNA methylation markers and provide a basis for the development of a DNA methylation-based prognostic classifier in neuroblastoma.
Collapse
|
68
|
Light JE, Koyama H, Minturn JE, Ho R, Simpson AM, Iyer R, Mangino JL, Kolla V, London WB, Brodeur GM. Clinical significance of NTRK family gene expression in neuroblastomas. Pediatr Blood Cancer 2012; 59:226-32. [PMID: 21990266 PMCID: PMC3258457 DOI: 10.1002/pbc.23343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/17/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuroblastomas (NBs) are characterized by clinical heterogeneity, from spontaneous regression to relentless progression. The pattern of NTRK family gene expression contributes to these disparate behaviors. TrkA/NTRK1 is expressed in favorable NBs that regress or differentiate, whereas TrkB/NTRK2 and its ligand brain-derived neurotrophic factor (BDNF) are co-expressed in unfavorable NBs, representing an autocrine survival pathway. We determined the significance of NTRK family gene expression in a large, representative set of primary NBs. PATIENTS AND METHODS We analyzed the expression of the following genes in 814 NBs using quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR): NTRK1, NTRK2, NTRK3, P75/NGFR, nerve growth factor (NGF), BDNF, IGFR1, and EGFR. Expression (high vs. low) was dichotomized by median expression value and compared to clinical and biological variables as well as outcome. RESULTS High NTRK1 expression was strongly correlated with favorable age, stage, MYCN status, histology, ploidy, risk group, and outcome (P < 0.0001 for all). However, it did not add significantly to the panel of prognostic variables currently used for cooperative group trials. NTRK2 expression was associated with risk factors but not with outcome. High NGF expression was also associated with most risk factors and weakly with unfavorable outcome. CONCLUSIONS High expression of NTRK1 is strongly associated with favorable risk factors and outcome in a large, representative population of NB patients. It did not add significantly to the current risk prediction algorithm, but it may contribute to future expression classifiers. Indeed, prospective assessment of NTRK1 and NTRK2 expression will identify tumors that would be candidates for NTRK-targeted therapy, either alone or in combination with conventional agents.
Collapse
Affiliation(s)
- Jennifer E Light
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Zage PE, Louis CU, Cohn SL. New aspects of neuroblastoma treatment: ASPHO 2011 symposium review. Pediatr Blood Cancer 2012; 58:1099-105. [PMID: 22378620 PMCID: PMC4104176 DOI: 10.1002/pbc.24116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/31/2012] [Indexed: 11/10/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood, and the outcomes for children with high-risk and relapsed disease remain poor. However, new international strategies for risk stratification and for treatment based on novel tumor targets and including immunotherapy are being employed in attempts to improve the outcomes of children with neuroblastoma. A new international neuroblastoma risk classification system has been developed which is being incorporated into cooperative group clinical trials in North America, Japan, and Europe, resulting in standardized approaches for the initial evaluation and treatment stratification of neuroblastoma patients. Furthermore, novel treatment regimens are being developed based on improved understanding of neuroblastoma biology and on the recruitment of the immune system to specifically target neuroblastoma tumors. These approaches will lead to new therapeutic strategies that likely will improve the outcomes for children with neuroblastoma worldwide.
Collapse
Affiliation(s)
- Peter E. Zage
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas,Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas,Correspondence to: Peter E. Zage, MD, PhD, Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, 1102 Bates, Suite 1220, Houston, TX 77030.
| | - Chrystal U. Louis
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas,Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Susan L. Cohn
- Department of Pediatrics, Comer Children’s Hospital and University of Chicago, Chicago, Illinois
| |
Collapse
|
70
|
Tierney L, Linde J, Müller S, Brunke S, Molina JC, Hube B, Schöck U, Guthke R, Kuchler K. An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells. Front Microbiol 2012; 3:85. [PMID: 22416242 PMCID: PMC3299011 DOI: 10.3389/fmicb.2012.00085] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/20/2012] [Indexed: 12/31/2022] Open
Abstract
The ability to adapt to diverse micro-environmental challenges encountered within a host is of pivotal importance to the opportunistic fungal pathogen Candida albicans. We have quantified C. albicans and M. musculus gene expression dynamics during phagocytosis by dendritic cells in a genome-wide, time-resolved analysis using simultaneous RNA-seq. A robust network inference map was generated from this dataset using NetGenerator, predicting novel interactions between the host and the pathogen. We experimentally verified predicted interdependent sub-networks comprising Hap3 in C. albicans, and Ptx3 and Mta2 in M. musculus. Remarkably, binding of recombinant Ptx3 to the C. albicans cell wall was found to regulate the expression of fungal Hap3 target genes as predicted by the network inference model. Pre-incubation of C. albicans with recombinant Ptx3 significantly altered the expression of Mta2 target cytokines such as IL-2 and IL-4 in a Hap3-dependent manner, further suggesting a role for Mta2 in host-pathogen interplay as predicted in the network inference model. We propose an integrated model for the functionality of these sub-networks during fungal invasion of immune cells, according to which binding of Ptx3 to the C. albicans cell wall induces remodeling via fungal Hap3 target genes, thereby altering the immune response to the pathogen. We show the applicability of network inference to predict interactions between host-pathogen pairs, demonstrating the usefulness of this systems biology approach to decipher mechanisms of microbial pathogenesis.
