51
|
Liu H, Zhou P, Lan H, Chen J, Zhang YX. Comparative analysis of Notch1 and Notch2 binding sites in the genome of BxPC3 pancreatic cancer cells. J Cancer 2017; 8:65-73. [PMID: 28123599 PMCID: PMC5264041 DOI: 10.7150/jca.16739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022] Open
Abstract
Notch signaling plays a key role in the development of pancreatic cancer. Among the four identified Notch receptors, Notch1 and Notch2 share the highest homology. Notch1 has been reported to be an oncogene but some reports indicate that Notch2, not Notch1, plays a key role in pancreatic carcinogenesis. As both are transcription factors, examination of their genomic binding sites might reveal interesting functional differences between them. Notch proteins do not have DNA-binding domain. In the canonical Notch signaling pathway, ligand binding induces the release and nuclear translocation of Notch receptor intracellular domains (NICDs), which then interact with the transcription factor CSL, resulting in subsequent activation of the canonical Notch target genes. We investigated the binding site profiles of Notch1and Notch2 in the BxPC3 genome using CHIP-Seq and bioinfomatics. We found that Notch1, Notch2 and CSL generally bound to different target genes. We also found that only a small subset of Notch1 and Notch2 binding sites overlap with that of CSL, but about half of the CSL binding overlap with that of Notch1 or Notch2, indicating most Notch signaling activities are CSL-independent.
Collapse
Affiliation(s)
- Hao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Fengtai District, Beijing, 100069 China
| | - Ping Zhou
- Department of Bioinformatics and Computer Science, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hong Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Fengtai District, Beijing, 100069 China
| | - Jia Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Fengtai District, Beijing, 100069 China
| | - Yu-Xiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Fengtai District, Beijing, 100069 China.; Cancer Institute of Capital Medical University, Beijing, China.; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
52
|
Hochart A, Leblond P, Le Bourhis X, Meignan S, Tulasne D. [MET receptor inhibition: Hope against resistance to targeted therapies?]. Bull Cancer 2016; 104:157-166. [PMID: 27863726 DOI: 10.1016/j.bulcan.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
Abstract
Overcoming the drug resistance remains a crucial issue in cancer treatment. For refractory patients, the use of MET receptor tyrosine kinase inhibitors seems to be hopeful. Indeed, important mechanisms underlying drug resistance argue for association of MET inhibitors with targeted therapies, both on first-line to prevent a primary resistance and on the second line to overcoming acquired resistance. Indeed, met gene amplification is the second most common alteration involved in acquired resistance to anti-epidermal growth factor receptor (EGFR) therapies in non-small cells lung cancer (NSCLC). Hypoxia, for its part, can activate MET transcription and amplifies HGF signaling resulting in MET activation, which could be involved in vascular endothelial growth factor (VEGF) inhibitors escape. In HER2 positive breast cancers, MET amplification may also induce tumor cells a hatch escape, resulting in secondary resistance. Finally, some patients with BRAF mutated melanoma exhibit primary resistance to BRAF inhibition by stromal HGF (ligand of MET) secretion resulting in MET receptor activation. Experimental data highlight the role of MET in primary and secondary resistance and encourage combined treatments including MET inhibitors. In this context, several promising clinical trials are in progress in numerous cancers (NSCLC, melanoma, breast cancer, glioblastoma…) using combination of anti-MET and other specific therapies targeting EGFR, BRAF, VEGF or HER2. This review summarizes the potential benefits that MET inhibition should provide to patients with cancer refractory to targeted therapies.
Collapse
Affiliation(s)
- Audrey Hochart
- Centre Oscar-Lambret, unité tumorigenèse et résistance aux traitements, 3, rue Frédéric-Combemale, 59000 Lille, France; Université Lille 1, Inserm U908, Cell Plasticity and Cancer (CPAC), SN3, 59000 Lille, France; CHU de Lille, 2, avenue Oscar-Lambret, 59000 Lille, France.
| | - Pierre Leblond
- Centre Oscar-Lambret, unité tumorigenèse et résistance aux traitements, 3, rue Frédéric-Combemale, 59000 Lille, France; Université Lille 1, Inserm U908, Cell Plasticity and Cancer (CPAC), SN3, 59000 Lille, France; Centre Oscar-Lambret, unité d'onco-pédiatrie, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - Xuefen Le Bourhis
- Université Lille 1, Inserm U908, Cell Plasticity and Cancer (CPAC), SN3, 59000 Lille, France
| | - Samuel Meignan
- Centre Oscar-Lambret, unité tumorigenèse et résistance aux traitements, 3, rue Frédéric-Combemale, 59000 Lille, France; Université Lille 1, Inserm U908, Cell Plasticity and Cancer (CPAC), SN3, 59000 Lille, France
| | - David Tulasne
- Université Lille, CNRS, institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies (M3T), 1, rue Calmette, BP 447, 59000 Lille, France
| |
Collapse
|
53
|
Boonstra MC, de Geus SWL, Prevoo HAJM, Hawinkels LJAC, van de Velde CJH, Kuppen PJK, Vahrmeijer AL, Sier CFM. Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins. BIOMARKERS IN CANCER 2016; 8:119-133. [PMID: 27721658 PMCID: PMC5040425 DOI: 10.4137/bic.s38542] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
Tumor targeting is a booming business: The global therapeutic monoclonal antibody market accounted for more than $78 billion in 2012 and is expanding exponentially. Tumors can be targeted with an extensive arsenal of monoclonal antibodies, ligand proteins, peptides, RNAs, and small molecules. In addition to therapeutic targeting, some of these compounds can also be applied for tumor visualization before or during surgery, after conjugation with radionuclides and/or near-infrared fluorescent dyes. The majority of these tumor-targeting compounds are directed against cell membrane-bound proteins. Various categories of targetable membrane-bound proteins, such as anchoring proteins, receptors, enzymes, and transporter proteins, exist. The functions and biological characteristics of these proteins determine their location and distribution on the cell membrane, making them more, or less, accessible, and therefore, it is important to understand these features. In this review, we evaluate the characteristics of cancer-associated membrane proteins and discuss their overall usability for cancer targeting, especially focusing on imaging applications.
Collapse
Affiliation(s)
- Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| |
Collapse
|
54
|
ABBV-399, a c-Met Antibody–Drug Conjugate that Targets Both MET–Amplified and c-Met–Overexpressing Tumors, Irrespective of MET Pathway Dependence. Clin Cancer Res 2016; 23:992-1000. [DOI: 10.1158/1078-0432.ccr-16-1568] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022]
|
55
|
Non-Invasive Methods to Monitor Mechanisms of Resistance to Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer: Where Do We Stand? Int J Mol Sci 2016; 17:ijms17071186. [PMID: 27455248 PMCID: PMC4964555 DOI: 10.3390/ijms17071186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022] Open
Abstract
The induction of resistance mechanisms represents an important problem for the targeted therapy of patients with non-small-cell lung cancer (NSCLC). The best-known resistance mechanism induced during treatment with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is EGFR T790M mutation for which specific drugs are have been developed. However, other molecular alterations have also been reported as induced resistance mechanisms to EGFR-TKIs. Similarly, there is growing evidence of acquired resistance mechanisms to anaplastic lymphoma kinase (ALK)-TKI treatment. A better understanding of these acquired resistance mechanisms is essential in clinical practice as patients could be treated with specific drugs that are active against the induced alterations. The use of free circulating tumor nucleic acids or circulating tumor cells (CTCs) enables resistance mechanisms to be characterized in a non-invasive manner and reduces the need for tumor re-biopsy. This review discusses the main resistance mechanisms to TKIs and provides a comprehensive overview of innovative strategies to evaluate known resistance mechanisms in free circulating nucleic acids or CTCs and potential future orientations for these non-invasive approaches.
Collapse
|
56
|
Kawakami H, Okamoto I. MET-targeted therapy for gastric cancer: the importance of a biomarker-based strategy. Gastric Cancer 2016; 19:687-95. [PMID: 26690587 DOI: 10.1007/s10120-015-0585-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/29/2015] [Indexed: 02/07/2023]
Abstract
The MET protooncogene encodes the receptor tyrosine kinase c-MET (MET). Aberrant activation of MET signaling occurs in a subset of advanced malignancies, including gastric cancer, and promotes tumor cell growth, survival, migration, and invasion as well as tumor angiogenesis, suggesting its potential importance as a therapeutic target. MET can be activated by two distinct pathways that are dependent on or independent of its ligand, hepatocyte growth factor (HGF), with the latter pathway having been attributed mostly to MET amplification in gastric cancer. Preclinical evidence has suggested that interruption of the HGF-MET axis either with antibodies to HGF or with MET tyrosine kinase inhibitors (TKIs) has antitumor effects in gastric cancer cells. Overexpression of MET occurs frequently in gastric cancer and has been proposed as a potential predictive biomarker for anti-MET therapy. However, several factors can trigger such MET upregulation in a manner independent of HGF, suggesting that gastric tumors with MET overexpression are not necessarily MET driven. On the other hand, gastric cancer cells with MET amplification are dependent on MET signaling for their survival and are thus vulnerable to MET TKI treatment. Given the low prevalence of MET amplification in gastric cancer (approximately 8 %), testing for this genetic change would substantially narrow the target population but it might constitute a better biomarker than MET overexpression for MET TKI therapy. We compare aberrant MET signaling dependent on the HGF-MET axis or on MET amplification as well as address clinical issues and challenges associated with the identification of appropriate biomarkers for MET-driven tumors.
