51
|
Gongye X, Tian M, Xia P, Qu C, Chen Z, Wang J, Zhu Q, Li Z, Yuan Y. Multi-omics analysis revealed the role of extracellular vesicles in hepatobiliary & pancreatic tumor. J Control Release 2022; 350:11-25. [PMID: 35963466 DOI: 10.1016/j.jconrel.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Liquid biopsy is rapidly growing into a hot research field due to its unique advantages of minimal invasiveness, and extracellular vesicle (EVs) are also expected to become an important pillar in the diagnostic technology system as a newly discovered active substance carrier. More and more research has highlighted the important contribution of EVs in the progress of tumor. Molecular changes during disease progression could be detected in EVs. However, the diagnostic applications of EVs are not generally understood. Combined with the characteristics of hepatobiliary and pancreatic tumor, we summarized the recent developments in various omics analysis of EVs. Furtherly, we explored the role of EVs in the early diagnosis of hepatobiliary and pancreatic tumors by multi-omics analysis.
Collapse
Affiliation(s)
- Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Chengmin Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, PR China.
| | - Qian Zhu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Zhijie Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| |
Collapse
|
52
|
Athavale D, Song Z, Desert R, Han H, Das S, Ge X, Komakula SSB, Chen W, Gao S, Lantvit D, Guzman G, Nieto N. Ablation of high-mobility group box-1 in the liver reduces hepatocellular carcinoma but causes hyperbilirubinemia in Hippo signaling-deficient mice. Hepatol Commun 2022; 6:2155-2169. [PMID: 35344292 PMCID: PMC9315122 DOI: 10.1002/hep4.1943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Silencing the Hippo kinases mammalian sterile 20-like 1 and 2 (MST1/2) activates the transcriptional coactivator yes-associated protein (YAP) in human hepatocellular carcinoma (HCC). Hepatocyte-derived high-mobility group box-1 (HMGB1) regulates YAP expression; however, its contribution to HCC in the context of deregulated Hippo signaling is unknown. Here, we hypothesized that HMGB1 is required for hepatocarcinogenesis by activating YAP in Hippo signaling-deficient (Mst1/2ΔHep ) mice. Mst1/2ΔHep mice developed HCC within 3.5 months of age and had increased hepatic expression of HMGB1 and elevated YAP activity compared to controls. To understand the contribution of HMGB1, we generated Mst1/2&Hmgb1ΔHep mice. They exhibited decreased YAP activity, cell proliferation, inflammation, fibrosis, atypical ductal cell expansion, and HCC burden at 3.5 months compared to Mst1/2∆Hep mice. However, Mst1/2&Hmgb1ΔHep mice were smaller, developed hyperbilirubinemia, had more liver injury with intrahepatic biliary defects, and had reduced hemoglobin compared to Mst1/2ΔHep mice. Conclusion: Hepatic HMGB1 promotes hepatocarcinogenesis by regulation of YAP activity; nevertheless, it maintains intrahepatic bile duct physiology under Hippo signaling deficiency.
Collapse
Affiliation(s)
- Dipti Athavale
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Zhuolun Song
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Romain Desert
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Hui Han
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sukanta Das
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Xiaodong Ge
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | | | - Wei Chen
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Shenglan Gao
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Daniel Lantvit
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Grace Guzman
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Natalia Nieto
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Research Biologist, Research & Development Service, Jesse Brown Veterans Affairs Medical CenterChicagoIllinoisUSA
| |
Collapse
|
53
|
MRI features of histologic subtypes of hepatocellular carcinoma: correlation with histologic, genetic, and molecular biologic classification. Eur Radiol 2022; 32:5119-5133. [PMID: 35258675 DOI: 10.1007/s00330-022-08643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
Abstract
HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression. Advancements in imaging techniques have allowed imaging diagnosis to become a critical part of managing HCC in the clinical setting, even without pathologic diagnosis. With the identification of many HCC subtypes, there is increasing correlative evidence between imaging phenotypes and histologic, molecular, and genetic characteristics of various HCC subtypes. In this review, current knowledge of histologic heterogeneity of HCC correlated to features on gadolinium-enhanced dynamic liver MRI will be discussed. In addition, HCC subtype classification according to transcriptomic profiles will be outlined with descriptions of histologic, genetic, and molecular characteristics of some relatively well-established morphologic subtypes, namely the low proliferation class (steatohepatitic HCC and CTNNB1-mutated HCC) and the high proliferation class (macrotrabecular-massive HCC (MTM-HCC), scirrhous HCC, and CK19-positive HCC). Characteristics of sarcomatoid HCC and fibrolamellar HCC will also be discussed. Further research on radiological characteristics of HCC subtypes may ultimately enable non-invasive diagnosis and serve as a biomarker in predicting prognosis, molecular characteristics, and therapeutic response. In the era of precision medicine, a multidisciplinary effort to develop an integrated radiologic and clinical diagnostic system of various HCC subtypes is necessary. KEY POINTS: • HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression, which can be divided into many subtypes according to transcriptome profiles. • There is increasing evidence of a correlation between imaging phenotypes and histologic, genetic, and molecular biologic characteristics of various HCC subtypes. • Imaging characteristics may ultimately enable non-invasive diagnosis and subtype characterization, serving as a biomarker for predicting prognosis, molecular characteristics, and therapeutic response.
Collapse
|
54
|
FOXM1 Is a Novel Molecular Target of AFP-Positive Hepatocellular Carcinoma Abrogated by Proteasome Inhibition. Int J Mol Sci 2022; 23:ijms23158305. [PMID: 35955438 PMCID: PMC9368809 DOI: 10.3390/ijms23158305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Alpha-fetoprotein (AFP) is an oncofetal protein that is elevated in a subset of hepatocellular carcinoma (HCC) with poor prognosis, but the molecular target activated in AFP-positive HCC remains elusive. Here, we demonstrated that the transcription factor forkhead box M1 (FOXM1) is upregulated in AFP-positive HCC. We found that FOXM1 expression was highly elevated in approximately 40% of HCC cases, and FOXM1-high HCC was associated with high serum AFP levels, a high frequency of microscopic portal vein invasion, and poor prognosis. A transcriptome and pathway analysis revealed the activation of the mitotic cell cycle and the inactivation of mature hepatocyte metabolism function in FOXM1-high HCC. The knockdown of FOXM1 reduced AFP expression and induced G2/M cell cycle arrest. We further identified that the proteasome inhibitor carfilzomib attenuated FOXM1 protein expression and suppressed cell proliferation in AFP-positive HCC cells. Carfilzomib in combination with vascular endothelial growth factor receptor 2 (VEGFR2) blockade significantly prolonged survival by suppressing AFP-positive HCC growth in a subcutaneous tumor xenotransplantation model. These data indicated that FOXM1 plays a pivotal role in the proliferation of AFP-positive liver cancer cells. Carfilzomib can effectively inhibit FOXM1 expression to inhibit tumor growth and could be a novel therapeutic option in patients with AFP-positive HCC who receive anti-VEGFR2 antibodies.
Collapse
|
55
|
Agnetti J, Bou Malham V, Desterke C, Benzoubir N, Peng J, Jacques S, Rahmouni S, Di Valentin E, Tan TZ, Samuel D, Thiery JP, Gassama-Diagne A. PI3Kδ activity controls plasticity and discriminates between EMT and stemness based on distinct TGFβ signaling. Commun Biol 2022; 5:740. [PMID: 35879421 PMCID: PMC9314410 DOI: 10.1038/s42003-022-03637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
The stem cells involved in formation of the complex human body are epithelial cells that undergo apicobasal polarization and form a hollow lumen. Epithelial plasticity manifests as epithelial to mesenchymal transition (EMT), a process by which epithelial cells switch their polarity and epithelial features to adopt a mesenchymal phenotype. The connection between the EMT program and acquisition of stemness is now supported by a substantial number of reports, although what discriminates these two processes remains largely elusive. In this study, based on 3D organoid culture of hepatocellular carcinoma (HCC)-derived cell lines and AAV8-based protein overexpression in the mouse liver, we show that activity modulation of isoform δ of phosphoinositide 3-kinase (PI3Kδ) controls differentiation and discriminates between stemness and EMT by regulating the transforming growth factor β (TGFβ) signaling. This study provides an important tool to control epithelial cell fate and represents a step forward in understanding the development of aggressive carcinoma.
Collapse
Affiliation(s)
- Jean Agnetti
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Vanessa Bou Malham
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | | | - Nassima Benzoubir
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Juan Peng
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Sophie Jacques
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Emanuel Di Valentin
- Plateforme des vecteurs viraux, GIGA B34, GIGA-institute, Université de Liège, Liège, Belgium
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore National University of Singapore, Center for Translational Medicine, 14 Medical Drive, #12-01, 117599, Singapore, Singapore
| | - Didier Samuel
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
- AP-HP Hôpital Paul Brousse, Centre Hepato-Biliaire, F-94800, Villejuif, France
| | - Jean Paul Thiery
- Guangzhou Laboratory, International biological Island Guangzhou, 510005, Guangzhou, China
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, F-94800, France.