Collapse
Affiliation(s)
- Lanay Tierney
- Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories, Medical University of Vienna Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Ooi WF, Re A, Sidarovich V, Canella V, Arseni N, Adami V, Guarguaglini G, Giubettini M, Scaruffi P, Stigliani S, Lavia P, Tonini GP, Quattrone A. Segmental chromosome aberrations converge on overexpression of mitotic spindle regulatory genes in high-risk neuroblastoma. Genes Chromosomes Cancer 2012; 51:545-56. [PMID: 22337647 DOI: 10.1002/gcc.21940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 12/21/2022] Open
Abstract
Integration of genome-wide profiles of DNA copy number alterations (CNAs) and gene expression variations (GEVs) could provide combined power to the identification of driver genes and gene networks in tumors. Here we merge matched genome and transcriptome microarray analyses from neuroblastoma samples to derive correlation patterns of CNAs and GEVs, irrespective of their genomic location. Neuroblastoma correlation patterns are strongly asymmetrical, being on average 10 CNAs linked to 1 GEV, and show the widespread prevalence of long range covariance. Functional enrichment and network analysis of the genes covarying with CNAs consistently point to a major cell function, the regulation of mitotic spindle assembly. Moreover, elevated expression of 14 key genes promoting this function is strongly associated to high-risk neuroblastomas with 1p loss and MYCN amplification in a set of 410 tumor samples (P < 0.00001). Independent CNA/GEV profiling on neuroblastoma cell lines shows that increased levels of expression of these genes are linked to 1p loss. By this approach, we reveal a convergence of clustered neuroblastoma CNAs toward increased expression of a group of prognostic and functionally cooperating genes. We therefore propose gain of function of the spindle assembly machinery as a lesion potentially offering new targets for therapy of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Wen Fong Ooi
- Laboratory of Translational Genomics, Centre for Integrative Biology and Department of Information Engineering and Computer Science, University of Trento, 38122 Trento, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Garcia I, Mayol G, Ríos J, Domenech G, Cheung NKV, Oberthuer A, Fischer M, Maris JM, Brodeur GM, Hero B, Rodríguez E, Suñol M, Galvan P, de Torres C, Mora J, Lavarino C. A three-gene expression signature model for risk stratification of patients with neuroblastoma. Clin Cancer Res 2012; 18:2012-23. [PMID: 22328561 DOI: 10.1158/1078-0432.ccr-11-2483] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Neuroblastoma is an embryonal tumor with contrasting clinical courses. Despite elaborate stratification strategies, precise clinical risk assessment still remains a challenge. The purpose of this study was to develop a PCR-based predictor model to improve clinical risk assessment of patients with neuroblastoma. EXPERIMENTAL DESIGN The model was developed using real-time PCR gene expression data from 96 samples and tested on separate expression data sets obtained from real-time PCR and microarray studies comprising 362 patients. RESULTS On the basis of our prior study of differentially expressed genes in favorable and unfavorable neuroblastoma subgroups, we identified three genes, CHD5, PAFAH1B1, and NME1, strongly associated with patient outcome. The expression pattern of these genes was used to develop a PCR-based single-score predictor model. The model discriminated patients into two groups with significantly different clinical outcome [set 1: 5-year overall survival (OS): 0.93 ± 0.03 vs. 0.53 ± 0.06, 5-year event-free survival (EFS): 0.85 ± 0.04 vs. 0.042 ± 0.06, both P < 0.001; set 2 OS: 0.97 ± 0.02 vs. 0.61 ± 0.1, P = 0.005, EFS: 0.91 ± 0.8 vs. 0.56 ± 0.1, P = 0.005; and set 3 OS: 0.99 ± 0.01 vs. 0.56 ± 0.06, EFS: 0.96 ± 0.02 vs. 0.43 ± 0.05, both P < 0.001]. Multivariate analysis showed that the model was an independent marker for survival (P < 0.001, for all). In comparison with accepted risk stratification systems, the model robustly classified patients in the total cohort and in different clinically relevant risk subgroups. CONCLUSION We propose for the first time in neuroblastoma, a technically simple PCR-based predictor model that could help refine current risk stratification systems.
Collapse
Affiliation(s)
- Idoia Garcia
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Deu, Edificio Docente 4th Floor, 08950 Esplugues de Llobregat, Barcelona 08950, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Koyama H, Zhuang T, Light JE, Kolla V, Higashi M, McGrady PW, London WB, Brodeur GM. Mechanisms of CHD5 Inactivation in neuroblastomas. Clin Cancer Res 2012; 18:1588-97. [PMID: 22294723 DOI: 10.1158/1078-0432.ccr-11-2644] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Neuroblastomas (NBs) have genomic, biological, and clinical heterogeneity. High-risk NBs are characterized by several genomic changes, including MYCN amplification and 1p36 deletion. We identified the chromatin-remodeling gene CHD5 as a tumor suppressor gene that maps to 1p36.31. Low or absent CHD5 expression is associated with a 1p36 deletion and an unfavorable outcome, but the mechanisms of CHD5 inactivation in NBs are unknown. EXPERIMENTAL DESIGN We examined (i) the CHD5 sequence in 188 high-risk NBs investigated through the TARGET initiative, (ii) the methylation status of the CHD5 promoter in 108 NBs with or without 1p36 deletion and/or MYCN amplification, and (iii) mRNA expression of CHD5 and MYCN in 814 representative NBs using TaqMan low-density array microfluidic cards. RESULTS We found no examples of somatically acquired CHD5 mutations, even in cases with 1p36 deletion, indicating that homozygous genomic inactivation is rare. Methylation of the CHD5 promoter was common in the high-risk tumors, and it was generally associated with both 1p deletion and MYCN amplification. High CHD5 expression was a powerful predictor of favorable outcome, and it showed prognostic value even in multivariable analysis after adjusting for MYCN amplification, 1p36 deletion, and/or 11q deletion. CONCLUSIONS We conclude that (i) somatically acquired CHD5 mutations are rare in primary NBs, so inactivation probably occurs by deletion and epigenetic silencing; (ii) CHD5 expression and promoter methylation are associated with MYCN amplification, suggesting a possible interaction between these 2 genes; and (iii) high CHD5 expression is strongly correlated with favorable clinical/biological features and outcome.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Oncology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Lee CH, Alpert BO, Sankaranarayanan P, Alter O. GSVD comparison of patient-matched normal and tumor aCGH profiles reveals global copy-number alterations predicting glioblastoma multiforme survival. PLoS One 2012; 7:e30098. [PMID: 22291905 PMCID: PMC3264559 DOI: 10.1371/journal.pone.0030098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/09/2011] [Indexed: 11/18/2022] Open
Abstract
Despite recent large-scale profiling efforts, the best prognostic predictor of glioblastoma multiforme (GBM) remains the patient's age at diagnosis. We describe a global pattern of tumor-exclusive co-occurring copy-number alterations (CNAs) that is correlated, possibly coordinated with GBM patients' survival and response to chemotherapy. The pattern is revealed by GSVD comparison of patient-matched but probe-independent GBM and normal aCGH datasets from The Cancer Genome Atlas (TCGA). We find that, first, the GSVD, formulated as a framework for comparatively modeling two composite datasets, removes from the pattern copy-number variations (CNVs) that occur in the normal human genome (e.g., female-specific X chromosome amplification) and experimental variations (e.g., in tissue batch, genomic center, hybridization date and scanner), without a-priori knowledge of these variations. Second, the pattern includes most known GBM-associated changes in chromosome numbers and focal CNAs, as well as several previously unreported CNAs in >3% of the patients. These include the biochemically putative drug target, cell cycle-regulated serine/threonine kinase-encoding TLK2, the cyclin E1-encoding CCNE1, and the Rb-binding histone demethylase-encoding KDM5A. Third, the pattern provides a better prognostic predictor than the chromosome numbers or any one focal CNA that it identifies, suggesting that the GBM survival phenotype is an outcome of its global genotype. The pattern is independent of age, and combined with age, makes a better predictor than age alone. GSVD comparison of matched profiles of a larger set of TCGA patients, inclusive of the initial set, confirms the global pattern. GSVD classification of the GBM profiles of an independent set of patients validates the prognostic contribution of the pattern.