Collapse
Affiliation(s)
- Hisato Kawakami
- Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
57
|
Zhang Y, Du Z, Zhang M. Biomarker development in MET-targeted therapy. Oncotarget 2016; 7:37370-37389. [PMID: 27013592 PMCID: PMC5095083 DOI: 10.18632/oncotarget.8276] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2022] Open
Abstract
Activation of the MET receptor tyrosine kinase by its ligand, hepatocyte growth factor (HGF), has been implicated in a variety of cellular processes, including cell proliferation, survival, migration, motility and invasion, all of which may be enhanced in human cancers. Aberrantly activated MET/HGF signaling correlates with tumorigenesis and metastasis, and is regarded as a robust target for the development of novel anti-cancer treatments. Various clinical trials were conducted to evaluate the safety and efficacy of selective HGF/MET inhibitors in cancer patients. There is currently no optimal or standardized method for accurate and reliable assessment of MET levels, or other biomarkers that are predictive of the patient response to MET-targeted therapeutics. In this review, we discuss the importance of accurate HGF/MET signal detection as a predictive biomarker to guide patient selection for clinical trials of MET-targeted therapies in human cancers.
Collapse
Affiliation(s)
- Yanni Zhang
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd, Shanghai, China
| | - Zhiqiang Du
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd, Shanghai, China
| | - Mingqiang Zhang
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd, Shanghai, China
| |
Collapse
|
58
|
Delitto D, Zhang D, Han S, Black BS, Knowlton AE, Vlada AC, Sarosi GA, Behrns KE, Thomas RM, Lu X, Liu C, George TJ, Hughes SJ, Wallet SM, Trevino JG. Nicotine Reduces Survival via Augmentation of Paracrine HGF-MET Signaling in the Pancreatic Cancer Microenvironment. Clin Cancer Res 2016; 22:1787-1799. [PMID: 26667487 PMCID: PMC4818664 DOI: 10.1158/1078-0432.ccr-15-1256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/26/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE The relationship between smoking and pancreatic cancer biology, particularly in the context of the heterogeneous microenvironment, remains incompletely defined. We hypothesized that nicotine exposure would lead to the augmentation of paracrine growth factor signaling between tumor-associated stroma (TAS) and pancreatic cancer cells, ultimately resulting in accelerated tumor growth and metastasis. EXPERIMENTAL DESIGN The effect of tobacco use on overall survival was analyzed using a prospectively maintained database of surgically resected patients with pancreatic cancer. Nicotine exposure was evaluated in vitro using primary patient-derived TAS and pancreatic cancer cells independently and in coculture. Nicotine administration was then assessed in vivo using a patient-derived pancreatic cancer xenograft model. RESULTS Continued smoking was associated with reduced overall survival after surgical resection. In culture, nicotine-stimulated hepatocyte growth factor (HGF) secretion in primary patient-derived TAS and nicotine stimulation was required for persistent pancreatic cancer cell c-Met activation in a coculture model. c-Met activation in this manner led to the induction of inhibitor of differentiation-1 (Id1) in pancreatic cancer cells, previously established as a mediator of growth, invasion and chemoresistance. HGF-induced Id1 expression was abrogated by both epigenetic and pharmacologic c-Met inhibition. In patient-derived pancreatic cancer xenografts, nicotine treatment augmented tumor growth and metastasis; tumor lysates from nicotine-treated mice demonstrated elevated HGF expression by qRT-PCR and phospho-Met levels by ELISA. Similarly, elevated levels of phospho-Met in surgically resected pancreatic cancer specimens correlated with reduced overall survival. CONCLUSIONS Taken together, these data demonstrate a novel, microenvironment-dependent paracrine signaling mechanism by which nicotine exposure promotes the growth and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Daniel Delitto
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - Dongyu Zhang
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - Song Han
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - Brian S Black
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - Andrea E Knowlton
- Department of Periodontology and Oral Biology, University of Florida Health Science Center, Gainesville, Florida
| | - Adrian C Vlada
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - George A Sarosi
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida. North Florida/South Georgia Veterans Health System, University of Florida Health Science Center, Gainesville, Florida
| | - Kevin E Behrns
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - Ryan M Thomas
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida. North Florida/South Georgia Veterans Health System, University of Florida Health Science Center, Gainesville, Florida
| | - Xiaomin Lu
- Department of Biostatistics and Children's Oncology Group, University of Florida Health Science Center, Gainesville, Florida
| | - Chen Liu
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Thomas J George
- Department of Internal Medicine, University of Florida Health Science Center, Gainesville, Florida
| | - Steven J Hughes
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - Shannon M Wallet
- Department of Periodontology and Oral Biology, University of Florida Health Science Center, Gainesville, Florida
| | - Jose G Trevino
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida.
| |
Collapse
|
59
|
Rhoden JJ, Dyas GL, Wroblewski VJ. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets. J Biol Chem 2016; 291:11337-47. [PMID: 27022022 DOI: 10.1074/jbc.m116.714287] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts.
Collapse
Affiliation(s)
- John J Rhoden
- From the Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Gregory L Dyas
- From the Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Victor J Wroblewski
- From the Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| |
Collapse
|
60
|
Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya KS, Oleksijew A, Boghaert E, Song M, Sokolova I, Pestova E, Anderson M, Pappano WN, Ansell P, Bhathena A, Naumovski L, Corvaia N, Reilly EB. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer 2016; 16:105. [PMID: 26879245 PMCID: PMC4755020 DOI: 10.1186/s12885-016-2138-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/08/2016] [Indexed: 01/21/2023] Open
Abstract
Background c-Met is the receptor tyrosine kinase for hepatocyte growth factor (HGF) encoded by the MET proto-oncogene. Aberrant activation of c-Met resulting from MET amplification and c-Met overexpression is associated with poor clinical outcome in multiple malignancies underscoring the importance of c-Met signaling in cancer progression. Several c-Met inhibitors have advanced to the clinic; however, the development of inhibitory c-Met-directed therapeutic antibodies has been hampered by inherent agonistic activity. Method We generated and tested a bivalent anti-c-Met monoclonal antibody ABT-700 in vitro for binding potency and antagonistic activity and in vivo for antitumor efficacy in human tumor xenografts. Human cancer cell lines and gastric cancer tissue microarrays were examined for MET amplification by fluorescence in situ hybridization (FISH). Results ABT-700 exhibits a distinctive ability to block both HGF-independent constitutive c-Met signaling and HGF-dependent activation of c-Met. Cancer cells addicted to the constitutively activated c-Met signaling driven by MET amplification undergo apoptosis upon exposure to ABT-700. ABT-700 induces tumor regression and tumor growth delay in preclinical tumor models of gastric and lung cancers harboring amplified MET. ABT-700 in combination with chemotherapeutics also shows additive antitumor effect. Amplification of MET in human cancer tissues can be identified by FISH. Conclusions The preclinical attributes of ABT-700 in blocking c-Met signaling, inducing apoptosis and suppressing tumor growth in cancers with amplified MET provide rationale for examining its potential clinical utility for the treatment of cancers harboring MET amplification. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2138-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jieyi Wang
- AbbVie, North Chicago, IL, USA. .,AbbVie Biotherapeutics, 1500 Seaport Blvd., Redwood City, CA, 94063, USA.
| | - Liliane Goetsch
- IRPF, Centre d'Immunologie Pierre Fabre 5, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France.
| | | | | | - Alexandra Gonzalez
- IRPF, Centre d'Immunologie Pierre Fabre 5, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France.
| | | | | | | | | | | | | | | | | | | | | | - Louie Naumovski
- AbbVie Biotherapeutics, 1500 Seaport Blvd., Redwood City, CA, 94063, USA.
| | - Nathalie Corvaia
- IRPF, Centre d'Immunologie Pierre Fabre 5, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France.
| | | |
Collapse
|
61
|
Lee J, Tran P, Klempner SJ. Targeting the MET Pathway in Gastric and Oesophageal Cancers: Refining the Optimal Approach. Clin Oncol (R Coll Radiol) 2016; 28:e35-44. [PMID: 26880063 DOI: 10.1016/j.clon.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/09/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
Abstract
Gastric and oesophageal cancers are a major cause of global cancer-related morbidity and mortality. Improvements in treatment for locoregional and metastatic gastric and oesophageal cancer have been incremental and the overall prognosis remains poor. Increasingly, molecular classification has identified recurrent, therapeutically relevant, somatic alterations in gastroesophageal malignancies. However, other than ERBB2 amplification, molecularly directed therapies have not translated to improved survival. Amplification of the receptor tyrosine kinase MET is found in about 5% of gastroesophageal cancers and represents an oncogenic driver and therapeutic target. Small series have shown activity of MET-directed tyrosine kinase inhibitors, but the clinical benefit of anti-MET antibodies has been disappointing. Here we discuss the MET pathway in gastroesophageal cancers, the clinical data for MET small molecule tyrosine kinase inhibitors, anti-MET antibodies and future clinical directions for targeting MET in gastric and oesophageal cancers. To our knowledge, this is the most comprehensive review of the clinical experience with MET-directed therapies in gastric and oesophageal cancers.
Collapse
Affiliation(s)
- J Lee
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - P Tran
- Division of Hematology-Oncology, University of California Irvine, Orange, CA, USA
| | - S J Klempner
- Division of Hematology-Oncology, University of California Irvine, Orange, CA, USA.
| |
Collapse
|
62
|
Lee JM, Lee SH, Hwang JW, Oh SJ, Kim B, Jung S, Shim SH, Lin PW, Lee SB, Cho MY, Koh YJ, Kim SY, Ahn S, Lee J, Kim KM, Cheong KH, Choi J, Kim KA. Novel strategy for a bispecific antibody: induction of dual target internalization and degradation. Oncogene 2016; 35:4437-46. [PMID: 26853467 DOI: 10.1038/onc.2015.514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Activation of the extensive cross-talk among the receptor tyrosine kinases (RTKs), particularly ErbB family-Met cross-talk, has emerged as a likely source of drug resistance. Notwithstanding brilliant successes were attained while using small-molecule inhibitors or antibody therapeutics against specific RTKs in multiple cancers over recent decades, a high recurrence rate remains unsolved in patients treated with these targeted inhibitors. It is well aligned with multifaceted properties of cancer and cross-talk and convergence of signaling pathways of RTKs. Thereby many therapeutic interventions have been actively developed to overcome inherent or acquired resistance. To date, no bispecific antibody (BsAb) showed complete depletion of dual RTKs from the plasma membrane and efficient dual degradation. In this manuscript, we report the first findings of a target-specific dual internalization and degradation of membrane RTKs induced by designed BsAbs based on the internalizing monoclonal antibodies and the therapeutic values of these BsAbs. Leveraging the anti-Met mAb able to internalize and degrade by a unique mechanism, we generated the BsAbs for Met/epidermal growth factor receptor (EGFR) and Met/HER2 to induce an efficient EGFR or HER2 internalization and degradation in the presence of Met that is frequently overexpressed in the invasive tumors and involved in the resistance against EGFR- or HER2-targeted therapies. We found that Met/EGFR BsAb ME22S induces dissociation of the Met-EGFR complex from Hsp90, followed by significant degradation of Met and EGFR. By employing patient-derived tumor models we demonstrate therapeutic potential of the BsAb-mediated dual degradation in various cancers.