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France.
| |
Collapse
|
56
|
Li H, Song J, He Y, Liu Y, Liu Z, Sun W, Hu W, Lei Q, Hu X, Chen Z, He X. CRISPR/Cas9 Screens Reveal that Hexokinase 2 Enhances Cancer Stemness and Tumorigenicity by Activating the ACSL4-Fatty Acid β-Oxidation Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105126. [PMID: 35603967 PMCID: PMC9313492 DOI: 10.1002/advs.202105126] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Indexed: 05/04/2023]
Abstract
Metabolic reprogramming is often observed in carcinogenesis, but little is known about the aberrant metabolic genes involved in the tumorigenicity and maintenance of stemness in cancer cells. Sixty-seven oncogenic metabolism-related genes in liver cancer by in vivo CRISPR/Cas9 screening are identified. Among them, acetyl-CoA carboxylase 1 (ACC1), aldolase fructose-bisphosphate A (ALDOA), fatty acid binding protein 5 (FABP5), and hexokinase 2 (HK2) are strongly associated with stem cell properties. HK2 further facilitates the maintenance and self-renewal of liver cancer stem cells. Moreover, HK2 enhances the accumulation of acetyl-CoA and epigenetically activates the transcription of acyl-CoA synthetase long-chain family member 4 (ACSL4), leading to an increase in fatty acid β-oxidation activity. Blocking HK2 or ACSL4 effectively inhibits liver cancer growth, and GalNac-siHK2 administration specifically targets the growth of orthotopic tumor xenografts. These results suggest a promising therapeutic strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Hongquan Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Junjiao Song
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yifei He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yizhe Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhen Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Weili Sun
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
| | - Qun‐Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xin Hu
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
| |
Collapse
|
57
|
Goya T, Horisawa K, Udono M, Ohkawa Y, Ogawa Y, Sekiya S, Suzuki A. Direct Conversion of Human Endothelial Cells Into Liver Cancer-Forming Cells Using Nonintegrative Episomal Vectors. Hepatol Commun 2022; 6:1725-1740. [PMID: 35220676 PMCID: PMC9234650 DOI: 10.1002/hep4.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Liver cancer is an aggressive cancer associated with a poor prognosis. Development of therapeutic strategies for liver cancer requires fundamental research using suitable experimental models. Recent progress in direct reprogramming technology has enabled the generation of many types of cells that are difficult to obtain and provide a cellular resource in experimental models of human diseases. In this study, we aimed to establish a simple one-step method for inducing cells that can form malignant human liver tumors directly from healthy endothelial cells using nonintegrating episomal vectors. To screen for factors capable of inducing liver cancer-forming cells (LCCs), we selected nine genes and one short hairpin RNA that suppresses tumor protein p53 (TP53) expression and introduced them into human umbilical vein endothelial cells (HUVECs), using episomal vectors. To identify the essential factors, we examined the effect of changing the amounts and withdrawing individual factors. We then analyzed the proliferation, gene and protein expression, morphologic and chromosomal abnormality, transcriptome, and tumor formation ability of the induced cells. We found that a set of six factors, forkhead box A3 (FOXA3), hepatocyte nuclear factor homeobox 1A (HNF1A), HNF1B, lin-28 homolog B (LIN28B), MYCL proto-oncogene, bHLH transcription factor (L-MYC), and Kruppel-like factor 5 (KLF5), induced direct conversion of HUVECs into LCCs. The gene expression profile of these induced LCCs (iLCCs) was similar to that of human liver cancer cells, and these cells effectively formed tumors that resembled human combined hepatocellular-cholangiocarcinoma following transplantation into immunodeficient mice. Conclusion: We succeeded in the direct induction of iLCCs from HUVECs by using nonintegrating episomal vectors. iLCCs generated from patients with cancer and healthy volunteers will be useful for further advancements in cancer research and for developing methods for the diagnosis, treatment, and prognosis of liver cancer.
Collapse
Affiliation(s)
- Takeshi Goya
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan.,Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenichi Horisawa
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Miyako Udono
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Sayaka Sekiya
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Atsushi Suzuki
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
58
|
Hatanaka T, Kakizaki S, Hiraoka A, Tada T, Hirooka M, Kariyama K, Tani J, Atsukawa M, Takaguchi K, Itobayashi E, Fukunishi S, Tsuji K, Ishikawa T, Tajiri K, Ochi H, Yasuda S, Toyoda H, Ogawa C, Nishimura T, Shimada N, Kawata K, Kosaka H, Tanaka T, Ohama H, Nouso K, Morishita A, Tsutsui A, Nagano T, Itokawa N, Okubo T, Arai T, Imai M, Naganuma A, Koizumi Y, Nakamura S, Joko K, Kaibori M, Iijima H, Hiasa Y, Kumada T. Prognostic impact of C-reactive protein and alpha-fetoprotein in immunotherapy score in hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: a multicenter retrospective study. Hepatol Int 2022; 16:1150-1160. [PMID: 35749019 DOI: 10.1007/s12072-022-10358-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/07/2022] [Indexed: 02/08/2023]
Abstract
AIM This study aimed to investigate the utility of C-reactive protein (CRP) and alpha-fetoprotein (AFP) in immunotherapy (CRAFITY) score in hepatocellular carcinoma (HCC) patients receiving atezolizumab and bevacizumab (Atez/Bev). METHODS This retrospective cohort study included a total of 297 patients receiving Atez/Bev from September 2020 to November 2021 at 21 different institutions and hospital groups in Japan. Patients with AFP ≥ 100 ng/mL and those with CRP ≥ 1 mg/dL were assigned a CRAFITY score of 1 point. RESULTS The patients were assigned CRAFITY scores of 0 points (n = 147 [49.5%]), 1 point (n = 111 [37.4%]), and 2 points (n = 39 [13.1%]). AFP ≥ 100 ng/mL and CRP ≥ 1.0 mg/dL were significantly associated with progression-free survival (PFS) and overall survival (OS). The median PFS in the CRAFITY score 0, 1, and 2 groups was 11.8 months (95% confidence interval [CI] 6.4-not applicable [NA]), 6.5 months (95% CI 4.6-8.0), and 3.2 months (95% CI 1.9-5.0), respectively (p < 0.001). The median OS in patients with CRAFITY score 0, 1 and 2 was not reached, 14.3 months (95% CI 10.5-NA), and 11.6 months (95% CI 4.9-NA), respectively. The percentage of patients with grade ≥ 3 liver injury, any grade of decreased appetite, any grade of proteinuria, any grade of fever, and any grade of fatigue was lowest in patients with a CRAFITY score of 0, followed by patients with CRAFITY scores of 1 and 2. CONCLUSIONS The CRAFITY score is simple and could be useful for predicting therapeutic outcomes and treatment-related adverse events.
Collapse
Affiliation(s)
- Takeshi Hatanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Kamishindenmachi 564-1, Maebashi, Gunma, 371-0821, Japan.
| | - Satoru Kakizaki
- Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan.,Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazuya Kariyama
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Joji Tani
- Department of Gastroenterology and Hepatology, Kagawa University, Kagawa, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Koichi Takaguchi
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Ei Itobayashi
- Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
| | - Shinya Fukunishi
- Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kunihiko Tsuji
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toru Ishikawa
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | - Hironori Ochi
- Center for Liver-Biliary-Pancreatic Disease, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Chikara Ogawa
- Department of Gastroenterology, Japanese Red Cross Takamatsu Hospital, Takamatsu, Japan
| | - Takashi Nishimura
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Noritomo Shimada
- Division of Gastroenterology and Hepatology, Otakanomori Hospital, Kashiwa, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Takaaki Tanaka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Hideko Ohama
- Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Hepatology, Kagawa University, Kagawa, Japan
| | - Akemi Tsutsui
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Takuya Nagano
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Norio Itokawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Tomomi Okubo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Taeang Arai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Michitaka Imai
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shinichiro Nakamura
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Kouji Joko
- Center for Liver-Biliary-Pancreatic Disease, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takashi Kumada
- Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | | |
Collapse
|
59
|
Tang M, Zhao Y, Zhao J, Wei S, Liu M, Zheng N, Geng D, Han S, Zhang Y, Zhong G, Li S, Zhang X, Wang C, Yan H, Cao X, Li L, Bai X, Ji J, Feng XH, Qin J, Liang T, Zhao B. Liver cancer heterogeneity modeled by in situ genome editing of hepatocytes. SCIENCE ADVANCES 2022; 8:eabn5683. [PMID: 35731873 PMCID: PMC9216519 DOI: 10.1126/sciadv.abn5683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mechanistic study and precision treatment of primary liver cancer (PLC) are hindered by marked heterogeneity, which is challenging to recapitulate in any given liver cancer mouse model. Here, we report the generation of 25 mouse models of PLC by in situ genome editing of hepatocytes recapitulating 25 single or combinations of human cancer driver genes. These mouse tumors represent major histopathological types of human PLCs and could be divided into three human-matched molecular subtypes based on transcriptomic and proteomic profiles. Phenotypical characterization identified subtype- or genotype-specific alterations in immune microenvironment, metabolic reprogramming, cell proliferation, and expression of drug targets. Furthermore, single-cell analysis and expression tracing revealed spatial and temporal dynamics in expression of pyruvate kinase M2 (Pkm2). Tumor-specific knockdown of Pkm2 by multiplexed genome editing reversed the Warburg effect and suppressed tumorigenesis in a genotype-specific manner. Our study provides mouse PLC models with defined genetic drivers and characterized phenotypical heterogeneity suitable for mechanistic investigation and preclinical testing.