Collapse
Affiliation(s)
- Cheng H. Lee
- Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Benjamin O. Alpert
- Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Preethi Sankaranarayanan
- Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Orly Alter
- Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
75
|
Carpenter EL, Haglund EA, Mace EM, Deng D, Martinez D, Wood AC, Chow AK, Weiser DA, Belcastro LT, Winter C, Bresler SC, Vigny M, Mazot P, Asgharzadeh S, Seeger RC, Zhao H, Guo R, Christensen JG, Orange JS, Pawel BR, Lemmon MA, Mossé YP. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 2012; 31:4859-67. [PMID: 22266870 DOI: 10.1038/onc.2011.647] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in neuroblastoma, a devastating pediatric cancer of the sympathetic nervous system. Germline and somatically acquired ALK aberrations induce increased autophosphorylation, constitutive ALK activation and increased downstream signaling. Thus, ALK is a tractable therapeutic target in neuroblastoma, likely to be susceptible to both small-molecule tyrosine kinase inhibitors and therapeutic antibodies-as has been shown for other receptor tyrosine kinases in malignancies such as breast and lung cancer. Small-molecule inhibitors of ALK are currently being studied in the clinic, but common ALK mutations in neuroblastoma appear to show de novo insensitivity, arguing that complementary therapeutic approaches must be developed. We therefore hypothesized that antibody targeting of ALK may be a relevant strategy for the majority of neuroblastoma patients likely to have ALK-positive tumors. We show here that an antagonistic ALK antibody inhibits cell growth and induces in vitro antibody-dependent cellular cytotoxicity of human neuroblastoma-derived cell lines. Cytotoxicity was induced in cell lines harboring either wild type or mutated forms of ALK. Treatment of neuroblastoma cells with the dual Met/ALK inhibitor crizotinib sensitized cells to antibody-induced growth inhibition by promoting cell surface accumulation of ALK and thus increasing the accessibility of antigen for antibody binding. These data support the concept of ALK-targeted immunotherapy as a highly promising therapeutic strategy for neuroblastomas with mutated or wild-type ALK.
Collapse
Affiliation(s)
- E L Carpenter
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Use of integrative epigenetic and cytogenetic analyses to identify novel tumor-suppressor genes in malignant melanoma. Melanoma Res 2011; 21:298-307. [PMID: 21606880 DOI: 10.1097/cmr.0b013e328344a003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective of this study was to identify novel tumor-suppressor genes in melanoma, using an integrative genomic approach. Data from: (i) earlier reports of DNA loss and gain in malignant melanoma accompanied by comparative genomic hybridization high-definition array data of the entire human genome; (ii) microarray expression data from melanoma-derived cell lines identifying genes with significantly increased expression due to methylation using a pharmacologic demethylating strategy; and (iii) publicly available RNA expression microarray data of primary tumors and benign nevi were integrated using statistical tools to define a population of candidate tumor-suppressor genes. Twenty-seven genes were identified in areas of deletion that demonstrated diminished expression in primary melanomas relative to benign nevi and were significantly increased in expression by 5-Aza treatment. Seven genes of these 27 genes demonstrated methylation and deletion in a validation cohort of 14 separate primary tumors. These were: CHRDL1, SFRP1, TMEM47, LPL, RARRES1, PLCXD1, and KOX15. All of these genes demonstrated growth-suppressive properties with transfection into melanoma-derived cell lines. Seven putative tumor-suppressor genes in malignant melanoma were identified using a novel integrative technique.
Collapse
|
77
|
Taggart DR, London WB, Schmidt ML, DuBois SG, Monclair TF, Nakagawara A, De Bernardi B, Ambros PF, Pearson ADJ, Cohn SL, Matthay KK. Prognostic value of the stage 4S metastatic pattern and tumor biology in patients with metastatic neuroblastoma diagnosed between birth and 18 months of age. J Clin Oncol 2011; 29:4358-64. [PMID: 21969516 DOI: 10.1200/jco.2011.35.9570] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Patients with neuroblastoma younger than 12 months of age with a 4S pattern of disease (metastases limited to liver, skin, bone marrow) have better outcomes than infants with stage 4 disease. The new International Neuroblastoma Risk Group (INRG) staging system extends age to 18 months for the 4S pattern. Our aim was to determine which prognostic features could be used for optimal risk classification among patients younger than 18 months with metastatic disease. METHODS Event-free survival (EFS) and overall survival were analyzed by log-rank tests, Cox models, and survival tree regression for 656 infants with stage 4S neuroblastoma younger than 12 months of age and 1,019 patients with stage 4 disease younger than 18 months of age in the INRG database. RESULTS Unfavorable biologic features were more frequent in infants with stage 4 disease than in infants with 4S tumors and higher overall in those age 12 to 18 months (although not different for stage 4 v 4S pattern). EFS was significantly better for infants younger than 12 months with 4S pattern than with stage 4 disease (P < .01) but similar for toddlers age 12 to 18 months with stage 4 versus 4S pattern. Among 717 patients with stage 4S pattern, patients age 12 to 18 months had worse EFS than those age younger than 12 months (P < .01). MYCN, 11q, mitosis-karyorrhexis index (MKI), ploidy, and lactate dehydrogenase were independently statistically significant predictors of EFS and more highly predictive than age or metastatic pattern. MYCN, 11q, MKI, histology, and 1p were combined in a survival tree for improved risk stratification. CONCLUSION Tumor biology is more critical than age or metastatic pattern for prognosis of patients age younger than 18 months with metastatic neuroblastoma and should be considered for risk stratification.
Collapse
Affiliation(s)
- Denah R Taggart
- UCSF School of Medicine and Benioff Children’s Hospital, San Francisco, CA 94143-0106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Mohlin SA, Wigerup C, Påhlman S. Neuroblastoma aggressiveness in relation to sympathetic neuronal differentiation stage. Semin Cancer Biol 2011; 21:276-82. [PMID: 21945591 DOI: 10.1016/j.semcancer.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/08/2011] [Indexed: 01/01/2023]
Abstract
Neuroblastoma is a childhood malignancy of the sympathetic neuronal lineage. It is a rare disease, but since it is frequently diagnosed during infancy, neuroblastoma causes life-long medical follow up of those children that survive the disease. It was early recognized that a high tumor cell differentiation stage correlates to favorable clinical stage and positive clinical outcome. Today, highly differentiated tumors are surgically removed and not further treated. Cells of many established human neuroblastoma cell lines have the capacity to differentiate when stimulated properly, and these cell lines have been used as models for studying and understanding central concepts of tumor cell differentiation. One recent aspect of this issue is the observation that tumor cells can dedifferentiate and gain a stem cell-like phenotype during hypoxic conditions, which was first shown in neuroblastoma. Aberrant or blocked differentiation is a central aspect of neuroblastoma genesis. In this review we summarize known genetic and non-genetic events in neuroblastoma that might be coupled to an aberrant sympathetic neuronal differentiation and thereby indirectly influencing tumorigenesis and/or aggressive neuroblastoma behavior.