Collapse
Affiliation(s)
- J M Lee
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S H Lee
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - J-W Hwang
- Bioassay Group, Quality Evaluation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S J Oh
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - B Kim
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S Jung
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S-H Shim
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - P W Lin
- Cell Engineering Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S B Lee
- Cell Engineering Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - M-Y Cho
- Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - Y J Koh
- Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - S Y Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - S Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - J Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - K-M Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - K H Cheong
- Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - J Choi
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - K-A Kim
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| |
Collapse
|
63
|
Liu Y, Jin S, Peng X, Lu D, Zeng L, Sun Y, Ai J, Geng M, Hu Y. Pyridazinone derivatives displaying highly potent and selective inhibitory activities against c-Met tyrosine kinase. Eur J Med Chem 2016; 108:322-333. [DOI: 10.1016/j.ejmech.2015.11.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 02/02/2023]
|
64
|
Ahsan A. Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors and Therapeutic Approaches: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 893:137-153. [DOI: 10.1007/978-3-319-24223-1_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
65
|
Aptamers Binding to c-Met Inhibiting Tumor Cell Migration. PLoS One 2015; 10:e0142412. [PMID: 26658271 PMCID: PMC4676636 DOI: 10.1371/journal.pone.0142412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/21/2015] [Indexed: 01/04/2023] Open
Abstract
The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF). Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX). CLN64 and a previously described single-stranded DNA (ssDNA) aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.
Collapse
|
66
|
Zhu Y, Choi SH, Shah K. Multifunctional receptor-targeting antibodies for cancer therapy. Lancet Oncol 2015; 16:e543-e554. [DOI: 10.1016/s1470-2045(15)00039-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/29/2022]
|
67
|
Jotte RM, Spigel DR. Advances in molecular-based personalized non-small-cell lung cancer therapy: targeting epidermal growth factor receptor and mechanisms of resistance. Cancer Med 2015; 4:1621-32. [PMID: 26310719 PMCID: PMC4673988 DOI: 10.1002/cam4.506] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 01/15/2023] Open
Abstract
Molecularly targeted therapies, directed against the features of a given tumor, have allowed for a personalized approach to the treatment of advanced non-small-cell lung cancer (NSCLC). The reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib had undergone turbulent clinical development until it was discovered that these agents have preferential activity in patients with NSCLC harboring activating EGFR mutations. Since then, a number of phase 3 clinical trials have collectively shown that EGFR-TKI monotherapy is more effective than combination chemotherapy as first-line therapy for EGFR mutation-positive advanced NSCLC. The next generation of EGFR-directed agents for EGFR mutation-positive advanced NSCLC is irreversible TKIs against EGFR and other ErbB family members, including afatinib, which was recently approved, and dacomitinib, which is currently being tested in phase 3 trials. As research efforts continue to explore the various proposed mechanisms of acquired resistance to EGFR-TKI therapy, agents that target signaling pathways downstream of EGFR are being studied in combination with EGFR TKIs in molecularly selected advanced NSCLC. Overall, the results of numerous ongoing phase 3 trials involving the EGFR TKIs will be instrumental in determining whether further gains in personalized therapy for advanced NSCLC are attainable with newer agents and combinations. This article reviews key clinical trial data for personalized NSCLC therapy with agents that target the EGFR and related pathways, specifically based on molecular characteristics of individual tumors, and mechanisms of resistance.
Collapse
|
68
|
TOMIZAWA MINORU, SHINOZAKI FUMINOBU, MOTOYOSHI YASUFUMI, SUGIYAMA TAKAO, YAMAMOTO SHIGENORI, ISHIGE NAOKI. SU11274 suppresses proliferation and motility of pancreatic cancer cells. Oncol Lett 2015; 10:1468-1472. [PMID: 26622692 PMCID: PMC4533741 DOI: 10.3892/ol.2015.3452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 06/16/2015] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal-epithelial transition factor (c-Met) is associated with the proliferation and motility of cancer cells. c-Met expression has been detected in surgical pancreatic cancer specimens, and its overexpression is associated with a poor prognosis. SU11274 is a specific inhibitor of c-Met. In the present study, the cell proliferation and motility of pancreatic cancer cells treated with SU11274 was investigated. The PANC-1, MIA-Paca2, NOR-P1, PK-45H, PK-1 and PK-59 pancreatic cancer cell lines were used. The expression of c-Met and cyclin D1 was analyzed by quantitative polymerase chain reaction. In addition, a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt assay was performed to assess cell proliferation, and a scratch assay was performed to assess cell motility. c-Met expression was higher in PANC-1, PK-45H, PK-1 and PK-59 cell lines compared with that in normal pancreatic tissue. Following treatment with 30 µM SU11274, the proliferation of MIA-Paca2 and PK-45H cells was suppressed to 19.8±10.7% (P<0.05) and 45.8±14.8% (P<0.05) of the control level, respectively. Furthermore, cyclin D1 expression was downregulated to 43.7±17.9% (P<0.05) and 53.2±18.6% (P<0.05) of the control level in the MIA-Paca2 and PK-45H cell lines, respectively, following treatment with 30 µM SU11274. In addition, cell motility was reduced to 1.0±0.3% in MIA-Paca2 (P<0.05) and 14.7±3.5% in PK-45H (P<0.05) following treatment with 30 µM SU11274, compared with the motility of untreated cells. These results indicated that SU11274 suppresses the proliferation of pancreatic cancer cells via the downregulation of cyclin D1. The present study also demonstrated that cell motility was suppressed by treatment with SU11274.
Collapse
Affiliation(s)
- MINORU TOMIZAWA
- Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - FUMINOBU SHINOZAKI
- Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - YASUFUMI MOTOYOSHI
- Department of Neurology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - TAKAO SUGIYAMA
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - SHIGENORI YAMAMOTO
- Department of Pediatrics, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - NAOKI ISHIGE
- Department of Neurosurgery, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| |
Collapse
|
69
|
Watermann I, Schmitt B, Stellmacher F, Müller J, Gaber R, Kugler C, Reinmuth N, Huber RM, Thomas M, Zabel P, Rabe KF, Jonigk D, Warth A, Vollmer E, Reck M, Goldmann T. Improved diagnostics targeting c-MET in non-small cell lung cancer: expression, amplification and activation? Diagn Pathol 2015; 10:130. [PMID: 26215852 PMCID: PMC4517562 DOI: 10.1186/s13000-015-0362-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/09/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Several c-MET targeting inhibitory molecules have already shown promising results in the treatment of patients with Non-small Cell Lung Cancer (NSCLC). Combination of EGFR- and c-MET-specific molecules may overcome EGFR tyrosine kinase inhibitor (TKI) resistance. The aim of this study was to allow for the identification of patients who might benefit from TKI treatments targeting MET and to narrow in on the diagnostic assessment of MET. METHODS 222 tumor tissues of patients with NSCLC were analyzed concerning c-MET expression and activation in terms of phosphorylation (Y1234/1235 and Y1349) using a microarray format employing immunohistochemistry (IHC). Furthermore, protein expression and MET activation was correlated with the amplification status by Fluorescence in Situ Hybridization (FISH). RESULTS Correlation was observed between phosphorylation of c-MET at Y1234/1235 and Y1349 (spearman correlation coefficient rs = 0.41; p < 0.0001). No significant correlation was shown between MET expression and phosphorylation (p > 0.05). c-MET gene amplification was detected in eight of 214 patients (3.7%). No significant association was observed between c-MET amplification, c-MET protein expression and phosphorylation. CONCLUSION Our data indicate, that neither expression of c-MET nor the gene amplification status might be the best way to select patients for MET targeting therapies, since no correlation with the activation status of MET was observed. We propose to take into account analyzing the phosphorylation status of MET by IHC to select patients for MET targeting therapies. Signaling of the receptor and the activation of downstream molecules might be more crucial for the benefit of therapeutics targeting MET receptor tyrosine kinases than expression levels alone.
Collapse
Affiliation(s)
- I Watermann
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany.
- LungenClinic Grosshansdorf, Grosshansdorf, Germany.