Collapse
Affiliation(s)
- Mei Tang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jianhui Zhao
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Didi Geng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shixun Han
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yuchao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Guoxuan Zhong
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuaifeng Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiuming Zhang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chenliang Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Huan Yan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaolei Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueli Bai
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Tingbo Liang
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. (T.L.); (B.Z.)
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Corresponding author. (T.L.); (B.Z.)
| |
Collapse
|
60
|
Li X, Cui K, Xiu M, Zhou C, Li L, Zhang J, Hao S, Zhang L, Ge S, Huang Y, Yu J. In situ growth of WO 3/BiVO 4 nanoflowers onto cellulose fibers to construct photoelectrochemical/colorimetric lab-on-paper devices for the ultrasensitive detection of AFP. J Mater Chem B 2022; 10:4031-4039. [PMID: 35506741 DOI: 10.1039/d2tb00297c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, novel dual-mode lab-on-paper devices based on in situ grown WO3/BiVO4 heterojunctions onto cellulose fibers, as signal amplification probes, were successfully fabricated by the integration of photoelectrochemical (PEC)/colorimetric analysis technologies into a paper sensing platform for the ultrasensitive detection of alpha-fetoprotein (AFP). Specifically, to achieve an impressive PEC performance of the lab-on-paper device, the WO3/BiVO4 heterojunction was in situ grown onto the surface of cellulose fibers assisted with Au nanoparticle (Au NP) functionalization for enhancing the conductivity of the working zone of the device. With the target concentration increased, more immune conjugates could be captured by the proposed paper photoelectrode, which could lead to a quantitative decrease in the photocurrent intensity, eventually realizing the accurate PEC signal readout. To meet the requirement of end-user application, a colorimetric signal readout system was designed for the lab-on-paper device based on the color reaction of 3,3'5,5'-tetramethylbenzidine (TMB) oxidized by WO3/BiVO4 nanoflowers in the presence of H2O2. Noticeably, it is the first time that the WO3/BiVO4 heterojunction is in situ grown onto cellulose fibers, which enhances the sensitivity in view of both their PEC activity and catalytic ability. By controlling the conversion process of hydrophobicity and hydrophilicity on the lab-on-paper device combined with diverse origami methods, the dual-mode PEC/colorimetric signal output for the ultrasensitive AFP detection was realized. Under optimal conditions, the proposed dual-mode lab-on-paper device could enable the sensitive PEC/colorimetric diagnosis of AFP in the linear range of 0.09-100 ng mL-1 and 5-100 ng mL-1 with the limit of detection of 0.03 and 1.47 ng mL-1, respectively.
Collapse
Affiliation(s)
- Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Chenxi Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Guangdong 523808, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, P. R. China
| | - Shenguang Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
61
|
Zhou L, Ma S. Deciphering cancer stem cells in liver cancers: new tools with improved resolution. Carcinogenesis 2022; 43:297-300. [PMID: 35262641 DOI: 10.1093/carcin/bgac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the major form of liver cancer in the world with the highest prevalence in Asia. Intra-tumoral heterogeneity is a fundamental characteristic of liver cancer that impacts on its disease progression and treatment response. The cancer stem cell (CSC) subpopulation is one of the driving forces of tumor cell heterogeneity because it can regenerate cells of different properties as to maintain the tumor bulk of origin. Tremendous effort has been made in the past two decades to identify liver CSCs and promote corresponding treatment strategies for HCC. From xenotransplantation and lineage tracing techniques to the current state-of-the-art single-cell sequencing technologies, advances in research tools fuel the exciting new discoveries in the field of CSCs. In particular, single-cell analysis has spearheaded a new era, with the ability to detect heterogeneity, cellular dynamics, and transition of CSCs and their progenies at a high resolution. This commentary attempts to briefly review the evolution of tools to evaluate CSCs in liver cancers, discuss their contributions and limitations, as well as their combined and complementary utilization with techniques like human tumor organoid culture. By recognizing the shortcomings of each technique, we can reassess the blind spots of CSC studies and with this knowledge, hopefully contribute to a better understanding of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong.,The University of Hong Kong-Shenzhen Hospital
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong.,The University of Hong Kong-Shenzhen Hospital.,State Key Laboratory of Liver Research, The University of Hong Kong
| |
Collapse
|
62
|
Facile Synthesis of NaYF4:Yb Up-Conversion Nanoparticles Modified with Photosensitizer and Targeting Antibody for In Vitro Photodynamic Therapy of Hepatocellular Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4470510. [PMID: 35399855 PMCID: PMC8984067 DOI: 10.1155/2022/4470510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Rare Earth up-conversion nanoparticles NaYF4:20%Yb,2%Er@PEI (UCNPs) were generated via a one-step hydrothermal technique at relatively reduced temperatures. Photosensitizer Ce6 and anti-EpCAM, a highly expressed monoclonal antibody in cancer stem cells of hepatocellular carcinoma, were linked to UCNP surfaces via the formation of amide linkage between carboxyl from Ce6 or anti-EpCAM and abundant amino from PEI, leading to the formation of Ps-Ce6 and anti-EpCAM-UCNPs-Ce6 nanoparticles. The synthesized nanoparticles characterized by XRD, TEM, and IR, and their zeta potential, ROS generation ability, Ce6 loading rate, and up-conversion fluorescence properties were investigated. It has been revealed that all the products were uniformly dispersed nanoparticles (25–32 nm), which crystallized primarily as hexagonal structures, and their up-conversion fluorescence spectra were similar to that of NaYF4:20%Yb,2%Er. The Ce6 loading rate in the anti-EpCAM-UCNPs-Ce6 nanoparticles was about 2.9%, thereby resulting in good ROS generation ability. For anti-EpCAM-UCNPs-Ce6, the biosafety, targeting effect, and PDT effect exposed under near-infrared (NIR) laser (980 nm) were evaluated using human liver cancer cells (BEL-7404). The results showed that it has good biocompatibility and biosafety as well as high targeting and PDT treatment efficiencies, which renders it a potential experimental material for the near-infrared PDT study.
Collapse
|
63
|
Lin Z, Xu Q, Song X, Zeng Y, Zeng L, Zhao L, Xu J, Miao D, Chen Z, Yu F. Comprehensive Analysis Identified Mutation-Gene Signature Impacts the Prognosis Through Immune Function in Hepatocellular Carcinoma. Front Oncol 2022; 12:748557. [PMID: 35311113 PMCID: PMC8931204 DOI: 10.3389/fonc.2022.748557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a life-threatening and refractory malignancy with poor outcome. Genetic mutations are the hallmark of cancer. Thus far, there is no comprehensive prognostic model constructed by mutation-gene transcriptome in HCC. The prognostic value of mutation-gene signature in HCC remains elusive.MethodsRNA expression profiles and the corresponding clinical information were recruited from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was employed to establish gene signature. Kaplan–Meier curve and time-dependent receiver operating characteristic curve were implemented to evaluate the prognostic value. The Wilcoxon test was performed to analyze the expression of immune checkpoint genes, cell cycle genes, and tumor drug resistance genes in different risk groups. Finally, quantitative real-time PCR (qRT-RCR) and immunohistochemistry (IHC) were performed to validate the mRNA and protein expression between HCC and adjacent nontumorous tissues in an independent cohort.ResultsA prognostic model consisting of five mutated genes was established by LASSO Cox regression analysis. The prognostic model classified patients into high- and low-risk groups. Compared with the low‐risk group, patients in the high‐risk group had significantly worse survival results. The prognostic model can accurately predict the overall survival of HCC patients and predict overall survival more accurately when combined with stage. Furthermore, the immune checkpoint genes, cell cycle genes, and tumor drug resistance genes were higher expressed in the high-risk group compared in the low-risk group. In addition, the expression level of prognostic signature genes was validated in an independent sample cohort, which was consistent with RNA sequencing expression in the TCGA database.ConclusionThe prediction model of HCC constructed using mutation-related genes is of great significance for clinical decision making and the personalized treatment of patients with HCC.