Collapse
Affiliation(s)
- Sofie A Mohlin
- Center for Molecular Pathology, Department of Laboratory Medicine, CREATE Health, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
79
|
Deyell RJ, Attiyeh EF. Advances in the understanding of constitutional and somatic genomic alterations in neuroblastoma. Cancer Genet 2011; 204:113-21. [PMID: 21504710 DOI: 10.1016/j.cancergen.2011.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 01/30/2023]
Abstract
Advances in the field of genomics have led to multiple recent discoveries in the understanding of genetic predisposition and molecular pathogenesis of the childhood cancer neuroblastoma. Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for 10% of childhood cancer related mortality. The genetic etiology of rare families with hereditary neuroblastoma is now largely understood, with the majority having activating mutations in the anaplastic lymphoma kinase (ALK) gene. Genome-wide association studies have identified multiple common, low penetrance genetic polymorphisms that are associated with a predisposition to sporadic neuroblastoma, and these associations are disease phenotype specific. While many of the discoveries related to variations in the host genome that predispose to neuroblastoma are recent, there is a long and robust history of investigation of tumor cell genomics, leading to the identification of multiple biomarkers of tumor aggressiveness. Current patient risk stratification algorithms utilize key genomic features for therapy assignment. Microarray-based tumor DNA and RNA profiling techniques and next generation sequencing efforts may further refine these risk groups and identify new tractable therapeutic targets. Moving forward, integrative genomics efforts will be needed to discover how the interaction of germline genetic variations influence oncogenesis in neuroblastoma-both initiation and progression. In this review, we summarize the recent advances in the understanding of germline predisposition and molecular pathogenesis of neuroblastoma.
Collapse
Affiliation(s)
- Rebecca J Deyell
- Division of Oncology, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, USA
| | | |
Collapse
|
80
|
Wang Z, Park HJ, Carr JR, Chen YJ, Zheng Y, li J, Tyner AL, Costa RH, Bagchi S, Raychaudhuri P. FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res 2011; 71:4292-302. [PMID: 21507930 PMCID: PMC3771352 DOI: 10.1158/0008-5472.can-10-4087] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Malignant neuroblastomas contain stem-like cells. These tumors also overexpress the Forkhead box transcription factor FoxM1. In this study, we investigated the roles of FoxM1 in the tumorigenicity of neuroblastoma. We showed that depletion of FoxM1 inhibits anchorage-independent growth and tumorigenicity in mouse xenografts. Moreover, knockdown of FoxM1 induces differentiation in neuroblastoma cells, suggesting that FoxM1 plays a role in the maintenance of the undifferentiated progenitor population. We showed that inhibition of FoxM1 in malignant neuroblastoma cells leads to the downregulation of the pluripotency genes sex determining region Y box 2 (Sox2) and Bmi1. We provided evidence that FoxM1 directly activates expression of Sox2 in neuroblastoma cells. By using a conditional deletion system and neurosphere cultures, we showed that FoxM1 is important for expression of Sox2 and Bmi1 in the mouse neural stem/progenitor cells and is critical for its self-renewal. Together, our observations suggested that FoxM1 plays an important role in the tumorigenicity of the aggressive neuroblastoma cells through maintenance of the undifferentiated state.
Collapse
Affiliation(s)
- Zebin Wang
- Department of Biochemistry and Molecular Genetics, College of Medicine
| | - Hyun Jung Park
- Department of Biochemistry and Molecular Genetics, College of Medicine
| | - Janai R. Carr
- Department of Biochemistry and Molecular Genetics, College of Medicine
| | - Yi-ju Chen
- Department of Biochemistry and Molecular Genetics, College of Medicine
| | - Yu Zheng
- Department of Biochemistry and Molecular Genetics, College of Medicine
| | - Jing li
- Department of Biochemistry and Molecular Genetics, College of Medicine
| | - Angela L. Tyner
- Department of Biochemistry and Molecular Genetics, College of Medicine
| | - Robert H. Costa
- Department of Biochemistry and Molecular Genetics, College of Medicine
| | | | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
81
|
Abel F, Dalevi D, Nethander M, Jörnsten R, De Preter K, Vermeulen J, Stallings R, Kogner P, Maris J, Nilsson S. A 6-gene signature identifies four molecular subgroups of neuroblastoma. Cancer Cell Int 2011; 11:9. [PMID: 21492432 PMCID: PMC3095533 DOI: 10.1186/1475-2867-11-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/14/2011] [Indexed: 12/03/2022] Open
Abstract
Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics.
Collapse
Affiliation(s)
- Frida Abel
- Department of Clinical Genetics, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Parodi F, Passoni L, Massimo L, Luksch R, Gambini C, Rossi E, Zuffardi O, Pistoia V, Pezzolo A. Identification of novel prognostic markers in relapsing localized resectable neuroblastoma. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:113-21. [PMID: 21319993 DOI: 10.1089/omi.2010.0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patients with localized resectable neuroblastoma (NB) generally have an excellent prognosis and can be treated by surgery alone, but approximately 10% of them develop local recurrences or metastatic progression. The known predictive risk factors are important for the identification of localized resectable NB patients at risk of relapse and/or progression, who may benefit from early and aggressive treatment. These factors, however, identify only a subset of patients at risk, and the search for novel prognostic markers is warranted. This review focuses on the recent advances in the identification of new prognostic markers. Recently we addressed the search of novel genetic prognostic markers in a selected cohort of patients with stroma-poor localized resectable NB who underwent disease relapse or progression (group 1) or complete remission (group 2). High-resolution array-comparative genomic hybridization (CGH) DNA copy-number analysis technology was used. Chromosome 1p36.22p36.32 loss and 1q22qter gain, detected almost exclusively in group 1 patients, were significantly associated with poor event-free survival (EFS). Increasing evidence points to anaplastic lymphoma kinase (ALK) as a fundamental oncogene associated with NB. The immunohistochemical analysis of sporadic NB localized resectable primary tumors (stage 1-2) showed a correlation between aberrant ALK level of expression and tumor progression and clinical outcome. Moreover, other factors that might influence the clinical behavior of these tumors will be reviewed.
Collapse
Affiliation(s)
- Federica Parodi
- Laboratory of Oncology, IRCCS G.Gaslini Hospital, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature 2010; 469:216-20. [PMID: 21124317 DOI: 10.1038/nature09609] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/22/2010] [Indexed: 11/08/2022]
Abstract
Neuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.4 (rs110419, combined P = 5.2 × 10(-16), odds ratio of risk allele = 1.34 (95% confidence interval 1.25-1.44)). The signal was enriched in the subset of patients with the most aggressive form of the disease. LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogues (LMO2, LMO3 and LMO4) have each been previously implicated in cancer. In parallel, we analysed genome-wide DNA copy number alterations in 701 primary tumours. We found that the LMO1 locus was aberrant in 12.4% through a duplication event, and that this event was associated with more advanced disease (P < 0.0001) and survival (P = 0.041). The germline single nucleotide polymorphism (SNP) risk alleles and somatic copy number gains were associated with increased LMO1 expression in neuroblastoma cell lines and primary tumours, consistent with a gain-of-function role in tumorigenesis. Short hairpin RNA (shRNA)-mediated depletion of LMO1 inhibited growth of neuroblastoma cells with high LMO1 expression, whereas forced expression of LMO1 in neuroblastoma cells with low LMO1 expression enhanced proliferation. These data show that common polymorphisms at the LMO1 locus are strongly associated with susceptibility to developing neuroblastoma, but also may influence the likelihood of further somatic alterations at this locus, leading to malignant progression.