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.
| | - B Schmitt
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - F Stellmacher
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - J Müller
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - R Gaber
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ch Kugler
- LungenClinic Grosshansdorf, Grosshansdorf, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - N Reinmuth
- LungenClinic Grosshansdorf, Grosshansdorf, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - R M Huber
- Ludwig Maximilians University (LMU), Munich, Germany
- Comprehensive Pneumology Center Munich, (CPC-M), Member of the German Center for Lung Research, Thoracic Oncology Centre Munich, Munich, Germany
| | - M Thomas
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - P Zabel
- Medical Clinic, Research Center Borstel, Borstel, Germany
| | - K F Rabe
- LungenClinic Grosshansdorf, Grosshansdorf, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - D Jonigk
- Institute of Pathology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), Member of the German Center for Lung Research, Munich, Germany
| | - A Warth
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - E Vollmer
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - M Reck
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- Ludwig Maximilians University (LMU), Munich, Germany
| | - T Goldmann
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
70
|
Neuzillet C, Couvelard A, Tijeras-Raballand A, de Mestier L, de Gramont A, Bédossa P, Paradis V, Sauvanet A, Bachet JB, Ruszniewski P, Raymond E, Hammel P, Cros J. High c-Met expression in stage I-II pancreatic adenocarcinoma: proposal for an immunostaining scoring method and correlation with poor prognosis. Histopathology 2015; 67:664-76. [PMID: 25809563 DOI: 10.1111/his.12691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/14/2015] [Indexed: 12/11/2022]
Abstract
AIMS c-Met is an emerging biomarker in pancreatic ductal adenocarcinoma (PDAC); there is no consensus regarding the immunostaining scoring method for this marker. We aimed to assess the prognostic value of c-Met overexpression in resected PDAC, and to elaborate a robust and reproducible scoring method for c-Met immunostaining in this setting. METHODS AND RESULTS c-Met immunostaining was graded according to the validated MetMab score, a classic visual scale combining surface and intensity (SI score), or a simplified score (high c-Met: ≥ 20% of tumour cells with strong membranous staining), in stage I-II PDAC. A computer-assisted classification method (Aperio software) was developed. Clinicopathological parameters were correlated with disease-free survival (DFS) and overall survival(OS). One hundred and forty-nine patients were analysed retrospectively in a two-step process. Thirty-seven samples (whole slides) were analysed as a pre-run test. Reproducibility values were optimal with the simplified score (kappa = 0.773); high c-Met expression (7/37) was associated with shorter DFS [hazard ratio (HR) 3.456, P = 0.0036] and OS (HR 4.257, P = 0.0004). c-Met expression was concordant on whole slides and tissue microarrays in 87.9% of samples, and quantifiable with a specific computer-assisted algorithm. In the whole cohort (n = 131), patients with c-Met(high) tumours (36/131) had significantly shorter DFS (9.3 versus 20.0 months, HR 2.165, P = 0.0005) and OS (18.2 versus 35.0 months, HR 1.832, P = 0.0098) in univariate and multivariate analysis. CONCLUSIONS Simplified c-Met expression is an independent prognostic marker in stage I-II PDAC that may help to identify patients with a high risk of tumour relapse and poor survival.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM UMR1149.,Department of Digestive Oncology, Beaujon University Hospital, Clichy, France.,Paris 7 Denis Diderot University, Paris, France
| | - Anne Couvelard
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| | | | | | - Armand de Gramont
- Department of Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Bédossa
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| | - Valérie Paradis
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| | - Alain Sauvanet
- Paris 7 Denis Diderot University, Paris, France.,Department of Biliary and Pancreatic Surgery, Beaujon University Hospital, Clichy, France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Philippe Ruszniewski
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Gastroenterology and Pancreatology, Beaujon University Hospital, Clichy, France
| | - Eric Raymond
- Department of Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pascal Hammel
- INSERM UMR1149.,Department of Digestive Oncology, Beaujon University Hospital, Clichy, France.,Paris 7 Denis Diderot University, Paris, France
| | - Jérôme Cros
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| |
Collapse
|
71
|
Padda S, Neal JW, Wakelee HA. MET inhibitors in combination with other therapies in non-small cell lung cancer. Transl Lung Cancer Res 2015; 1:238-53. [PMID: 25806189 DOI: 10.3978/j.issn.2218-6751.2012.10.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022]
Abstract
MET and its ligand hepatocyte growth factor/scatter factor (HGF) influence cell motility and lead to tumor growth, invasion, and angiogenesis. Alterations in MET have been observed in non-small cell lung cancer (NSCLC) tumors, with increased expression associated with more aggressive cancer, as well as acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI). MET inhibitors act via two basic mechanisms. Small molecule inhibitors antagonize ATP in the intracellular tyrosine kinase domain of MET, with studies on the following agents reviewed here: tivantinib (ARQ-197), cabozantinib (XL-184), crizotinib (PF-02341066), amuvatinib (MP470), MGCD265, foretinib (EXEL-2880), MK2461, SGX523, PHA665752, JNJ-38877605, SU11274, and K252A. The monoclonal monovalent antibody fragment onartuzumab (MetMAb) is also discussed here, which binds to and prevents the extracellular activation of the receptor by ligand. MET inhibition may both overcome the negative prognostic effect of MET tumor expression as well as antagonize MET-dependent acquired resistance to EGFR inhibitors. Here we discuss MET inhibitors in combination with other therapies in lung cancer.
Collapse
Affiliation(s)
- Sukhmani Padda
- Stanford University/Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, USA
| | - Joel W Neal
- Stanford University/Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, USA
| | - Heather A Wakelee
- Stanford University/Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, USA
| |
Collapse
|
72
|
Zhang Y, Jain RK, Zhu M. Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment. Biomedicines 2015; 3:149-181. [PMID: 28536405 PMCID: PMC5344234 DOI: 10.3390/biomedicines3010149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
The hepatocyte growth factor (HGF): MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents-either as therapeutic proteins or small molecules that target the HGF/MET pathway-have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed.
Collapse
Affiliation(s)
- Yilong Zhang
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Rajul K Jain
- Kite Pharma, Inc., 2225 Colorado Avenue, Santa Monica, CA 90404, USA.
| | - Min Zhu
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
73
|
Targeting cMET with INC280 impairs tumour growth and improves efficacy of gemcitabine in a pancreatic cancer model. BMC Cancer 2015; 15:71. [PMID: 25884642 PMCID: PMC4340491 DOI: 10.1186/s12885-015-1064-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Expression and activation of the cMET receptor have been implicated in tumor progression and resistance to chemotherapy in human pancreatic cancer. In this regard we assessed the effects of targeting cMET in pancreatic cancer models in vitro and in vivo. METHODS Human (L3.6pl, BxP3, HPAF-II, MiaPaCa2) and murine (Panc02) pancreatic cancer cell lines, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) were used for the experiments. Furthermore, the human pancreatic cancer cell line MiaPaCa2 with acquired resistance to gemcitabine was employed (MiaPaCa2(G250)). For targeting the cMET receptor, the oral available, ATP-competitive inhibitor INC280 was used. Effects of cMET inhibition on cancer and stromal cells were determined by growth assays, western blotting, motility assays and ELISA. Moreover, orthotopic xenogeneic and syngeneic mouse (BALB-C nu/nu; C57BL/6) models were used to assess in vivo efficacy of targeting cMET alone and in combination with gemcitabine. RESULTS Treatment with INC280 impairs activation of signaling intermediates in pancreatic cancer cells and ECs, particularly when cells were stimulated with hepatocyte growth factor (HGF). Moreover, motility of cancer cells and ECs in response to HGF was reduced upon treatment with INC280. Only minor effects on VSMCs were detected. Interestingly, MiaPaCa2(G250) showed an increase in cMET expression and cMET inhibition abrogated HGF-induced effects on growth, motility and signaling as well as DFX-hypoxia HIF-1alpha and MDR-1 expression in vitro. In vivo, therapy with INC280 alone led to inhibition of orthotopic tumor growth in xenogeneic and syngeneic models. Similar to in vitro results, cMET expression was increased upon treatment with gemcitabine, and combination of the cMET inhibitor with gemcitabine improved anti-neoplastic capacity in an orthotopic syngeneic model. Immunohistochemical analysis revealed a significant inhibition of tumor cell proliferation (Ki67) and tumor vascularization (CD31). Finally, combination of gemcitabine with INC280 significantly prolonged survival in the orthotopic syngeneic tumor model even when treatment with the cMET inhibitor was initiated at an advanced stage of disease. CONCLUSIONS These data provide evidence that targeting cMET in combination with gemcitabine may be effective in human pancreatic cancer and warrants further clinical evaluation.
Collapse
|
74
|
Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, Gerber DE, Goldberg SB, Hammerman PS, Heist R, Hensing T, Horn L, Ramalingam SS, Rudin CM, Salgia R, Sequist L, Shaw AT, Simon GR, Somaiah N, Spigel DR, Wrangle J, Johnson D, Herbst RS, Bunn P, Govindan R. Molecularly targeted therapies in non-small-cell lung cancer annual update 2014. J Thorac Oncol 2015; 10:S1-63. [PMID: 25535693 PMCID: PMC4346098 DOI: 10.1097/jto.0000000000000405] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There have been significant advances in the understanding of the biology and treatment of non-small-cell lung cancer (NSCLC) during the past few years. A number of molecularly targeted agents are in the clinic or in development for patients with advanced NSCLC. We are beginning to understand the mechanisms of acquired resistance after exposure to tyrosine kinase inhibitors in patients with oncogene addicted NSCLC. The advent of next-generation sequencing has enabled to study comprehensively genomic alterations in lung cancer. Finally, early results from immune checkpoint inhibitors are very encouraging. This review summarizes recent advances in the area of cancer genomics, targeted therapies, and immunotherapy.