Collapse
Affiliation(s)
- Zhuo Lin
- Laboratory Animal Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Song
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Miao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fujun Yu, ; Zhuoyan Chen,
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fujun Yu, ; Zhuoyan Chen,
| |
Collapse
|
64
|
Suda T, Yamashita T, Sunagozaka H, Okada H, Nio K, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Kaneko S. Dickkopf-1 Promotes Angiogenesis and is a Biomarker for Hepatic Stem Cell-like Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23052801. [PMID: 35269944 PMCID: PMC8911428 DOI: 10.3390/ijms23052801] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer stemness evinces interest owing to the resulting malignancy and poor prognosis. We previously demonstrated that hepatic stem cell-like hepatocellular carcinoma (HpSC-HCC) is associated with high vascular invasion and poor prognosis. Dickkopf-1 (DKK-1), a Wnt signaling regulator, is highly expressed in HpSC-HCC. Here, we assessed the diagnostic and prognostic potential of serum DKK-1. Its levels were significantly higher in 391 patients with HCC compared with 205 patients with chronic liver disease. Receiver operating characteristic curve analysis revealed the optimal cutoff value of DKK-1 to diagnose HCC and predict the 3-year survival as 262.2 and 365.9 pg/mL, respectively. HCC patients with high-serum DKK-1 levels showed poor prognosis. We evaluated the effects of anti-DKK-1 antibody treatment on tumor growth in vivo and of recombinant DKK-1 on cell proliferation, invasion, and angiogenesis in vitro. DKK-1 knockdown decreased cancer cell proliferation, migration, and invasion. DKK-1 supplementation promoted angiogenesis in vitro; this effect was abolished by an anti-DKK-1 antibody. Co-injection of the anti-DKK-1 antibody with Huh7 cells inhibited their growth in NOD/SCID mice. Thus, DKK-1 promotes proliferation, migration, and invasion of HCC cells and activates angiogenesis in vascular endothelial cells. DKK-1 is a prognostic biomarker for HCC and a functional molecule for targeted therapy.
Collapse
|
65
|
Motawi TMK, Sadik NAH, Sabry D, Fahim SA, Shahin NN. rs62139665 Polymorphism in the Promoter Region of EpCAM Is Associated With Hepatitis C Virus-Related Hepatocellular Carcinoma Risk in Egyptians. Front Oncol 2022; 11:754104. [PMID: 35070966 PMCID: PMC8766815 DOI: 10.3389/fonc.2021.754104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a universal health problem that is particularly alarming in Egypt. The major risk factor for HCC is hepatitis C virus (HCV) infection which is a main burden in Egypt. The epithelial cell adhesion molecule (EpCAM) is a stem cell marker involved in the tumorigenesis and progression of many malignancies, including HCC. We investigated the association of -935 C/G single nucleotide polymorphism in EpCAM promoter region (rs62139665) with HCC risk, EpCAM expression and overall survival in Egyptians. A total of 266 patients (128 HCV and 138 HCC cases) and 117 age- and sex-matched controls participated in this study. Genotyping, performed using allelic discrimination and confirmed by sequencing, revealed a significant association between EpCAM rs62139665 and HCC susceptibility, with higher GG genotype and G allele distribution in HCC patients than in non-HCC subjects. Such association was not detected in HCV patients compared to controls. EpCAM gene expression levels, determined in blood by RT-qPCR, and its serum protein expression levels, determined by ELISA, were significantly higher in GG relative to GC+CC genotype carriers in HCV and HCC patients in a recessive model. ROC analysis of EpCAM protein levels revealed significant discriminatory power between HCC patients and non-HCC subjects, with improved diagnostic accuracy when combining α-fetoprotein and EpCAM compared to that of α-fetoprotein alone. Altogether, EpCAM rs62139665 polymorphism is significantly associated with HCC and with EpCAM gene and protein expression levels in the Egyptian population. Moreover, serum EpCAM levels may hold promise for HCC diagnosis and for improving the diagnostic accuracy of α-fetoprotein.
Collapse
Affiliation(s)
| | | | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt.,Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sally Atef Fahim
- Biochemistry Department, School of Pharmacy, Newgiza University (NGU), Cairo, Egypt
| | - Nancy Nabil Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
66
|
Hu X, Chen R, Wei Q, Xu X. The Landscape Of Alpha Fetoprotein In Hepatocellular Carcinoma: Where Are We? Int J Biol Sci 2022; 18:536-551. [PMID: 35002508 PMCID: PMC8741863 DOI: 10.7150/ijbs.64537] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and has been acknowledged as a leading cause of death among cirrhosis patients. Difficulties in early diagnosis and heterogeneity are obstacles to effective treatment, especially for advanced HCC. Liver transplantation (LT) is considered the best therapy for HCC. Although many biomarkers are being proposed, alpha-fetoprotein (AFP), which was identified over 60 years ago, remains the most utilized. Recently, much hope has been placed in the immunogenicity of AFP to develop novel therapies, such as AFP vaccines and AFP-specific adoptive T-cell transfer (ACT). This review summarizes the performance of AFP as a biomarker for HCC diagnosis and prognosis, as well as its correlation with molecular classes. In addition, the role of AFP in LT is also described. Finally, we highlight the mechanism and application prospects of two immune therapies (AFP vaccine and ACT) for HCC. In general, our review points out the prevalence of AFP in HCC, accompanied by some controversies and novel directions for future research.
Collapse
Affiliation(s)
- Xin Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Zhejiang University Cancer Center, Hangzhou, 310058, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Zhejiang University Cancer Center, Hangzhou, 310058, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
67
|
Zhang H, Zhang W, Jiang L, Chen Y. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark Res 2022; 10:3. [PMID: 35000616 PMCID: PMC8744248 DOI: 10.1186/s40364-021-00350-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumors in the world. Therapeutic options for advanced HCC are limited. Systemic treatment, especially with conventional cytotoxic drugs, is usually ineffective. For more than a decade, sorafenib has been the only systemic drug that has been proven to be clinically effective for treating advanced HCC. However, over the past three years, the rapid progress of molecular targeted therapies has dramatically changed the treatment landscape for advanced HCC. Immune checkpoint therapies are now being incorporated into HCC therapies, and their combination with molecular targeted therapy is emerging as a tool to enhance the immune response. In this review, we summarize the development and progress of molecular targeted agents and immunotherapies in HCC.
Collapse
Affiliation(s)
- Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wuyang Zhang
- Clinical skills training center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
68
|
Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol 2022; 19:26-44. [PMID: 34504325 DOI: 10.1038/s41575-021-00508-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive disease with a poor clinical outcome. The cancer stem cell (CSC) model states that tumour growth is powered by a subset of tumour stem cells within cancers. This model explains several clinical observations in HCC (as well as in other cancers), including the almost inevitable recurrence of tumours after initial successful chemotherapy and/or radiotherapy, as well as the phenomena of tumour dormancy and treatment resistance. The past two decades have seen a marked increase in research on the identification and characterization of liver CSCs, which has encouraged the design of novel diagnostic and treatment strategies for HCC. These studies revealed novel aspects of liver CSCs, including their heterogeneity and unique immunobiology, which are suggestive of opportunities for new research directions and potential therapies. In this Review, we summarize the present knowledge of liver CSC markers and the regulators of stemness in HCC. We also comprehensively describe developments in the liver CSC field with emphasis on experiments utilizing single-cell transcriptomics to understand liver CSC heterogeneity, lineage-tracing and cell-ablation studies of liver CSCs, and the influence of the CSC niche and tumour microenvironment on liver cancer stemness, including interactions between CSCs and the immune system. We also discuss the potential application of liver CSC-based therapies for treatment of HCC.
Collapse
|
69
|
An L, Liao H, Yuan K. Efficacy and Safety of Second-line Treatments in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: A Meta-analysis. J Clin Transl Hepatol 2021; 9:868-877. [PMID: 34966650 PMCID: PMC8666373 DOI: 10.14218/jcth.2021.00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS In the last decade, several second-line therapies followed by sorafenib in patients with advanced hepatocellular carcinoma (HCC) have been reported. But the outcomes were different from each other. This meta-analysis aimed to evaluate the efficacy and safety of the second-line therapies followed by sorafenib in patients with advanced HCC. METHODS Embase (1974 to October 2019) and Ovid MEDLINE (1946 to October 2019) were searched for randomized clinical trials on second-line therapies followed by sorafenib in patients with advanced HCC. The quality of each study was assessed by the modified Jadad scale. Statistical analysis was carried out by RevMan5.3 software. Efficacy and safety were analyzed. Efficacy included overall survival (OS), disease control rate, time to progression, and progression-free survival. RESULTS Eight studies involving 3,173 patients were eligible. No difference in OS was found between the second-line treatment group and the control group (HR=0.87, 95% CI: 0.74-1.01, p=0.06). Disease control rate (relative risk (RR)=1.36, 95% CI: 1.16-1.60, p=0.0002), time to progression (HR=0.64, 95% CI: 0.51-0.81, p=0.0002) and progression-free survival (HR=0.60, 95% CI: 0.46-0.77, p<0.0001) were significantly improved by the second-line therapies. There was a slight difference in adverse events of any grade (RR=1.07, 95% CI: 1.00-1.14, p=0.03) between the two groups. CONCLUSIONS These second-line therapies followed by sorafenib may potentially improve the prognosis in patients with advanced HCC. Compared with other second-line therapies, regorafenib seemed to be more effective.