Collapse
|
84
|
Ohira M, Nakagawara A. Global genomic and RNA profiles for novel risk stratification of neuroblastoma. Cancer Sci 2010; 101:2295-301. [PMID: 20731666 PMCID: PMC11159775 DOI: 10.1111/j.1349-7006.2010.01681.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children. Its clinical behavior ranges widely from spontaneous regression to life-threatening aggressive growth. The molecular etiology of neuroblastoma is still enigmatic and the overall cure rate of advanced disease is still very poor. Recent microarray-based technology provided us with important information such as comprehensive genomic alterations and gene expression profiles to help us understand the molecular characteristics of each tumor in detail. Several retrospective studies have revealed that these signatures are strongly correlated with patient prognoses and led to the construction of new risk stratification systems, some of which are considered for evaluation in upcoming clinical studies in a prospective way. Large-scale analyses using a variety of genetic tools also discovered a major familial neuroblastoma predisposition gene ALK, as well as new candidate susceptibility genes at 6q22 and 2q35 for sporadic neuroblastoma. Of note, ALK is mutated in 6-9% of sporadic cases, and is either amplified or constitutively activated through mutations mainly within the kinase domain, promoting the possibility of new therapeutic strategies using ALK inhibitors. Additional candidates for outcome predictors such as the methylation phenotype of tumor DNA and expression profiles of microRNA have also been proposed. Such variety of information will help us understand the heterogeneity of neuroblastoma biology and further, the combined use of these signatures will be beneficial in predicting prognosis with high accuracy, as well as choosing a suitable therapy for the individual patient.
Collapse
Affiliation(s)
- Miki Ohira
- Division of Biochemistry and Innovative Cancer Therapeutics Laboratory of Cancer Genomics, Chiba Cancer Center Research Institute, Chuoh-ku, Chiba, Japan
| | | |
Collapse
|
85
|
Qing G, Skuli N, Mayes PA, Pawel B, Martinez D, Maris JM, Simon MC. Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha. Cancer Res 2010; 70:10351-61. [PMID: 20961996 DOI: 10.1158/0008-5472.can-10-0740] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In human neuroblastoma, amplification of the MYCN gene predicts poor prognosis and resistance to therapy. Because hypoxia contributes to aggressive tumor phenotypes, predominantly via two structurally related hypoxia inducible factors, HIF-1α and HIF-2α, we examined hypoxia responses in MYCN-amplified neuroblastoma cells. We demonstrate here that HIF-1α, but not HIF-2α, is preferentially expressed in both MYCN-amplified neuroblastoma cells and primary tumors in comparison to samples without MYCN amplification. Our results showed that interplay between N-Myc and HIF-1α plays critical roles in neuroblastoma. For example, high levels of N-Myc override HIF-1α inhibition of cell cycle progression, enabling continued proliferation under hypoxia. Furthermore, both HIF-1α and N-Myc are essential for the Warburg effect (aerobic glycolysis) in neuroblastomas by activating the transcription of multiple glycolytic genes. Of note, expressions of Phosphoglycerate Kinase 1 (PGK1), Hexokinase 2 (HK2), and Lactate Dehydrogenase A (LDHA) were each significantly higher in MYCN-amplified neuroblastomas than in tumors without MYCN amplification. Interestingly, MYCN-amplified neuroblastoma cells are "addicted" to LDHA enzymatic activity, as its depletion completely inhibits tumorigenesis in vivo. Thus, our results provide mechanistic insights explaining how MYCN-amplified neuroblastoma cells contend with hypoxic stress and paradoxically how hypoxia contributes to neuroblastoma aggressiveness through combinatorial effects of N-Myc and HIF-1α. These results also suggest that LDHA represents a novel, pharmacologically tractable target for neuroblastoma therapeutics.
Collapse
Affiliation(s)
- Guoliang Qing
- Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
PHOX2B-mediated regulation of ALK expression: in vitro identification of a functional relationship between two genes involved in neuroblastoma. PLoS One 2010; 5. [PMID: 20957039 PMCID: PMC2948505 DOI: 10.1371/journal.pone.0013108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/03/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a severe pediatric tumor originating from neural crest derivatives and accounting for 15% of childhood cancer mortality. The heterogeneous and complex genetic etiology has been confirmed with the identification of mutations in two genes, encoding for the receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) and the transcription factor Paired-like Homeobox 2B (PHOX2B), in a limited proportion of NB patients. Interestingly, these two genes are overexpressed in the great majority of primary NB samples and cell lines. These observations led us to test the hypothesis of a regulatory or functional relationship between ALK and PHOX2B underlying NB pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS Following this possibility, we first confirmed a striking correlation between the transcription levels of ALK, PHOX2B and its direct target PHOX2A in a panel of NB cell lines. Then, we manipulated their expression in NB cell lines by siRNA-mediated knock-down and forced over-expression of each gene under analysis. Surprisingly, PHOX2B- and PHOX2A-directed siRNAs efficiently downregulated each other as well as ALK gene and, consistently, the enhanced expression of PHOX2B in NB cells yielded an increment of ALK protein. We finally demonstrated that PHOX2B drives ALK gene transcription by directly binding its promoter, which therefore represents a novel PHOX2B target. CONCLUSIONS/SIGNIFICANCE These findings provide a compelling explanation of the concurrent involvement of these two genes in NB pathogenesis and are going to foster a better understanding of molecular interactions at the base of the disease. Moreover, this work opens new perspectives for NBs refractory to conventional therapies that may benefit from the design of novel therapeutic RNAi-based approaches for multiple gene targets.
Collapse
|
87
|
Schmidberger M, Vicedo E, Mansmann U. Empirical study for the agreement between statistical methods in quality assessment and control of microarray data. Comput Stat 2010. [DOI: 10.1007/s00180-010-0216-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
88
|
Lin RJ, Lin YC, Chen J, Kuo HH, Chen YY, Diccianni MB, London WB, Chang CH, Yu AL. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res 2010; 70:7841-50. [PMID: 20805302 DOI: 10.1158/0008-5472.can-10-0970] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is a common childhood tumor and accounts for 15% of pediatric cancer deaths. To investigate the microRNA (miRNA) profile and role of Dicer and Drosha in neuroblastoma, we assessed the expression of 162 human miRNAs, Dicer and Drosha in 66 neuroblastoma tumors by using real-time PCR methods. We found global downregulation of miRNA expression in advanced neuroblastoma and identified 27 miRNAs that can clearly distinguish low- from high-risk patients. Furthermore, expression levels of Dicer or Drosha were low in high-risk neuroblastoma tumors, which accounted for global downregulation of miRNAs in advanced disease and correlated with poor outcome. Notably, for patients with non-MYCN-amplified tumors, low expression of Dicer can serve as a significant and independent predictor of poor outcome (hazard ratio, 9.6; P = 0.045; n = 52). Using plausible neural networks to select a combination of 15 biomarkers that consist of 12 miRNAs' signature, expression levels of Dicer and Drosha, and age at diagnosis, we were able to segregate all patients into four distinct patterns that were highly predictive of clinical outcome. In vitro studies also showed that knockdown of either Dicer or Drosha promoted the growth of neuroblastoma cell lines. Our results reveal that a combination of 15 biomarkers can delineate risk groups of neuroblastoma and serve as a powerful predictor of clinical outcome. Moreover, our findings of growth promotion by silencing Dicer/Drosha implied their potential use as therapeutic targets for neuroblastoma.