Collapse
Affiliation(s)
- Daniel Morgensztern
- Department of Medical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Meghan J. Campo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Suzanne E. Dahlberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston MA
| | - Robert C. Doebele
- Department of Medical Oncology, University of Colorado School of Medicine and University of Colorado Cancer Center, Aurora, CO
| | - Edward Garon
- UCLA Santa Monica Hematology Oncology, Santa Monica, CA
| | - David E. Gerber
- Division of Hematology-Oncology, Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sarah B. Goldberg
- Department of Medical Oncology, Yale School of Medicine and Cancer Center, New Haven, CT
| | | | - Rebecca Heist
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - Thomas Hensing
- Department of Oncology, The University of Chicago Medicine, Chicago, IL
| | - Leora Horn
- Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA
| | | | - Ravi Salgia
- Department of Oncology, The University of Chicago Medicine, Chicago, IL
| | - Lecia Sequist
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - Alice T. Shaw
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - George R. Simon
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC
| | - Neeta Somaiah
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC
| | | | - John Wrangle
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - David Johnson
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Roy S. Herbst
- Department of Medical Oncology, Yale School of Medicine and Cancer Center, New Haven, CT
| | - Paul Bunn
- Division of Medical Oncology, University of Colorado Denver School of Medicine, Denver, CO
| | - Ramaswamy Govindan
- Department of Medical Oncology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
75
|
Sano Y, Hashimoto E, Nakatani N, Abe M, Satoh Y, Sakata K, Fujii T, Fujimoto-Ouchi K, Sugimoto M, Nagahashi S, Aoki M, Motegi H, Sasaki E, Yatabe Y. Combining onartuzumab with erlotinib inhibits growth of non-small cell lung cancer with activating EGFR mutations and HGF overexpression. Mol Cancer Ther 2014; 14:533-41. [PMID: 25522765 DOI: 10.1158/1535-7163.mct-14-0456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Erlotinib, a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR-TKI), benefits survival of patients with non-small cell lung cancer (NSCLC) who harbor activating EGFR mutations. However, elevated expression of hepatocyte growth factor (HGF), a ligand of the MET receptor tyrosine kinase, causes erlotinib resistance. Because onartuzumab, a monovalent antibody to MET, blocks HGF-induced MET activation, the addition of onartuzumab to erlotinib may improve therapeutic efficacy. We engineered the human NSCLC cell line PC-9 (MET-positive cells harboring an exon 19 deletion of EGFR) to overexpress hHGF and evaluated the effects of an onartuzumab and erlotinib combination in vitro and in vivo in xenograft models. A stable clone of PC-9/hHGF was less sensitive to erlotinib than the parental PC-9, and the addition of onartuzumab to erlotinib suppressed the proliferation of these cells in vitro. In PC-9/hHGF xenograft tumors, onartuzumab or erlotinib alone minimally inhibited tumor growth; however, combining onartuzumab and erlotinib markedly suppressed tumor growth. The total MET protein level was decreased in PC-9/hHGF cells, because MET is constitutively phosphorylated by autocrine HGF, leading to its ubiquitination and degradation. Onartuzumab reduced phospho-MET levels, inhibited MET ubiquitination, and consequently restored MET protein levels. Moreover, in NSCLC clinical specimens harboring activating EGFR mutations, more than 30% of patients expressed high levels of HGF. Our findings raised the possibility that patients with NSCLC with EGFR mutations who express high levels of HGF may benefit from onartuzumab and erlotinib combination therapy, and that HGF can be a novel biomarker for selecting such patients.
Collapse
Affiliation(s)
- Yuji Sano
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan.
| | - Eri Hashimoto
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Noriaki Nakatani
- Project Lifecycle Management Unit, Chugai Pharmaceutical Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Masaichi Abe
- Clinical Development Division, Chugai Pharmaceutical Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Yasuko Satoh
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Kiyoaki Sakata
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Toshihiko Fujii
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Kaori Fujimoto-Ouchi
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Masamichi Sugimoto
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Shigehisa Nagahashi
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Masahiro Aoki
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Hiroshi Motegi
- Project Lifecycle Management Unit, Chugai Pharmaceutical Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Aichi, Japan
| |
Collapse
|
76
|
Zhou W, Jubb AM, Lyle K, Xiao Q, Ong CC, Desai R, Fu L, Gnad F, Song Q, Haverty PM, Aust D, Grützmann R, Romero M, Totpal K, Neve RM, Yan Y, Forrest WF, Wang Y, Raja R, Pilarsky C, de Jesus-Acosta A, Belvin M, Friedman LS, Merchant M, Jaffee EM, Zheng L, Koeppen H, Hoeflich KP. PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition. J Pathol 2014; 234:502-13. [PMID: 25074413 DOI: 10.1002/path.4412] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/25/2014] [Accepted: 07/18/2014] [Indexed: 12/19/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) is a major unmet medical need and a deeper understanding of molecular drivers is needed to advance therapeutic options for patients. We report here that p21-activated kinase 1 (PAK1) is a central node in PDAC cells downstream of multiple growth factor signalling pathways, including hepatocyte growth factor (HGF) and MET receptor tyrosine kinase. PAK1 inhibition blocks signalling to cytoskeletal effectors and tumour cell motility driven by HGF/MET. MET antagonists, such as onartuzumab and crizotinib, are currently in clinical development. Given that even highly effective therapies have resistance mechanisms, we show that combination with PAK1 inhibition overcomes potential resistance mechanisms mediated either by activation of parallel growth factor pathways or by direct amplification of PAK1. Inhibition of PAK1 attenuated in vivo tumour growth and metastasis in a model of pancreatic adenocarcinoma. In human tissues, PAK1 is highly expressed in a proportion of PDACs (33% IHC score 2 or 3; n = 304) and its expression is significantly associated with MET positivity (p < 0.0001) and linked to a widespread metastatic pattern in patients (p = 0.067). Taken together, our results provide evidence for a functional role of MET/PAK1 signalling in pancreatic adenocarcinoma and support further characterization of therapeutic inhibitors in this indication.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Translational Oncology, Genentech, Inc, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Delitto D, Vertes-George E, Hughes SJ, Behrns KE, Trevino JG. c-Met signaling in the development of tumorigenesis and chemoresistance: Potential applications in pancreatic cancer. World J Gastroenterol 2014; 20:8458-8470. [PMID: 25024602 PMCID: PMC4093697 DOI: 10.3748/wjg.v20.i26.8458] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/18/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is the 4th leading cause of cancer deaths in the United States. The majority of patients are candidates only for palliative chemotherapy, which has proven largely ineffective in halting tumor progression. One proposed mechanism of chemoresistance involves signaling via the mesenchymal-epithelial transition factor protein (MET), a previously established pathway critical to cell proliferation and migration. Here, we review the literature to characterize the role of MET in the development of tumorigenesis, metastasis and chemoresistance, highlighting the potential of MET as a therapeutic target in pancreatic cancer. In this review, we characterize the role of c-Met in the development of tumorigenesis, metastasis and chemoresistance, highlighting the potential of c-Met as a therapeutic target in pancreatic cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drug Design
- Drug Resistance, Neoplasm/genetics
- Humans
- Molecular Targeted Therapy
- Neoplastic Stem Cells/enzymology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Signal Transduction/drug effects
Collapse
|
78
|
Smyth EC, Sclafani F, Cunningham D. Emerging molecular targets in oncology: clinical potential of MET/hepatocyte growth-factor inhibitors. Onco Targets Ther 2014; 7:1001-14. [PMID: 24959087 PMCID: PMC4061165 DOI: 10.2147/ott.s44941] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The MET/hepatocyte growth-factor (HGF) signaling pathway plays a key role in the processes of embryogenesis, wound healing, and organ regeneration. Aberrant activation of MET/HGF occurs through multiple mechanisms including gene amplification, mutation, protein overexpression, and abnormal gene splicing interrupting autocrine and paracrine regulatory feedback mechanisms. In many cancers including non-small-cell lung cancer, colorectal, gastric, renal, and hepatocellular cancer, dysregulation of MET may lead to a more aggressive cancer phenotype and may be a negative prognostic indicator. Successful therapeutic targeting of the MET/HGF pathway has been achieved using monoclonal antibodies against the MET receptor and its ligand HGF in addition to MET-specific and multitargeted small-molecule tyrosine-kinase inhibitors with several drugs in late-phase clinical trials including onartuzumab, rilotumumab, tivantinib, and cabozantinib. MET frequently interacts with other key oncogenic tyrosine kinases including epidermal growth-factor receptor (EGFR) and HER-3 and these interactions may be responsible for resistance to anti-EGFR therapies. Similarly, resistance to MET inhibition may be mediated through EGFR activation, or alternatively by increasing levels of MET amplification or acquisition of novel "gatekeeper" mutations. In order to optimize development of effective inhibitors of the MET/HGF pathway clinical trials must be enriched for patients with demonstrable MET-pathway dysregulation for which robustly standardized and validated assays are required.
Collapse
Affiliation(s)
- Elizabeth C Smyth
- Department of Gastrointestinal Oncology, Royal Marsden Hospital, Sutton, UK
| | - Francesco Sclafani
- Department of Gastrointestinal Oncology, Royal Marsden Hospital, Sutton, UK
| | - David Cunningham
- Department of Gastrointestinal Oncology, Royal Marsden Hospital, Sutton, UK
| |
Collapse
|
79
|
Parikh RA, Wang P, Beumer JH, Chu E, Appleman LJ. The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment. Onco Targets Ther 2014; 7:969-83. [PMID: 24959084 PMCID: PMC4061161 DOI: 10.2147/ott.s40241] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MET is located on chromosome 7q31 and is a proto-oncogene that encodes for hepatocyte growth factor (HGF) receptor, a member of the receptor tyrosine kinase (RTK) family. HGF, also known as scatter factor (SF), is the only known ligand for MET. MET is a master regulator of cell growth and division (mitogenesis), mobility (motogenesis), and differentiation (morphogenesis); it plays an important role in normal development and tissue regeneration. The HGF-MET axis is frequently dysregulated in cancer by MET gene amplification, translocation, and mutation, or by MET or HGF protein overexpression. MET dysregulation is associated with an increased propensity for metastatic disease and poor overall prognosis across multiple tumor types. Targeting the dysregulated HGF-MET pathway is an area of active research; a number of monoclonal antibodies to HGF and MET, as well as small molecule inhibitors of MET, are under development. This review summarizes the key biological features of the HGF-MET axis, its dysregulation in cancer, and the therapeutic agents targeting the HGF-MET axis, which are in development.
Collapse
Affiliation(s)
- Rahul A Parikh
- Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Peng Wang
- Division of Medical Oncology, University of Kentucky College of Medicine, Markey Cancer Center, Lexington, KY, USA
| | - Jan H Beumer
- University of Pittsburgh School of Pharmacy, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Edward Chu
- Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Leonard J Appleman
- Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
80
|
Vigna E, Comoglio PM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene 2014; 34:1883-9. [PMID: 24882574 DOI: 10.1038/onc.2014.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field.