Collapse
Affiliation(s)
- Limin An
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Haotian Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Correspondence to: Kefei Yuan, Laboratory of Liver Surgery, West China Hospital, Sichuan University, 37 Guoxue lane, Wuhou District, Chengdu, Sichuan 610041, China. ORCID: https://orcid.org/0000-0003-4308-7743. Tel: +86-28-8542-2114, Fax: +86-28-8558-2944, E-mail:
| |
Collapse
|
70
|
Zou C, El Dika I, Vercauteren KOA, Capanu M, Chou J, Shia J, Pilet J, Quirk C, Lalazar G, Andrus L, Kabbani M, Yaqubie A, Khalil D, Mergoub T, Chiriboga L, Rice CM, Abou‐Alfa GK, de Jong YP. Mouse characteristics that affect establishing xenografts from hepatocellular carcinoma patient biopsies in the United States. Cancer Med 2021; 11:602-617. [PMID: 34951132 PMCID: PMC8817074 DOI: 10.1002/cam4.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chenhui Zou
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Imane El Dika
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Koen O. A. Vercauteren
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Joanne Chou
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jinru Shia
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jill Pilet
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Cellular Biophysics The Rockefeller University New York New York USA
| | - Linda Andrus
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Amin Yaqubie
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| | - Danny Khalil
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Taha Mergoub
- Memorial Sloan Kettering Cancer Center Sloan Kettering Institute New York New York USA
| | - Luis Chiriboga
- Department of Pathology Center for Biospecimen Research and Development NYU Langone Health New York New York USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Ghassan K. Abou‐Alfa
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| |
Collapse
|
71
|
Role of Biobanks for Cancer Research and Precision Medicine in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1232-1247. [PMID: 34807351 DOI: 10.1007/s12029-021-00759-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a highly complex and deadly cancer. There is an urgent need for new and effective treatment modalities. Since the primary goal in the management of cancer is to cure and improve survival, personalized therapy can increase survival, reduce mortality rates, and improve quality of life. Biobanks hold potential in leading to breakthroughs in biomedical research and precision medicine (PM). They serve as a biorepository, collecting, processing, storing, and supplying specimens and relevant data for basic, translational, and clinical research. OBJECTIVE We aimed to highlight the fundamental role of biobanks, harboring high quality, sustainable collections of patient samples in adequate size and variability, for developing diagnostic, prognostic, and predictive biomarkers to develop and PM approaches in the management of HCC. METHOD We obtained information from previously published articles and BBMRI directory. RESULTS AND CONCLUSION Biobanking of high-quality biospecimens along with patient clinical information provides a fundamental scientific infrastructure for basic, translational, and clinical research. Biobanks that control and eliminate pre-analytical variability of biospecimens, provide a platform to identify reliable biomarkers for the application of PM. We believe, establishing HCC biobanks will empower to underpin molecular mechanisms of HCC and generate strategies for PM. Thus, first, we will review current therapy approaches in HCC care. Then, we will summarize challenges in HCC management. Lastly, we will focus on the best practices for establishing HCC biobanking to support research, translational medicine in the light of new experimental research conducted with the aim of delivering PM for HCC patients.
Collapse
|
72
|
Recent updates on chimeric antigen receptor T cell therapy for hepatocellular carcinoma. Cancer Gene Ther 2021; 28:1075-1087. [PMID: 33500535 DOI: 10.1038/s41417-020-00259-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/30/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is novel tumor immunotherapy that enables T cells to specifically recognize tumor-associated antigens through genetic engineering technology, thus exerting antitumor effects, and it has achieved encouraging outcomes in leukemia and lymphoma. Building on excellent progress, CAR-T therapy is also expected to work well in solid tumors. Hepatocellular carcinoma (HCC), the most common primary liver cancer, is usually diagnosed at an advanced stage. Current management options for HCC remain limited, and although previous studies have indicated the feasibility of CAR-T cells, ideal therapeutic effects have not yet been achieved. This is, in part, due to the heterogeneity of tumor antigens, high intratumor pressure, immunosuppressive microenvironment, CAR-T cell exhaustion, and serious adverse reactions, which compromise the therapeutic efficiency of CAR-T immunotherapy in HCC. To overcoming these challenges, many ongoing preclinical and clinical studies were conducted. This review summarizes current CAR-T therapy targets in the treatment of HCC, discusses current obstacles and possible solutions in the process, and describes potential strategies to improve the efficacy of CAR-T cells for patients with HCC.
Collapse
|
73
|
Zhai W, Lai H, Kaya NA, Chen J, Yang H, Lu B, Lim JQ, Ma S, Chew SC, Chua KP, Alvarez JJS, Chen PJ, Chang MM, Wu L, Goh BKP, Chung AYF, Chan CY, Cheow PC, Lee SY, Kam JH, Kow AWC, Ganpathi IS, Chanwat R, Thammasiri J, Yoong BK, Ong DBL, de Villa VH, Dela Cruz RD, Loh TJ, Wan WK, Zeng Z, Skanderup AJ, Pang YH, Madhavan K, Lim TKH, Bonney G, Leow WQ, Chew V, Dan YY, Tam WL, Toh HC, Foo RSY, Chow PKH. Dynamic phenotypic heterogeneity and the evolution of multiple RNA subtypes in hepatocellular carcinoma: the PLANET study. Natl Sci Rev 2021; 9:nwab192. [PMID: 35382356 PMCID: PMC8973408 DOI: 10.1093/nsr/nwab192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for hepatocellular carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% of patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types.
Collapse
Affiliation(s)
- Weiwei Zhai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Hannah Lai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Neslihan Arife Kaya
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Hechuan Yang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Bingxin Lu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Jia Qi Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Siming Ma
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Sin Chi Chew
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Khi Pin Chua
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | | | - Pauline Jieqi Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Mei Mei Chang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Lingyan Wu
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Brian K P Goh
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Alexander Yaw-Fui Chung
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Chung Yip Chan
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Peng Chung Cheow
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Ser Yee Lee
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Juinn Huar Kam
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Alfred Wei-Chieh Kow
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Iyer Shridhar Ganpathi
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Rawisak Chanwat
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgery, National Cancer Institute, Bangkok 10310, Thailand
| | - Jidapa Thammasiri
- Division of Pathology, National Cancer Institute, Bangkok 10400, Thailand
| | - Boon Koon Yoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 59100, Malaysia
| | - Diana Bee-Lan Ong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 59100, Malaysia
| | - Vanessa H de Villa
- Department of Surgery and Center for Liver Disease Management and Transplantation, The Medical City, Pasig City, Metro Manila, Philippines
| | | | - Tracy Jiezhen Loh
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Wei Keat Wan
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Zeng Zeng
- Institute for Infocomm Research, ASTAR, Singapore 138632, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Yin Huei Pang
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Krishnakumar Madhavan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Tony Kiat-Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Glenn Bonney
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Wei Qiang Leow
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore 119228, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Center Singapore, Singapore 169610, Singapore
| | - Roger Sik-Yin Foo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Pierce Kah-Hoe Chow
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| |
Collapse
|
74
|
Molecular classification of hepatocellular carcinoma: prognostic importance and clinical applications. J Cancer Res Clin Oncol 2021; 148:15-29. [PMID: 34623518 DOI: 10.1007/s00432-021-03826-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal human malignancy with a very low overall and long-term survival rate. Poor prognostic outcomes are predominantly associated with HCC due to a huge landscape of heterogeneity found in the deadliest disease. However, molecular subtyping of HCC has significantly improved the knowledge of the underlying mechanisms that contribute towards the heterogeneity and progression of the disease. In this review, we have extensively summarized the current information available about molecular classification of HCC. This review can be of great significance for providing the insight information needed for development of novel, efficient and personalized therapeutic options for the treatment of HCC patients globally.