Collapse
Affiliation(s)
- Ruey-Jen Lin
- Graduate Institute of Life Science, National Defense Medical Center, and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Ragusa M, Majorana A, Banelli B, Barbagallo D, Statello L, Casciano I, Guglielmino MR, Duro LR, Scalia M, Magro G, Di Pietro C, Romani M, Purrello M. MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis. J Mol Med (Berl) 2010; 88:1041-53. [PMID: 20574809 DOI: 10.1007/s00109-010-0643-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/10/2010] [Accepted: 06/03/2010] [Indexed: 11/26/2022]
Abstract
MicroRNAs (MIRs) perform critical regulatory functions within cell networks, both in physiology as well as in pathology. Through the positional gene candidate approach, we have identified three MIRs (MIR152, MIR200B, and MIR338) that are located in regions frequently altered in neuroblastoma (NB) and target mRNAs encoding proteins involved in cell proliferation, neuroblast differentiation, neuroblast migration, and apoptosis. Expression analysis in NB biopsies and NB cell lines showed that these MIRs are dysregulated. We have characterized a CpG island, close to the gene encoding MIR200B and hypermethylated in NB samples, that explains its negative regulation. Expression of MIR152, MIR200B, and MIR338 is specifically modulated in NB cell lines during differentiation and apoptosis. Functional genomic experiments through enforced expression of MIR200B and knockdown of MIR152 resulted in a significant decrease of the invasion activity of SH-SY5Y cells. Reconstruction of a NB network comprising MIR152, MIR200B, and MIR338 allowed us to confirm their role in the control of NB cell stemness and apoptosis: This suggests that altered regulation of these MIRs could have a role in NB pathogenesis by interfering with the molecular mechanisms, which physiologically control differentiation and death of neuroblasts. Accordingly, they could be considered as new NB biomarkers and potential targets of antagomirs or epigenetic therapies.
Collapse
Affiliation(s)
- Marco Ragusa
- Unità di BioMedicina Molecolare Genomica e dei Sistemi Complessi, Genetica, Biologia Computazionale G Sichel, Dipartimento di Scienze BioMediche, Sezione di Biologia Generale, Biologia Cellulare, Genetica Molecolare, Università degli Studi di Catania, 95123, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Lu X, Zhang K, Van Sant C, Coon J, Semizarov D. An algorithm for classifying tumors based on genomic aberrations and selecting representative tumor models. BMC Med Genomics 2010; 3:23. [PMID: 20569491 PMCID: PMC2901344 DOI: 10.1186/1755-8794-3-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/22/2010] [Indexed: 01/08/2023] Open
Abstract
Background Cancer is a heterogeneous disease caused by genomic aberrations and characterized by significant variability in clinical outcomes and response to therapies. Several subtypes of common cancers have been identified based on alterations of individual cancer genes, such as HER2, EGFR, and others. However, cancer is a complex disease driven by the interaction of multiple genes, so the copy number status of individual genes is not sufficient to define cancer subtypes and predict responses to treatments. A classification based on genome-wide copy number patterns would be better suited for this purpose. Method To develop a more comprehensive cancer taxonomy based on genome-wide patterns of copy number abnormalities, we designed an unsupervised classification algorithm that identifies genomic subgroups of tumors. This algorithm is based on a modified genomic Non-negative Matrix Factorization (gNMF) algorithm and includes several additional components, namely a pilot hierarchical clustering procedure to determine the number of clusters, a multiple random initiation scheme, a new stop criterion for the core gNMF, as well as a 10-fold cross-validation stability test for quality assessment. Result We applied our algorithm to identify genomic subgroups of three major cancer types: non-small cell lung carcinoma (NSCLC), colorectal cancer (CRC), and malignant melanoma. High-density SNP array datasets for patient tumors and established cell lines were used to define genomic subclasses of the diseases and identify cell lines representative of each genomic subtype. The algorithm was compared with several traditional clustering methods and showed improved performance. To validate our genomic taxonomy of NSCLC, we correlated the genomic classification with disease outcomes. Overall survival time and time to recurrence were shown to differ significantly between the genomic subtypes. Conclusions We developed an algorithm for cancer classification based on genome-wide patterns of copy number aberrations and demonstrated its superiority to existing clustering methods. The algorithm was applied to define genomic subgroups of three cancer types and identify cell lines representative of these subgroups. Our data enabled the assembly of representative cell line panels for testing drug candidates.
Collapse
Affiliation(s)
- Xin Lu
- Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Building AP-10, Dep. R4CD, Abbott Park, IL 60064, USA.
| | | | | | | | | |
Collapse
|
91
|
Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, Klijanienko J, Couturier J, Pierron G, Mosseri V, Valent A, Auger N, Plantaz D, Rubie H, Valteau-Couanet D, Bourdeaut F, Combaret V, Bergeron C, Michon J, Delattre O. Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol 2010; 28:3122-30. [PMID: 20516441 DOI: 10.1200/jco.2009.26.7955] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Neuroblastoma is characterized by two distinct types of genetic profiles, consisting of either numerical or segmental chromosome alterations. The latter are associated with a higher risk of relapse, even when occurring together with numerical alterations. We explored the role of segmental alterations in tumor progression and the possibility of evolution from indolent to aggressive genomic types. PATIENTS AND METHODS Array-based comparative genomic hybridization data of 394 neuroblastoma samples were analyzed and linked to clinical data. RESULTS Integration of ploidy and genomic data indicated that pseudotriploid tumors with mixed numerical and segmental profiles may be derived from pseudotriploid tumors with numerical alterations only. This was confirmed by the analysis of paired samples, at diagnosis and at relapse, as in tumors with a purely numerical profile at diagnosis additional segmental alterations at relapse were frequently observed. New segmental alterations at relapse were also seen in patients with segmental alterations at diagnosis. This was not linked to secondary effects of cytotoxic treatments since it occurred even in patients treated with surgery alone. A higher number of chromosome breakpoints were correlated with advanced age at diagnosis, advanced stage of disease, with a higher risk of relapse, and a poorer outcome. CONCLUSION These data provide further evidence of the role of segmental alterations, suggesting that tumor progression is linked to the accumulation of segmental alterations in neuroblastoma. This possibility of genomic evolution should be taken into account in treatment strategies of low- and intermediate-risk neuroblastoma and should warrant biologic reinvestigation at the time of relapse.