Collapse
Affiliation(s)
- E Vigna
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - P M Comoglio
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| |
Collapse
|
81
|
Basilico C, Hultberg A, Blanchetot C, de Jonge N, Festjens E, Hanssens V, Osepa SI, De Boeck G, Mira A, Cazzanti M, Morello V, Dreier T, Saunders M, de Haard H, Michieli P. Four individually druggable MET hotspots mediate HGF-driven tumor progression. J Clin Invest 2014; 124:3172-86. [PMID: 24865428 DOI: 10.1172/jci72316] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 04/03/2014] [Indexed: 12/22/2022] Open
Abstract
Activation of MET by HGF plays a key role in tumor progression. Using a recently developed llama platform that generates human-like immunoglobulins, we selected 68 different antibodies that compete with HGF for binding to MET. HGF-competing antibodies recognized 4 distinct hotspots localized in different MET domains. We identified 1 hotspot that coincides with the known HGF β chain binding site on blades 2-3 of the SEMA domain β-propeller. We determined that a second and a third hotspot lie within blade 5 of the SEMA domain and IPT domains 2-3, both of which are thought to bind to HGF α chain. Characterization of the fourth hotspot revealed a region across the PSI-IPT 1 domains not previously associated with HGF binding. Individual or combined targeting of these hotspots effectively interrupted HGF/MET signaling in multiple cell-based biochemical and biological assays. Selected antibodies directed against SEMA blades 2-3 and the PSI-IPT 1 region inhibited brain invasion and prolonged survival in a glioblastoma multiforme model, prevented metastatic disease following neoadjuvant therapy in a triple-negative mammary carcinoma model, and suppressed cancer cell dissemination to the liver in a KRAS-mutant metastatic colorectal cancer model. These results identify multiple regions of MET responsible for HGF-mediated tumor progression, unraveling the complexity of HGF-MET interaction, and provide selective molecular tools for targeting MET activity in cancer.
Collapse
|
82
|
Wong JS, Warbrick E, Vojtesk B, Hill J, Lane DP. Anti-c-Met antibodies recognising a temperature sensitive epitope, inhibit cell growth. Oncotarget 2014; 4:1019-36. [PMID: 23859937 PMCID: PMC3759663 DOI: 10.18632/oncotarget.1075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
c-Met is a tyrosine receptor kinase which is activated by its ligand, the hepatocyte growth factor. Activation of c-Met leads to a wide spectrum of biological activities such as motility, angiogenesis, morphogenesis, cell survival and cell regeneration. c-Met is abnormally activated in many tumour types. Aberrant c-Met activation was found to induce tumour development, tumour cell migration and invasion, and the worst and final step in cancer progression, metastasis. In addition, c-Met activation in cells was also shown to confer resistance to apoptosis induced by UV damage or chemotherapeutic drugs. This study describes the development of monoclonal antibodies against c-Met as therapeutic molecules in cancer treatment/diagnostics. A panel of c-Met monoclonal antibodies was developed and characterised by epitope mapping, Western blotting, immunoprecipitation, agonist/antagonist effect in cell scatter assays and for their ability to recognise native c-Met by flow cytometry. We refer to these antibodies as Specifically Engaging Extracellular c-Met (seeMet). seeMet 2 and 13 bound strongly to native c-Met in flow cytometry and reduced SNU-5 cell growth. Interestingly, seeMet 2 binding was strongly reduced at 4oC when compared to 37oC. Detail mapping of the seeMet 2 epitope indicated a cryptic binding site hidden within the c-Met α-chain.
Collapse
Affiliation(s)
- Julin S Wong
- p53 Laboratory, 8A Biomedical Grove, Immunos #06-06, Singapore, Singapore
| | | | | | | | | |
Collapse
|
83
|
Fauvel B, Yasri A. Antibodies directed against receptor tyrosine kinases: current and future strategies to fight cancer. MAbs 2014; 6:838-51. [PMID: 24859229 DOI: 10.4161/mabs.29089] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy.
Collapse
Affiliation(s)
| | - Aziz Yasri
- OriBase Pharma; Cap Gamma; Parc Euromédecine; Montpellier, France
| |
Collapse
|
84
|
Xu J, Ai J, Liu S, Peng X, Yu L, Geng M, Nan F. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors. Org Biomol Chem 2014; 12:3721-34. [PMID: 24781551 DOI: 10.1039/c4ob00364k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.
Collapse
Affiliation(s)
- Jimin Xu
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
85
|
Nakagawa T, Matsushima T, Kawano S, Nakazawa Y, Kato Y, Adachi Y, Abe T, Semba T, Yokoi A, Matsui J, Tsuruoka A, Funahashi Y. Lenvatinib in combination with golvatinib overcomes hepatocyte growth factor pathway-induced resistance to vascular endothelial growth factor receptor inhibitor. Cancer Sci 2014; 105:723-30. [PMID: 24689876 PMCID: PMC4317894 DOI: 10.1111/cas.12409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor receptor (VEGFR) inhibitors are approved for the treatment of several tumor types; however, some tumors show intrinsic resistance to VEGFR inhibitors, and some patients develop acquired resistance to these inhibitors. Therefore, a strategy to overcome VEGFR inhibitor resistance is urgently required. Recent reports suggest that activation of the hepatocyte growth factor (HGF) pathway through its cognate receptor, Met, contributes to VEGFR inhibitor resistance. Here, we explored the effect of the HGF/Met signaling pathway and its inhibitors on resistance to lenvatinib, a VEGFR inhibitor. In in vitro experiments, addition of VEGF plus HGF enhanced cell growth and tube formation of HUVECs when compared with stimulation by either factor alone. Lenvatinib potently inhibited the growth of HUVECs induced by VEGF alone, but cells induced by VEGF plus HGF showed lenvatinib resistance. This HGF-induced resistance was cancelled when the Met inhibitor, golvatinib, was added with lenvatinib. Conditioned medium from tumor cells producing high amounts of HGF also conferred resistance to inhibition by lenvatinib. In s.c. xenograft models based on various tumor cell lines with high HGF expression, treatment with lenvatinib alone showed weak antitumor effects, but treatment with lenvatinib plus golvatinib showed synergistic antitumor effects, accompanied by decreased tumor vessel density. These results suggest that HGF from tumor cells confers resistance to tumor endothelial cells against VEGFR inhibitors, and that combination therapy using VEGFR inhibitors with Met inhibitors may be effective for overcoming resistance to VEGFR inhibitors. Further evaluation in clinical trials is warranted.
Collapse
|
86
|
Met degradation by SAIT301, a Met monoclonal antibody, reduces the invasion and migration of nasopharyngeal cancer cells via inhibition of EGR-1 expression. Cell Death Dis 2014; 5:e1159. [PMID: 24722284 PMCID: PMC5424102 DOI: 10.1038/cddis.2014.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/09/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor with high invasive and metastatic potential. The hepatocyte growth factor (HGF)-Met signaling pathway has a critical role in mediating the invasive growth of many different types of cancer, including head and neck squamous cell carcinoma. HGF also stimulates NPC cell growth and invasion in the cell line model. In this study, we determined the inhibitory effect of Met, using a Met-targeting monoclonal antibody (SAIT301), on the invasive and growth potential of NPC cell lines. Met inhibition by SAIT301 resulted in highly significant inhibition of cell migration and invasion in both the HONE1 and HNE1 cell lines. In addition, we also found that co-treatment of SAIT301 and HGF decreased the anchorage-independent growth induced by HGF in HNE1 cell lines. After SAIT301 treatment, Met, together with its downstream signaling proteins, showed downregulation of p-Met and p-ERK, but not p-AKT, in both HONE1 and HNE1 cell lines. Interestingly, we found that HGF treatment of NPC cell lines induced early growth response protein (EGR-1) expression, which is involved in cell migration and invasion. In addition, co-treatment with SAIT301 and HGF inhibited the HGF-induced expression of EGR-1. Next, knockdown of EGR-1 using small-interfering RNA inhibited HGF-induced cell invasion in NPC cell lines, suggesting that the expression level of EGR-1 is important in HGF-induced cell invasion of NPC cells. Therefore, the results support that SAIT301 inhibited Met activation as well as the downstream EGR-1 expression and could have therapeutic potential in NPC. Taken together, we suggest that Met is an anticancer therapeutic target for NPC that warrants further investigation and clinical trials and SAIT301 may be a promising tool for NPC therapy.
Collapse
|
87
|
Ekert JE, Johnson K, Strake B, Pardinas J, Jarantow S, Perkinson R, Colter DC. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development. PLoS One 2014; 9:e92248. [PMID: 24638075 PMCID: PMC3956916 DOI: 10.1371/journal.pone.0092248] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/20/2014] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor microenvironment.
Collapse
Affiliation(s)
- Jason E. Ekert
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
- * E-mail:
| | - Kjell Johnson
- Arbor Analytics, LLC, Ann Arbor, Michigan, United States of America
| | | | - Jose Pardinas
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - Stephen Jarantow
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - Robert Perkinson
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - David C. Colter
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| |
Collapse
|
88
|
The RON receptor tyrosine kinase in pancreatic cancer pathogenesis and its potential implications for future targeted therapies. Pancreas 2014; 43:183-9. [PMID: 24518495 PMCID: PMC4009395 DOI: 10.1097/mpa.0000000000000088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer remains a devastating disease with a mortality rate that has not changed substantially in decades. Novel therapies are therefore desperately needed. The RON receptor tyrosine kinase has been identified as an important mediator of KRAS oncogene addiction and is overexpressed in the majority of pancreatic cancers. Preclinical studies show that inhibition of RON function decreases pancreatic cancer cell migration, invasion, and survival and can sensitize pancreatic cancer cells to chemotherapy. This article reviews the current state of knowledge regarding RON biology and pancreatic cancer and discusses its potential as a therapeutic target.