Collapse
|
75
|
Fowler KJ, Burgoyne A, Fraum TJ, Hosseini M, Ichikawa S, Kim S, Kitao A, Lee JM, Paradis V, Taouli B, Theise ND, Vilgrain V, Wang J, Sirlin CB, Chernyak V. Pathologic, Molecular, and Prognostic Radiologic Features of Hepatocellular Carcinoma. Radiographics 2021; 41:1611-1631. [PMID: 34597222 DOI: 10.1148/rg.2021210009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with variable biologic aggressiveness based on the tumor grade, presence or absence of vascular invasion, and pathologic and molecular classification. Knowledge and understanding of the prognostic implications of different pathologic and molecular phenotypes of HCC are emerging, with therapeutics that promise to provide improved outcomes in what otherwise remains a lethal cancer. Imaging has a central role in diagnosis of HCC. However, to date, the imaging algorithms do not incorporate prognostic features or subclassification of HCC according to its biologic aggressiveness. Emerging data suggest that some imaging features and further radiologic, pathologic, or radiologic-molecular phenotypes may allow prediction of the prognosis of patients with HCC. An invited commentary by Bashir is available online. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Kathryn J Fowler
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Adam Burgoyne
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Tyler J Fraum
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Mojgan Hosseini
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Shintaro Ichikawa
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Sooah Kim
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Azusa Kitao
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Jeong Min Lee
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Valérie Paradis
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Bachir Taouli
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Neil D Theise
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Valérie Vilgrain
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Jin Wang
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Claude B Sirlin
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Victoria Chernyak
- From the Departments of Radiology (K.J.F., C.B.S.), Medicine (A.B.), and Pathology (M.H.), University of California San Diego, 200 W Arbor Dr, #8756, San Diego, CA 92103; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.J.F.); Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan (S.I.); Departments of Radiology (S.K.) and Pathology (N.D.T.), New York University Grossman School of Medicine, New York, NY; Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan (A.K.); Department of Radiology, Seoul National University Hospital, Seoul, Korea (J.M.L.); Service d'Anatomie Pathologique, Université de Paris, Hôpital Beaujon APHP, Clichy, France (V.P.); Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); Université de Paris, INSERM U1149 "Centre de Recherche sur l'Inflammation," Paris, France (V.V.); Department of Radiology, AP-HP, Hôpital Beaujon APHP Nord, Clichy, France (V.V.); Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (J.W.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| |
Collapse
|
76
|
The Relevance of SOCS1 Methylation and Epigenetic Therapy in Diverse Cell Populations of Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11101825. [PMID: 34679523 PMCID: PMC8534387 DOI: 10.3390/diagnostics11101825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
The suppressor of cytokine signaling 1 (SOCS1) is a tumor suppressor gene found to be hypermethylated in cancers. It is involved in the oncogenic transformation of cirrhotic liver tissues. Here, we investigated the clinical relevance of SOCS1 methylation and modulation upon epigenetic therapy in diverse cellular populations of hepatocellular carcinoma (HCC). HCC clinical specimens were evaluated for SOCS1 methylation and mRNA expression. The effect of 5-Azacytidine (5-AZA), a demethylation agent, was assessed in different subtypes of HCC cells. We demonstrated that the presence of SOCS1 methylation was significantly higher in HCC compared to peri-HCC and non-tumoral tissues (52% vs. 13% vs. 14%, respectively, p < 0.001). In vitro treatment with a non-toxic concentration of 5-AZA significantly reduced DNMT1 protein expression for stromal subtype lines (83%, 73%, and 79%, for HLE, HLF, and JHH6, respectively, p < 0.01) compared to cancer stem cell (CSC) lines (17% and 10%, for HepG2 and Huh7, respectively), with the strongest reduction in non-tumoral IHH cells (93%, p < 0.001). 5-AZA modulated the SOCS1 expression in different extents among the cells. It was restored in CSC HCC HepG2 and Huh7 more efficiently than sorafenib. This study indicated the relevance of SOCS1 methylation in HCC and how cellular heterogeneity influences the response to epigenetic therapy.
Collapse
|
77
|
Lenvatinib with or without immune checkpoint inhibitors for patients with unresectable hepatocellular carcinoma in real-world clinical practice. Cancer Immunol Immunother 2021; 71:1063-1074. [PMID: 34559308 DOI: 10.1007/s00262-021-03060-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/13/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Lenvatinib is regarded as the first-line therapy for patients with unresectable hepatocellular carcinoma (HCC). This study assessed the efficacy and safety of lenvatinib with or without immune checkpoint inhibitors (ICIs) in patients with unresectable HCC. METHODS In this multicentric retrospective study, patients with unresectable HCC who treated with lenvatinib with or without ICIs would be enrolled. Overall survival, progression-free survival, objective response rate, and disease control rate were calculated to assess the antitumor response. RESULTS Between January 2019 and August 2020, 65 patients received lenvatinib plus ICIs while other 45 patients received lenvatinib. The baseline characteristics were comparable between the two groups. Lenvatinib plus ICIs provided significantly higher overall survival (hazard ratio = 0.47, 95% CI 0.26-0.85; p = 0.013) and progression-free survival (hazard ratio = 0.35, 95% CI 0.20-0.63; p < 0.001) than lenvatinib monotherapy. Moreover, patients with lenvatinib plus ICIs had significantly higher objective response rate (41.5% vs 20.0%, p = 0.023) and disease control rate (72.3% vs 46.7%, p = 0.009) per RECIST v1.1 than those with lenvatinib. No treatment-related deaths were observed. Grade 3 or greater adverse events occurring in 10% or more of patients in either treatment group were hypertension [13 (20.0%) of 65 patients treated with lenvatinib plus ICIs vs 8 (17.8%) of 45 patients treated with lenvatinib], and palmar-plantar erythrodysesthesia [seven (10.8%) vs two (4.4%)]. CONCLUSIONS In this real-world study, lenvatinib combined with ICIs showed significantly promising efficacy and manageable safety than lenvatinib alone in patients with unresectable HCC.
Collapse
|
78
|
Pathak S, Sonbol MB. Second-Line Treatment Options for Hepatocellular Carcinoma: Current Landscape and Future Direction. J Hepatocell Carcinoma 2021; 8:1147-1158. [PMID: 34584898 PMCID: PMC8464222 DOI: 10.2147/jhc.s268314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is a leading cause of mortality worldwide, and its incidence is rising. The last few years have witnessed a proliferation of available systemic therapeutic options, with the approval of multiple agents, including immune checkpoint inhibitors and drugs targeting vascular endothelial growth factor, such as cabozantinib, regorafenib, and ramucirumab. Most recently, the combination of atezolizumab plus bevacizumab has resulted in the longest overall survival yet known in hepatocellular carcinoma, therefore changing the preferred first-line treatment from the previous options of sorafenib and lenvatinib. The aim of this review is to summarize the available clinical data for the current second-line systemic treatment options and the future perspectives in the treatment landscape of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Surabhi Pathak
- Hematology-Oncology, King’s Daughters Medical Center, Ashland, KY, USA
| | - Mohamad Bassam Sonbol
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic Cancer Center, Phoenix, AZ, USA
| |
Collapse
|
79
|
Hepatic Cancer Stem Cells: Molecular Mechanisms, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2021; 13:cancers13184550. [PMID: 34572776 PMCID: PMC8472624 DOI: 10.3390/cancers13184550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. HCC is associated with multiple risk factors and is characterized by a marked tumor heterogeneity that makes its molecular classification difficult to apply in the clinics. The lack of circulating biomarkers for the diagnosis, prognosis, and prediction of response to treatments further undermines the possibility of developing personalized therapies. Accumulating evidence affirms the involvement of cancer stem cells (CSCs) in tumor heterogeneity, recurrence, and drug resistance. Owing to the contribution of CSCs to treatment failure, there is an urgent need to develop novel therapeutic strategies targeting, not only the tumor bulk, but also the CSC subpopulation. Clarification of the molecular mechanisms influencing CSC properties, and the identification of their functional roles in tumor progression, may facilitate the discovery of novel CSC-based therapeutic targets to be used alone, or in combination with current anticancer agents, for the treatment of HCC. Here, we review the driving forces behind the regulation of liver CSCs and their therapeutic implications. Additionally, we provide data on their possible exploitation as prognostic and predictive biomarkers in patients with HCC.
Collapse
|
80
|
Yim SY, Lee JS. An Overview of the Genomic Characterization of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1077-1088. [PMID: 34522690 PMCID: PMC8434863 DOI: 10.2147/jhc.s270533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor classifications based on alterations in the genome, epigenome, or proteome have revealed distinct tumor subgroups that are associated with clinical outcomes. Several landmark studies have demonstrated that such classifications can significantly improve patient outcomes by enabling tailoring of therapy to specific alterations in cancer cells. Since cancer cells accumulate numerous alterations in many cancer-related genes, it is a daunting task to find and confirm important cancer-promoting alterations as therapeutic targets or biomarkers that can predict clinical outcomes such as survival and response to treatments. To aid further advances, we provide here an overview of the current understanding of molecular and genomic subtypes of hepatocellular carcinoma (HCC). System-level integration of data from multiple studies and development of new technical platforms for analyzing patient samples hold great promise for the discovery of new targets for treatment and correlated biomarkers, leading to personalized medicine for treatment of HCC patients.