Collapse
Affiliation(s)
- Gudrun Schleiermacher
- L'Institut National de la Santé et de la Recherche Médicale U830, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Fischer M, Berthold F. The role of complex genomic alterations in neuroblastoma risk estimation. Genome Med 2010; 2:31. [PMID: 20497596 PMCID: PMC2887075 DOI: 10.1186/gm152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Specific genomic alterations, such as loss of the chromosomal region 11q or amplification of the oncogene MYCN, are well established markers of poor outcome in neuroblastoma. The advent of microarray-based comparative genomic hybridization (array-CGH) has enabled the analysis of pangenomic alteration profiles in the cancer genome, offering the possibility of identifying new prognostic markers from complex aberration patterns. Results from recent studies examining large primary neuroblastoma cohorts by array-CGH show that global genomic profiles may add significant prognostic information. Here, we discuss potential implications for risk estimation of neuroblastoma patients in clinical practice as well as for the understanding of neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Pediatric Oncology and Hematology, University Children's Hospital, and Center for Molecular Medicine Cologne (CMMC), Kerpener Str, 62, 50924 Cologne, Germany.
| | | |
Collapse
|
93
|
Wolf M, Korja M, Karhu R, Edgren H, Kilpinen S, Ojala K, Mousses S, Kallioniemi A, Haapasalo H. Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication. BMC Cancer 2010; 10:181. [PMID: 20444257 PMCID: PMC2873396 DOI: 10.1186/1471-2407-10-181] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/05/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma. METHODS A single-gene resolution aCGH profiling was integrated with microarray-based gene expression profiling data to distinguish genetic copy number alterations that were strongly associated with transcriptional changes in two neuroblastoma cell lines. FISH analysis using a hotspot tumor tissue microarray of 37 paraffin-embedded neuroblastoma samples and in silico data mining for gene expression information obtained from previously published studies including up to 445 healthy nervous system samples and 123 neuroblastoma samples were used to evaluate the clinical significance and transcriptional consequences of the detected alterations and to identify subsequently activated gene(s). RESULTS In addition to the anticipated high-level amplification and subsequent overexpression of MYCN, MEIS1, CDK4 and MDM2 oncogenes, the aCGH analysis revealed numerous other genetic alterations, including microamplifications at 2p and 12q24.11. Most interestingly, we identified and investigated the clinical relevance of a previously poorly characterized amplicon at 12q24.31. FISH analysis showed low-level gain of 12q24.31 in 14 of 33 (42%) neuroblastomas. Patients with the low-level gain had an intermediate prognosis in comparison to patients with MYCN amplification (poor prognosis) and to those with no MYCN amplification or 12q24.31 gain (good prognosis) (P = 0.001). Using the in silico data mining approach, we identified elevated expression of five genes located at the 12q24.31 amplicon in neuroblastoma (DIABLO, ZCCHC8, RSRC2, KNTC1 and MPHOSPH9). Among these, DIABLO showed the strongest activation suggesting a putative role in neuroblastoma progression. CONCLUSIONS The presented systematic and rapid framework, which integrates aCGH, gene expression and tissue data to obtain novel targets and biomarkers for cancer, identified a low-level gain of the 12q24.31 as a potential new biomarker for neuroblastoma progression. Furthermore, results of in silico data mining suggest a new neuroblastoma target gene, DIABLO, within this region, whose functional and therapeutic role remains to be elucidated in follow-up studies.
Collapse
Affiliation(s)
- Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Buckley PG, Alcock L, Bryan K, Bray I, Schulte JH, Schramm A, Eggert A, Mestdagh P, De Preter K, Vandesompele J, Speleman F, Stallings RL. Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q- neuroblastoma. Clin Cancer Res 2010; 16:2971-8. [PMID: 20406844 DOI: 10.1158/1078-0432.ccr-09-3215] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to further define the biology of the 11q- neuroblastoma tumor subgroup by the integration of array-based comparative genomic hybridization with microRNA (miRNA) expression profiling data to determine if improved patient stratification is possible. EXPERIMENTAL DESIGN A set of primary neuroblastoma (n = 160), which was broadly representative of all genetic subtypes, was analyzed by array-based comparative genomic hybridization and for the expression of 430 miRNAs. A 15-miRNA expression signature previously shown to be predictive of clinical outcome was used to analyze an independent cohort of 11q- tumors (n = 37). RESULTS Loss of 4p and gain of 7q occurred at a significantly higher frequency in the 11q- tumors, further defining the genetic characteristics of this subtype. The 11q- tumors could be split into two subgroups using a miRNA expression survival signature that differed significantly in clinical outcome and the overall frequency of large-scale genomic imbalances, with the poor survival subgroup having significantly more imbalances. miRNAs from the expression signature, which were upregulated in unfavorable tumors, were predicted to target downregulated genes from a published mRNA expression classifier of clinical outcome at a higher-than-expected frequency, indicating the miRNAs might contribute to the regulation of genes within the signature. CONCLUSION We show that two distinct biological subtypes of neuroblastoma with loss of 11q occur, which differ in their miRNA expression profiles, frequency of segmental imbalances, and clinical outcome. A miRNA expression signature, combined with an analysis of segmental imbalances, provides greater prediction of event-free survival and overall survival outcomes than 11q status by itself, improving patient stratification.
Collapse
Affiliation(s)
- Patrick G Buckley
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Schramm G, Wiesberg S, Diessl N, Kranz AL, Sagulenko V, Oswald M, Reinelt G, Westermann F, Eils R, König R. PathWave: discovering patterns of differentially regulated enzymes in metabolic pathways. ACTA ACUST UNITED AC 2010; 26:1225-31. [PMID: 20335275 DOI: 10.1093/bioinformatics/btq113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Gene expression profiling by microarrays or transcript sequencing enables observing the pathogenic function of tumors on a mesoscopic level. RESULTS We investigated neuroblastoma tumors that clinically exhibit a very heterogeneous course ranging from rapid growth with fatal outcome to spontaneous regression and detected regulatory oncogenetic shifts in their metabolic networks. In contrast to common enrichment tests, we took network topology into account by applying adjusted wavelet transforms on an elaborated and new 2D grid representation of curated pathway maps from the Kyoto Enzyclopedia of Genes and Genomes. The aggressive form of the tumors showed regulatory shifts for purine and pyrimidine biosynthesis as well as folate-mediated metabolism of the one-carbon pool in respect to increased nucleotide production. We spotted an oncogentic regulatory switch in glutamate metabolism for which we provided experimental validation, being the first steps towards new possible drug therapy. The pattern recognition method we used complements normal enrichment tests to detect such functionally related regulation patterns. AVAILABILITY AND IMPLEMENTATION PathWave is implemented in a package for R (www.r-project.org) version 2.6.0 or higher. It is freely available from http://www.ichip.de/software/pathwave.html.