Collapse
|
89
|
Zeglis BM, Houghton JL, Evans MJ, Viola-Villegas N, Lewis JS. Underscoring the influence of inorganic chemistry on nuclear imaging with radiometals. Inorg Chem 2014; 53:1880-99. [PMID: 24313747 PMCID: PMC4151561 DOI: 10.1021/ic401607z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past several decades, radionuclides have matured from largely esoteric and experimental technologies to indispensible components of medical diagnostics. Driving this transition, in part, have been mutually necessary advances in biomedical engineering, nuclear medicine, and cancer biology. Somewhat unsung has been the seminal role of inorganic chemistry in fostering the development of new radiotracers. In this regard, the purpose of this Forum Article is to more visibly highlight the significant contributions of inorganic chemistry to nuclear imaging by detailing the development of five metal-based imaging agents: (64)Cu-ATSM, (68)Ga-DOTATOC, (89)Zr-transferrin, (99m)Tc-sestamibi, and (99m)Tc-colloids. In a concluding section, several unmet needs both in and out of the laboratory will be discussed to stimulate conversation between inorganic chemists and the imaging community.
Collapse
Affiliation(s)
- Brian M. Zeglis
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Jacob L. Houghton
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Michael J. Evans
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Nerissa Viola-Villegas
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Jason S. Lewis
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| |
Collapse
|
90
|
Salgia R, Patel P, Bothos J, Yu W, Eppler S, Hegde P, Bai S, Kaur S, Nijem I, Catenacci DVT, Peterson A, Ratain MJ, Polite B, Mehnert JM, Moss RA. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin Cancer Res 2014; 20:1666-75. [PMID: 24493831 DOI: 10.1158/1078-0432.ccr-13-2070] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE This first-in-human study evaluated the safety, immunogenicity, pharmacokinetics, and antitumor activity of onartuzumab, a monovalent antibody against the receptor tyrosine kinase MET. EXPERIMENTAL DESIGN This 3+3 dose-escalation study comprised three stages: (i) phase Ia dose escalation of onartuzumab at doses of 1, 4, 10, 20, and 30 mg/kg intravenously every 3 weeks; (ii) phase Ia cohort expansion at the recommended phase II dose (RP2D) of 15 mg/kg; and (iii) phase Ib dose escalation of onartuzumab at 10 and 15 mg/kg in combination with bevacizumab (15 mg/kg intravenously every 3 weeks). Serum samples were collected for evaluation of pharmacokinetics, potential pharmacodynamic markers, and antitherapeutic antibodies. RESULTS Thirty-four patients with solid tumors were treated in phase Ia and 9 in phase Ib. Onartuzumab was generally well tolerated at all dose levels evaluated; the maximum tolerated dose was not reached. The most frequent drug-related adverse events included fatigue, peripheral edema, nausea, and hypoalbuminemia. In the phase Ib cohort, onartuzumab at the RP2D was combined with bevacizumab and no dose-limiting toxicities were seen. Onartuzumab showed linear pharmacokinetics in the dose range from 4 to 30 mg/kg. The half-life was approximately 8 to 12 days. There were no apparent pharmacokinetic interactions between onartuzumab and bevacizumab, and antitherapeutic antibodies did not seem to affect the safety or pharmacokinetics of onartuzumab. A patient with gastric carcinoma in the 20-mg/kg dose cohort achieved a durable complete response for nearly 2 years. CONCLUSIONS Onartuzumab was generally well tolerated as a single agent and in combination with bevacizumab in patients with solid tumors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacokinetics
- Bevacizumab
- Female
- Humans
- Male
- Maximum Tolerated Dose
- Middle Aged
- Neoplasms/drug therapy
Collapse
Affiliation(s)
- Ravi Salgia
- Authors' Affiliations: Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois; Genentech, Inc., South San Francisco, California; and Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Gelsomino F, Facchinetti F, Haspinger E, Garassino M, Trusolino L, De Braud F, Tiseo M. Targeting the MET gene for the treatment of non-small-cell lung cancer. Crit Rev Oncol Hematol 2014; 89:284-99. [DOI: 10.1016/j.critrevonc.2013.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/06/2013] [Accepted: 11/21/2013] [Indexed: 12/27/2022] Open
|
92
|
Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol 2014; 32:191-8. [PMID: 24463572 DOI: 10.1038/nbt.2797] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
Abstract
Robust generation of IgG bispecific antibodies has been a long-standing challenge. Existing methods require extensive engineering of each individual antibody, discovery of common light chains, or complex and laborious biochemical processing. Here we combine computational and rational design approaches with experimental structural validation to generate antibody heavy and light chains with orthogonal Fab interfaces. Parental monoclonal antibodies incorporating these interfaces, when simultaneously co-expressed, assemble into bispecific IgG with improved heavy chain-light chain pairing. Bispecific IgGs generated with this approach exhibit pharmacokinetic and other desirable properties of native IgG, but bind target antigens monovalently. As such, these bispecific reagents may be useful in many biotechnological applications.
Collapse
|
93
|
Shames DS, Wistuba II. The evolving genomic classification of lung cancer. J Pathol 2014; 232:121-33. [PMID: 24114583 PMCID: PMC4285848 DOI: 10.1002/path.4275] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/17/2013] [Accepted: 09/21/2013] [Indexed: 01/02/2023]
Abstract
EGFR gene mutations and ALK gene fusions are well-characterized molecular targets in NSCLC. Activating alterations in a variety of potential oncogenic driver genes have also been identified in NSCLC, including ROS1, RET, MET, HER2, and BRAF. Together with EGFR and ALK, these mutations account for ∼20% of NSCLCs. The identification of these oncogenic drivers has led to the design of rationally targeted therapies that have produced superior clinical outcomes in tumours harbouring these mutations. Many patients, however, have de novo or acquired resistance to these therapies. In addition, most NSCLCs are genetically complex tumours harbouring multiple potential activating events. For these patients, disease subsets are likely to be defined by combination strategies involving a number of targeted agents. These targets include FGFR1, PTEN, MET, MEK, PD-1/PD-L1, and NaPi2b. In light of the myriad new biomarkers and targeted agents, multiplex testing strategies will be invaluable in identifying the appropriate patients for each therapy and enabling targeted agents to be channelled to the patients most likely to gain benefit. The challenge now is how best to interpret the results of these genomic tests, in the context of other clinical data, to optimize treatment choices in NSCLC.
Collapse
Affiliation(s)
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| |
Collapse
|
94
|
Xu Y, Fisher GJ. Role of met axis in head and neck cancer. Cancers (Basel) 2013; 5:1601-18. [PMID: 24287743 PMCID: PMC3875956 DOI: 10.3390/cancers5041601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 01/30/2023] Open
Abstract
Head and neck cancer is the sixth most common type of cancer worldwide. Despite advances in aggressive multidisciplinary treatments, the 5-year survival rate for this dreadful disease is only 50%, mostly due to high rate of recurrence and early involvement of regional lymph nodes and subsequent metastasis. Understanding the molecular mechanisms responsible for invasion and metastasis is one of the most pressing goals in the field of head and neck cancer. Met, also known as hepatocyte growth factor receptor (HGFR), is a member of the receptor protein tyrosine kinase (RPTK) family. There is compelling evidence that Met axis is dysregulated and plays important roles in tumorigenesis, progression, metastasis, angiogenesis, and drug resistance in head and neck cancer. We describe in this review current understanding of Met axis in head and neck cancer biology and development of therapeutic inhibitors targeting Met axis.
Collapse
Affiliation(s)
- Yiru Xu
- Authors to whom correspondence should be addressed; E-Mails: (Y.X.); (G.J.F.); Tel.: +1-734-763-1469 (G.J.F.); Fax: +1-734-647-0076 (G.J.F.)
| | - Gary J. Fisher
- Authors to whom correspondence should be addressed; E-Mails: (Y.X.); (G.J.F.); Tel.: +1-734-763-1469 (G.J.F.); Fax: +1-734-647-0076 (G.J.F.)
| |
Collapse
|
95
|
Mai E, Zheng Z, Chen Y, Peng J, Severin C, Filvaroff E, Romero M, Mallet W, Kaur S, Gelzleichter T, Nijem I, Merchant M, Young JC. Nonclinical evaluation of the serum pharmacodynamic biomarkers HGF and shed MET following dosing with the anti-MET monovalent monoclonal antibody onartuzumab. Mol Cancer Ther 2013; 13:540-52. [PMID: 24258345 DOI: 10.1158/1535-7163.mct-13-0494] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Onartuzumab, a humanized, monovalent monoclonal anti-MET antibody, antagonizes MET signaling by inhibiting binding of its ligand, hepatocyte growth factor (HGF). We investigated the effects of onartuzumab on cell-associated and circulating (shed) MET (sMET) and circulating HGF in vitro and nonclinically to determine their utility as pharmacodynamic biomarkers for onartuzumab. Effects of onartuzumab on cell-associated MET were assessed by flow cytometry and immunofluorescence. sMET and HGF were measured in cell supernatants and in serum or plasma from multiple species (mouse, cynomolgus monkey, and human) using plate-based immunoassays. Unlike bivalent anti-MET antibodies, onartuzumab stably associates with MET on the surface of cells without inducing MET internalization or shedding. Onartuzumab delayed the clearance of human xenograft tumor-produced sMET from the circulation of mice, and endogenous sMET in cynomolgus monkeys. In mice harboring MET-expressing xenograft tumors, in the absence of onartuzumab, levels of human sMET correlated with tumor size, and may be predictive of MET-expressing tumor burden. Because binding of sMET to onartuzumab in circulation resulted in increasing sMET serum concentrations due to reduced clearance, this likely renders sMET unsuitable as a pharmacodynamic biomarker for onartuzumab. There was no observed effect of onartuzumab on circulating HGF levels in xenograft tumor-bearing mice or endogenous HGF in cynomolgus monkeys. Although sMET and HGF may serve as predictive biomarkers for MET therapeutics, these data do not support their use as pharmacodynamic biomarkers for onartuzumab.