Collapse
Affiliation(s)
- Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
81
|
|
82
|
Yamashita T, Koshikawa N, Shimakami T, Terashima T, Nakagawa M, Nio K, Horii R, Iida N, Kawaguchi K, Arai K, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Kitao A, Kobayashi S, Takahara S, Imai Y, Yoshimura K, Murayama T, Nakamoto Y, Yoshida E, Yoshimura T, Seiki M, Kaneko S. Serum Laminin γ2 Monomer as a Diagnostic and Predictive Biomarker for Hepatocellular Carcinoma. Hepatology 2021; 74:760-775. [PMID: 33609304 DOI: 10.1002/hep.31758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUNDS AND AIMS Structural dynamics of basement membrane components are still to be elucidated in the process of hepatocarcinogenesis. We evaluated the characteristics of HCC expressing laminin γ2 monomer (LG2m), a basement membrane component not detected in normal tissues, for HCC diagnosis. We further determined whether elevated serum LG2m is a risk factor for HCC development in patients with chronic hepatitis C (CHC). APPROACH AND RESULTS In HCC cell lines, LG2m was expressed in alpha-fetoprotein (AFP)-negative, CD90-positive cells characterized by highly metastatic natures. Using 14 cell lines and 258 HCC microarray data, we identified that LG2m gene signature was associated with Hoshida's S1/Boyault's G3 molecular subclasses with poor prognosis, which could not be recognized by AFP. Serum LG2m was assessed in 24 healthy donors, 133 chronic liver disease patients, and 142 HCC patients, and sensitivity and specificity of LG2m testing for HCC diagnosis were 62.9% and 70.5%, respectively (cutoff, 30 pg/mL). We evaluated the consequence of LG2m elevation in two independent HCC cohorts (n = 47 and n = 81), and LG2m-high HCC showed poor prognosis with later development of distant organ metastasis (cutoff, 60 pg/mL). LG2m was slightly elevated in a subset of CHC patients, and Kaplan-Meier analysis indicated a high incidence of HCC (n = 70). For validation, we enrolled 399 CHC patients with sustained virological response (SVR) as a multicenter, prospective study, and serum LG2m elevation correlated with a high incidence of HCC in the CHC patients with SVR (P < 0.0001). CONCLUSIONS LG2m is a predictive biomarker for the development of metastatic HCC. Elevated serum LG2m is an HCC risk in CHC patients who have achieved SVR.
Collapse
Affiliation(s)
- Taro Yamashita
- Department of General MedicineKanazawa University HospitalKanazawaJapan.,Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | - Naohiko Koshikawa
- Division of Cancer Cell ResearchKanagawa Cancer Center Research InstituteYokohamaJapan.,Institute of Medical ScienceThe University of TokyoTokyoJapan.,Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Tetsuro Shimakami
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | - Takeshi Terashima
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | | | - Kouki Nio
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | - Rika Horii
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | - Noriho Iida
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | | | - Kuniaki Arai
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | - Yoshio Sakai
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | - Tatsuya Yamashita
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | - Eishiro Mizukoshi
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | - Masao Honda
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| | - Azusa Kitao
- Department of RadiologyKanazawa University HospitalKanazawaJapan
| | | | - Shizuko Takahara
- Innovative Clinical Research CenterKanazawa UniversityKanazawa, Kanazawa University HospitalKanazawaJapan
| | - Yasuhito Imai
- Innovative Clinical Research CenterKanazawa UniversityKanazawa, Kanazawa University HospitalKanazawaJapan
| | - Kenichi Yoshimura
- Innovative Clinical Research CenterKanazawa UniversityKanazawa, Kanazawa University HospitalKanazawaJapan.,Center for Integrated Medical ResearchHiroshima University HospitalHiroshimaJapan
| | - Toshinori Murayama
- Innovative Clinical Research CenterKanazawa UniversityKanazawa, Kanazawa University HospitalKanazawaJapan
| | - Yasunari Nakamoto
- Second Department of Internal MedicineUniversity of Fukui School of Medical SciencesYoshida-gunJapan
| | | | | | - Motoharu Seiki
- Faculty of MedicineInstitute of MedicalPharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Shuichi Kaneko
- Department of GastroenterologyKanazawa University HospitalKanazawaJapan
| |
Collapse
|
83
|
Sukowati CHC, El-Khobar KE, Tiribelli C. Immunotherapy against programmed death-1/programmed death ligand 1 in hepatocellular carcinoma: Importance of molecular variations, cellular heterogeneity, and cancer stem cells. World J Stem Cells 2021; 13:795-824. [PMID: 34367478 PMCID: PMC8316870 DOI: 10.4252/wjsc.v13.i7.795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy related to diverse etiological factors. Different oncogenic mechanisms and genetic variations lead to multiple HCC molecular classifications. Recently, an immune-based strategy using immune checkpoint inhibitors (ICIs) was presented in HCC therapy, especially with ICIs against the programmed death-1 (PD-1) and its ligand PD-L1. However, despite the success of anti-PD-1/PD-L1 in other cancers, a substantial proportion of HCC patients fail to respond. In this review, we gather current information on biomarkers of anti-PD-1/PD-L1 treatment and the contribution of HCC heterogeneity and hepatic cancer stem cells (CSCs). Genetic variations of PD-1 and PD-L1 are associated with chronic liver disease and progression to cancer. PD-L1 expression in tumoral tissues is differentially expressed in CSCs, particularly in those with a close association with the tumor microenvironment. This information will be beneficial for the selection of patients and the management of the ICIs against PD-1/PD-L1.
Collapse
Affiliation(s)
| | | | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| |
Collapse
|
84
|
Qureshi A, Michel M, Lerner J, Dasanu CA. Evolving therapeutic strategies for advanced hepatocellular carcinoma. Expert Opin Pharmacother 2021; 22:2495-2506. [PMID: 34252328 DOI: 10.1080/14656566.2021.1953473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: While sorafenib dominated the therapeutic arena in advanced hepatocellular carcinoma (HCC) for almost a decade, newer agents and combinations have been changing the therapeutic landscape in the last years.Areas covered: The authors outline the etiopathogenesis and evaluate the diagnostics in HCC, followed by a comprehensive review of the currently approved and experimental treatment approaches, with a focus on various systemic agents and combinations of agents. The manuscript was subdivided into relevant categories, thus making it applicable for both clinical practice and research endeavors.Expert opinion: Recently, combination therapies including immune checkpoint inhibitors with anti-VEGF/R agents have shown superior clinical efficacy in HCC. The Atezolizumab-bevacizumab combination is currently the preferred first-line therapy. Single-agents cabozantinib and regorafenib as well as nivolumab-ipilimumab combination are favored as second-line therapies. Further research is needed to identify the predictors of response to various treatments and establish the distinct patient profiles that will derive most benefit. Tumor mutation analysis and germline mutation testing could identify rational therapeutic targets in HCC in the near future. As the skyline for new therapeutic agents and combinations in HCC continues to expand, the outlook as of today is cautiously optimistic in this still difficult-to-treat malignant neoplastic disease.
Collapse
Affiliation(s)
- Ammar Qureshi
- Department of Internal Medicine, Eisenhower Health, Rancho Mirage, CA, USA
| | - Miguel Michel
- Department of Internal Medicine, Eisenhower Health, Rancho Mirage, CA, USA
| | - Jaren Lerner
- Department of Internal Medicine, Eisenhower Health, Rancho Mirage, CA, USA
| | - Constantin A Dasanu
- Department of Hematology-Oncology, Eisenhower Lucy Curci Cancer Center, Rancho Mirage, CA, USA.,Department of Hematology-Oncology, UC San Diego Health, San Diego, CA, USA
| |
Collapse
|
85
|
Negri F, Gnetti L, Pedrazzi G, Silini EM, Porta C. Sorafenib and hepatocellular carcinoma: is alpha-fetoprotein a biomarker predictive of tumor biology and primary resistance? Future Oncol 2021; 17:3579-3584. [PMID: 34155918 DOI: 10.2217/fon-2021-0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Alpha-fetoprotein (AFP) is the only biomarker with proven prognostic value in advanced hepatocellular carcinoma. Preliminary data indicate crosstalk between AFP and VEGF signaling. Methods: The authors looked at 69 patients with advanced hepatocellular carcinoma who were previously tested for VEGFR2 expression, had available baseline AFP serum concentrations and were treated with sorafenib within clinical trials. Results: Shorter progression-free survival and overall survival were associated with increased AFP level and elevated VEGFR2 staining. At multivariate analysis of AFP level was the only independent prognostic factor for progression-free survival and overall survival. Conclusion: The authors' study confirms the adverse prognostic role of elevated baseline AFP and also suggests a possible role of AFP in primary resistance to sorafenib therapy.