Collapse
Affiliation(s)
- Gunnar Schramm
- Department of Bioinformatics and Functional Genomics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Balamuth NJ, Wood A, Wang Q, Jagannathan J, Mayes P, Zhang Z, Chen Z, Rappaport E, Courtright J, Pawel B, Weber B, Wooster R, Sekyere EO, Marshall GM, Maris JM. Serial transcriptome analysis and cross-species integration identifies centromere-associated protein E as a novel neuroblastoma target. Cancer Res 2010; 70:2749-58. [PMID: 20233875 DOI: 10.1158/0008-5472.can-09-3844] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer genomic studies that rely on analysis of biopsies from primary tumors may not fully identify the molecular events associated with tumor progression. We hypothesized that characterizing the transcriptome during tumor progression in the TH-MYCN transgenic model would identify oncogenic drivers that would be targetable therapeutically. We quantified expression of 32,381 murine genes in nine hyperplastic ganglia harvested at three time points and four tumor cohorts of progressively larger size in mice homozygous for the TH-MYCN transgene. We found 93 genes that showed a linearly increasing or decreasing pattern of expression from the preneoplastic ganglia to end stage tumors. Cross-species integration identified 24 genes that were highly expressed in human MYCN-amplified neuroblastomas. The genes prioritized were not exclusively driven by increasing Myc transactivation or proliferative rate. We prioritized three targets [centromere-associated protein E (Cenpe), Gpr49, and inosine monophosphate dehydrogenase type II] with previously determined roles in cancer. Using siRNA knockdown in human neuroblastoma cell lines, we further prioritized CENPE due to inhibition of cellular proliferation. Targeting CENPE with the small molecular inhibitor GSK923295 showed inhibition of in vitro proliferation of 19 neuroblastoma cell lines (median IC(50), 41 nmol/L; range, 27-266 nmol/L) and delayed tumor growth in three xenograft models (P values ranged from P < 0.0001 to P = 0.018). We provide preclinical validation that serial transcriptome analysis of a transgenic mouse model followed by cross-species integration is a useful method to identify therapeutic targets and identify CENPE as a novel therapeutic candidate in neuroblastoma.
Collapse
Affiliation(s)
- Naomi J Balamuth
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abraham D, Zins K, Sioud M, Lucas T, Schäfer R, Stanley ER, Aharinejad S. Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma. Int J Cancer 2010; 126:1339-52. [PMID: 19711348 DOI: 10.1002/ijc.24859] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms of tumor-host interactions that render neuroblastoma (NB) cells highly invasive are unclear. Cancer cells upregulate host stromal cell colony-stimulating factor-1 (CSF-1) production to recruit tumor-associated macrophages (TAMs) and accelerate tumor growth by affecting extracellular matrix remodeling and angiogenesis. By coculturing NB with stromal cells in vitro, we showed the importance of host CSF-1 expression for macrophage recruitment to NB cells. To examine this interaction in NB in vivo, mice bearing human CSF-1-expressing SK-N-AS and CSF-1-negative SK-N-DZ NB xenografts were treated with intratumoral injections of small interfering RNAs directed against mouse CSF-1. Significant suppression of both SK-N-AS and SK-N-DZ NB growth by these treatments was associated with decreased TAM infiltration, matrix metalloprotease (MMP)-12 levels and angiogenesis compared to controls, while expression of tissue inhibitors of MMPs increased following mouse CSF-1 blockade. Furthermore, Tie-2-positive and -negative TAMs recruited by host CSF-1 were identified in NB tumor tissue by confocal microscopy and flow cytometry. However, host-CSF-1 blockade prolonged survival only in CSF-1-negative SK-N-DZ NB. These studies demonstrated that increased CSF-1 production by host cells enhances TAM recruitment and NB growth and that the CSF-1 phenotype of NB tumor cells adversely affects survival.
Collapse
Affiliation(s)
- Dietmar Abraham
- Laboratory for Cardiovascular Research, Vienna Medical University, A-1090Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
98
|
De Preter K, Vermeulen J, Brors B, Delattre O, Eggert A, Fischer M, Janoueix-Lerosey I, Lavarino C, Maris JM, Mora J, Nakagawara A, Oberthuer A, Ohira M, Schleiermacher G, Schramm A, Schulte JH, Wang Q, Westermann F, Speleman F, Vandesompele J. Accurate outcome prediction in neuroblastoma across independent data sets using a multigene signature. Clin Cancer Res 2010; 16:1532-41. [PMID: 20179214 DOI: 10.1158/1078-0432.ccr-09-2607] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Reliable prognostic stratification remains a challenge for cancer patients, especially for diseases with variable clinical course such as neuroblastoma. Although numerous studies have shown that outcome might be predicted using gene expression signatures, independent cross-platform validation is often lacking. EXPERIMENTAL DESIGN Using eight independent studies comprising 933 neuroblastoma patients, a prognostic gene expression classifier was developed, trained, tested, and validated. The classifier was established based on reanalysis of four published studies with updated clinical information, reannotation of the probe sequences, common risk definition for training cases, and a single method for gene selection (prediction analysis of microarray) and classification (correlation analysis). RESULTS Based on 250 training samples from four published microarray data sets, a correlation signature was built using 42 robust prognostic genes. The resulting classifier was validated on 351 patients from four independent and unpublished data sets and on 129 remaining test samples from the published studies. Patients with divergent outcome in the total cohort, as well as in the different risk groups, were accurately classified (log-rank P < 0.001 for overall and progression-free survival in the four independent data sets). Moreover, the 42-gene classifier was shown to be an independent predictor for survival (odds ratio, >5). CONCLUSION The strength of this 42-gene classifier is its small number of genes and its cross-platform validity in which it outperforms other published prognostic signatures. The robustness and accuracy of the classifier enables prospective assessment of neuroblastoma patient outcome. Most importantly, this gene selection procedure might be an example for development and validation of robust gene expression signatures in other cancer entities.
Collapse
Affiliation(s)
- Katleen De Preter
- Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
|
100
|
Janoueix-Lerosey I, Schleiermacher G, Delattre O. Molecular pathogenesis of peripheral neuroblastic tumors. Oncogene 2010; 29:1566-79. [PMID: 20101209 DOI: 10.1038/onc.2009.518] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is an embryonal cancer of the sympathetic nervous system observed in early childhood, characterized by a broad spectrum of clinical behaviors, ranging from spontaneous regression to fatal outcome despite aggressive therapies. NB accounts for 8-10% of pediatric cancers and 15% of the deaths attributable to malignant conditions in children. Interestingly, NB may occur in various contexts, being mostly sporadic but also familial or syndromic. This review focuses on recent advances in the identification of the genes and mechanisms implicated in NB pathogenesis. Although the extensive characterization of the genomic aberrations recurrently observed in sporadic NBs provides important insights into the understanding of the clinical heterogeneity of this neoplasm, analysis of familial and syndromic cases also unravels essential clues on the genetic bases of NB. Recently, the ALK gene emerged as an important NB gene, being implicated both in sporadic and familial cases. The identification of gene expression signatures associated with patient's outcome points out the potential of using gene expression profiling to improve clinical management of patients suffering from NB. Finally, based on recent observations integrating genomic analyses, biological data and clinical information, we discuss possible evolution/progression schemes in NB.
Collapse
Affiliation(s)
- I Janoueix-Lerosey
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris Cedex 05, France.
| | | | | |
Collapse
|