Collapse
Affiliation(s)
- Elaine Mai
- Corresponding Author: Judy C. Young, Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, MS98, South San Francisco, CA 94080.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Preclinical evaluation of a novel c-Met inhibitor in a gastric cancer xenograft model using small animal PET. Mol Imaging Biol 2013; 15:203-11. [PMID: 22864665 DOI: 10.1007/s11307-012-0580-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Here, we describe the efficacy of the novel small molecule c-Met inhibitor BAY 853474 in reducing tumor growth in the Hs746T gastric cancer xenograft model and tested the suitability of 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) versus 3'-deoxy-3'-18F-fluorothymidine ([(18)F]FLT) for response monitoring in a gastric cancer xenograft mouse model using small animal PET. PROCEDURES The c-Met inhibitor or vehicle control was administered orally at various doses in tumor-bearing mice. Glucose uptake and proliferation was measured using PET before, 48 and 96 h after the first treatment. The PET data were compared to data from tumor growth curves, autoradiography, Glut-1 and Ki-67 staining of tumor sections, and biochemical analysis of tissue probes, i.e., c-Met and ERK phosphorylation and cyclin D1 levels. RESULTS BAY 853474 significantly reduces tumor growth. [(18)F]FDG uptake in Hs746T tumors was significantly reduced in the groups receiving the drug, compared with the control group. The [(18)F]FLT uptake in the tumor tissue was completely absent 96 h after treatment. Autoradiographic, immunohistochemical, and biochemical analyses confirmed the PET findings. Treatment with the c-Met inhibitor did not affect body weight or glucose levels, and no adverse effects were observed in the animals. CONCLUSION These preclinical findings suggest that clinical PET imaging is a useful tool for early response monitoring in clinical studies.
Collapse
|
97
|
Zhang D, Zhang X, Ai J, Zhai Y, Liang Z, Wang Y, Chen Y, Li C, Zhao F, Jiang H, Geng M, Luo C, Liu H. Synthesis and biological evaluation of 2-amino-5-aryl-3-benzylthiopyridine scaffold based potent c-Met inhibitors. Bioorg Med Chem 2013; 21:6804-20. [DOI: 10.1016/j.bmc.2013.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
|
98
|
Fujita H, Miyadera K, Kato M, Fujioka Y, Ochiiwa H, Huang J, Ito K, Aoyagi Y, Takenaka T, Suzuki T, Ito S, Hashimoto A, Suefuji T, Egami K, Kazuno H, Suda Y, Nishio K, Yonekura K. The novel VEGF receptor/MET-targeted kinase inhibitor TAS-115 has marked in vivo antitumor properties and a favorable tolerability profile. Mol Cancer Ther 2013; 12:2685-96. [PMID: 24140932 DOI: 10.1158/1535-7163.mct-13-0459] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
VEGF receptor (VEGFR) signaling plays a key role in tumor angiogenesis. Although some VEGFR signal-targeted drugs have been approved for clinical use, their utility is limited by associated toxicities or resistance to such therapy. To overcome these limitations, we developed TAS-115, a novel VEGFR and hepatocyte growth factor receptor (MET)-targeted kinase inhibitor with an improved safety profile. TAS-115 inhibited the kinase activity of both VEGFR2 and MET and their signal-dependent cell growth as strongly as other known VEGFR or MET inhibitors. On the other hand, kinase selectivity of TAS-115 was more specific than that of sunitinib and TAS-115 produced relatively weak inhibition of growth (GI50 > 10 μmol/L) in VEGFR signal- or MET signal-independent cells. Furthermore, TAS-115 induced less damage in various normal cells than did other VEGFR inhibitors. These data suggest that TAS-115 is extremely selective and specific, at least in vitro. In in vivo studies, TAS-115 completely suppressed the progression of MET-inactivated tumor by blocking angiogenesis without toxicity when given every day for 6 weeks, even at a serum-saturating dose of TAS-115. The marked selectivity of TAS-115 for kinases and targeted cells was associated with improved tolerability and contributed to the ability to sustain treatment without dose reduction or a washout period. Furthermore, TAS-115 induced marked tumor shrinkage and prolonged survival in MET-amplified human cancer-bearing mice. These data suggest that TAS-115 is a unique VEGFR/MET-targeted inhibitor with improved antitumor efficacy and decreased toxicity.
Collapse
Affiliation(s)
- Hidenori Fujita
- Corresponding Author: Hidenori Fujita, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Choi HJ, Kim YJ, Lee S, Kim YS. A heterodimeric Fc-based bispecific antibody simultaneously targeting VEGFR-2 and Met exhibits potent antitumor activity. Mol Cancer Ther 2013; 12:2748-59. [PMID: 24132142 DOI: 10.1158/1535-7163.mct-13-0628] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heterodimeric Fc designed by engineering the CH3 homodimeric interface of immunoglobulin G1 serves as an attractive scaffold for the generation of bispecific antibodies (bsAb) due to the favorable properties of the Fc region. In this study, we describe a heterodimeric Fc generated by substituting the conserved electrostatic interactions at the CH3 core interface with asymmetric hydrophobic interactions and introducing asymmetric, long-range electrostatic interactions at the rim of the CH3 interface. Coexpression of Fc proteins carrying the combined CH3 variant pairs in HEK293F cells produced the heterodimer, which was purified with more than 90% yield, and retained wild-type Fc biophysical properties. The heterodimeric Fc was exploited to generate a bsAb simultaneously targeting both the Met receptor tyrosine kinase and the VEGF receptor 2 (VEGFR-2), with two respective antigen-specific, single-chain variable fragments (scFv) into the N-terminus. The Met × VEGFR-2 bsAb bound concurrently to the two target antigens, efficiently inhibited the downstream signaling and tube formation stimulated by the two receptors in human endothelial cells, and exhibited more potent antitumor efficacy in MKN45 human gastric cancer xenograft models than both the parent monospecific antibody alone. Collectively, based on the newly designed heterodimeric Fc-based bsAb, our results provide the therapeutic potential of bsAb targeting both Met and VEGFR-2 simultaneously for the treatment of human cancers.
Collapse
Affiliation(s)
- Hye-Ji Choi
- Corresponding Author: Yong-Sung Kim, Department of Molecular Science and Technology, Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, Korea.
| | | | | | | |
Collapse
|
100
|
Spigel DR, Ervin TJ, Ramlau RA, Daniel DB, Goldschmidt JH, Blumenschein GR, Krzakowski MJ, Robinet G, Godbert B, Barlesi F, Govindan R, Patel T, Orlov SV, Wertheim MS, Yu W, Zha J, Yauch RL, Patel PH, Phan SC, Peterson AC. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol 2013; 31:4105-14. [PMID: 24101053 DOI: 10.1200/jco.2012.47.4189] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Increased hepatocyte growth factor/MET signaling is associated with poor prognosis and acquired resistance to epidermal growth factor receptor (EGFR) -targeted drugs in patients with non-small-cell lung cancer (NSCLC). We investigated whether dual inhibition of MET/EGFR results in clinical benefit in patients with NSCLC. PATIENTS AND METHODS Patients with recurrent NSCLC were randomly assigned at a ratio of one to one to receive onartuzumab plus erlotinib or placebo plus erlotinib; crossover was allowed at progression. Tumor tissue was required to assess MET status by immunohistochemistry (IHC). Coprimary end points were progression-free survival (PFS) in the intent-to-treat (ITT) and MET-positive (MET IHC diagnostic positive) populations; additional end points included overall survival (OS), objective response rate, and safety. RESULTS There was no improvement in PFS or OS in the ITT population (n = 137; PFS hazard ratio [HR], 1.09; P = .69; OS HR, 0.80; P = .34). MET-positive patients (n = 66) treated with erlotinib plus onartuzumab showed improvement in both PFS (HR, .53; P = .04) and OS (HR, .37; P = .002). Conversely, clinical outcomes were worse in MET-negative patients treated with onartuzumab plus erlotinib (n = 62; PFS HR, 1.82; P = .05; OS HR, 1.78; P = .16). MET-positive control patients had worse outcomes versus MET-negative control patients (n = 62; PFS HR, 1.71; P = .06; OS HR, 2.61; P = .004). Incidence of peripheral edema was increased in onartuzumab-treated patients. CONCLUSION Onartuzumab plus erlotinib was associated with improved PFS and OS in the MET-positive population. These results combined with the worse outcomes observed in MET-negative patients treated with onartuzumab highlight the importance of diagnostic testing in drug development.
Collapse
Affiliation(s)
- David R Spigel
- David R. Spigel, Thomas J. Ervin, and Davey B. Daniel, Sarah Cannon Research Institute; David R. Spigel, Tennessee Oncology, Nashville; Davey B. Daniel, Chattanooga Oncology Hematology Associates, Chattanooga, TN; Thomas J. Ervin, Florida Cancer Specialists, Fort Myers; Michael S. Wertheim, Hematology/Oncology Associates, Port St Lucie, FL; Rodryg A. Ramlau, Poznan University of Medical Sciences, Poznan; Maciej J. Krzakowski, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Jerome H. Goldschmidt Jr, Blue Ridge Cancer Care, Christianburg, VA; George R. Blumenschein Jr, The University of Texas MD Anderson Cancer Center, Houston, TX; Gilles Robinet, University Hospital Morvan, Brest; Benoit Godbert, Centre Hospitalier Universitaire Nancy, Vandoeuvre-lès-Nancy; Fabrice Barlesi, Assistance Publique-Hôpitaux de Marseille, Aix Marseille University, Marseille, France; Ramaswamy Govindan, Washington University School of Medicine, St Louis, MO; Taral Patel, Mid Ohio Oncology/Hematology, Columbus, OH; Sergey V. Orlov, St Petersburg Pavlov State Medical University, St Petersburg, Russia; Wei Yu, Robert L. Yauch, Premal H. Patel, and See-Chun Phan, Genentech; Amy C. Peterson, Medivation, San Francisco, CA; and Jiping Zha, Crown Bioscience, Taicang City, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|