Collapse
Affiliation(s)
- Francesca Negri
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Letizia Gnetti
- Department of Medicine & Surgery, Unit of Pathological Anatomy, University Hospital of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine & Surgery, Unit of Neuroscience & Robust Statistics Academy, University of Parma, Parma, Italy
| | - Enrico Maria Silini
- Department of Medicine & Surgery, Unit of Pathological Anatomy, University Hospital of Parma, Parma, Italy
| | - Camillo Porta
- Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, Bari, Italy.,Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
86
|
Pomyen Y, Budhu A, Chaisaingmongkol J, Forgues M, Dang H, Ruchirawat M, Mahidol C, Wang XW. Tumor metabolism and associated serum metabolites define prognostic subtypes of Asian hepatocellular carcinoma. Sci Rep 2021; 11:12097. [PMID: 34103600 PMCID: PMC8187378 DOI: 10.1038/s41598-021-91560-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
Treatment effectiveness in hepatocellular carcinoma (HCC) depends on early detection and precision-medicine-based patient stratification for targeted therapies. However, the lack of robust biomarkers, particularly a non-invasive diagnostic tool, precludes significant improvement of clinical outcomes for HCC patients. Serum metabolites are one of the best non-invasive means for determining patient prognosis, as they are stable end-products of biochemical processes in human body. In this study, we aimed to identify prognostic serum metabolites in HCC. To determine serum metabolites that were relevant and representative of the tissue status, we performed a two-step correlation analysis to first determine associations between metabolic genes and tissue metabolites, and second, between tissue metabolites and serum metabolites among 49 HCC patients, which were then validated in 408 additional Asian HCC patients with mixed etiologies. We found that certain metabolic genes, tissue metabolites and serum metabolites can independently stratify HCC patients into prognostic subgroups, which are consistent across these different data types and our previous findings. The metabolic subtypes are associated with β-oxidation process in fatty acid metabolism, where patients with worse survival outcome have dysregulated fatty acid metabolism. These serum metabolites may be used as non-invasive biomarkers to define prognostic tumor molecular subtypes for HCC.
Collapse
Affiliation(s)
- Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jittiporn Chaisaingmongkol
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Division of Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA. .,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | | |
Collapse
|
87
|
Menz A, Bauer R, Kluth M, Marie von Bargen C, Gorbokon N, Viehweger F, Lennartz M, Völkl C, Fraune C, Uhlig R, Hube-Magg C, De Wispelaere N, Minner S, Sauter G, Kind S, Simon R, Burandt E, Clauditz T, Lebok P, Jacobsen F, Steurer S, Wilczak W, Krech T, Marx AH, Bernreuther C. Diagnostic and prognostic impact of cytokeratin 19 expression analysis in human tumors: a tissue microarray study of 13,172 tumors. Hum Pathol 2021; 115:19-36. [PMID: 34102222 DOI: 10.1016/j.humpath.2021.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
To evaluate cytokeratin 19 (CK19) expression in normal and cancerous tissues, 15,977 samples from 122 tumor types and 608 samples of 76 normal tissue types were analyzed by immunohistochemistry (IHC). In normal tissues, CK19 expression occurred in epithelial cells of most glandular organs but was strictly limited to the basal cell layer of nonkeratinizing squamous epithelium and absent in the skin. CK19 expression in ≥90% of cases was seen in 34% of the tumor entities including the adenocarcinomas of the pancreas (99.4%), colorectum (99.8%), esophagus (98.7%), and stomach (97.7%), as well as breast cancer (90.0%-100%), high-grade serous (99.1%) or endometrioid (97.8%) ovarian cancer, and urothelial carcinoma (92.6%-100%). A low CK19 positivity rate (0.1-10%) was seen in 5 of 122 tumor entities including hepatocellular carcinoma and seminoma. A comparison of tumor versus normal tissue findings demonstrated that upregulation and downregulation of CK19 can occur in cancer and that both alterations can be linked to unfavorable phenotypes. CK19 downregulation was linked to high grade (p = 0.0017) and loss of estrogen receptor- and progesterone receptor-expression (p < 0.0001 each) in invasive breast carcinoma of no special type. CK19 upregulation was linked to nodal metastases in neuroendocrine tumors and papillary thyroid carcinomas (p < 0.05 each) and to poor grade in clear cell renal cell carcinoma (p < 0.05). CK19 upregulation was particularly common in squamous cell carcinomas. We concluded that CK19 IHC might separate primary liver cell carcinoma from liver metastases, seminoma from other testicular tumors, and helps in the detection of early neoplastic transformation in squamous epithelium.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rifka Bauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Clara Marie von Bargen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cosima Völkl
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Noémi De Wispelaere
- Department and Clinic of Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
88
|
Singal AG, Hoshida Y, Pinato DJ, Marrero J, Nault JC, Paradis V, Tayob N, Sherman M, Lim YS, Feng Z, Lok AS, Rinaudo JA, Srivastava S, Llovet JM, Villanueva A. International Liver Cancer Association (ILCA) White Paper on Biomarker Development for Hepatocellular Carcinoma. Gastroenterology 2021; 160:2572-2584. [PMID: 33705745 PMCID: PMC8169638 DOI: 10.1053/j.gastro.2021.01.233] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Amit G Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, Texas.
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, Texas
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Jorge Marrero
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, Texas
| | - Jean-Charles Nault
- Service d'hépatologie, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France; Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 118 Functional Genomics of Solid Tumors Laboratory, F-75006, Paris, France
| | - Valerie Paradis
- Pathology Department, Beaujon hospital, Clichy, University Paris, France
| | - Nabihah Tayob
- Department of Data Science, Dana Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Young Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ziding Feng
- Biostatistics Program, Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
| | - Jo Ann Rinaudo
- Cancer Biomarker Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Sudhir Srivastava
- Cancer Biomarker Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Josep M Llovet
- Division of Liver Diseases and Hematology/Medical Oncology, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Catalonia, Spain; Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Augusto Villanueva
- Division of Liver Diseases and Hematology/Medical Oncology, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
89
|
Barcena-Varela M, Lujambio A. The Endless Sources of Hepatocellular Carcinoma Heterogeneity. Cancers (Basel) 2021; 13:2621. [PMID: 34073538 PMCID: PMC8198457 DOI: 10.3390/cancers13112621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents a global health problem. The incidence keeps increasing and current therapeutic options confer limited benefits to the patients. Tumor heterogeneity plays a central role in this context, limiting the availability of predictive biomarkers and complicating the criteria used to choose the most suitable therapeutic option. HCC heterogeneity occurs at different levels: within the population (inter-patient heterogeneity) and within tumors from the same patient (intra-patient and intra-tumor heterogeneity). Experts in the field have made many efforts to classify the patients based on clinicopathological characteristics and molecular signatures; however, there is still much work ahead to be able to integrate the extra-tumor heterogeneity that emerges from the complexity of the tumor microenvironment, which plays a critical role in the pathogenesis of the disease and therapy responses. In this review, we summarize tumor intrinsic and extrinsic sources of heterogeneity of the most common etiologies of HCC and summarize the most recent discoveries regarding the evolutionary trajectory of liver cancer cells and the influence of tumor-extrinsic factors such as the microbiome and the host immune system. We further highlight the potential of novel high-throughput methodologies to contribute to a better understanding of this devastating disease and to the improvement of the clinical management of patients.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
90
|
Yin F, Cao N, Xiang X, Feng H, Li F, Li M, Xia Q, Zuo X. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1159-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
91
|
Amado V, González-Rubio S, Zamora J, Alejandre R, Espejo-Cruz ML, Linares C, Sánchez-Frías M, García-Jurado G, Montero JL, Ciria R, Rodríguez-Perálvarez M, Ferrín G, De la Mata M. Clearance of Circulating Tumor Cells in Patients with Hepatocellular Carcinoma Undergoing Surgical Resection or Liver Transplantation. Cancers (Basel) 2021; 13:cancers13102476. [PMID: 34069569 PMCID: PMC8160727 DOI: 10.3390/cancers13102476] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In patients with hepatocellular carcinoma (HCC), a complete clearance of circulating tumor cells (CTCs) early after liver transplantation (LT) or surgical resection (LR) could prevent tumor recurrence. METHODS prospective pilot study including patients with HCC who underwent LR or LT from September 2017 to May 2020. Enumeration of CTCs was performed in peripheral blood samples (7 mL) using the Isoflux® system (Fluxion Biosciences) immediately before surgery, at post-operative day 5 and at day 30. A clinically relevant number of CTCs was defined as >30 CTCs/sample. RESULTS 41 HCC patients were included (mean age 58.7 ± 6.3; 82.9% male). LR was performed in 10 patients (24.4%) and 31 patients (75.6%) underwent LT. The main etiology of liver disease was chronic hepatitis C (31.7%). Patients undergoing LR and LT were similar in terms of preoperative CTC count (p = 0.99), but clearance of CTCs within the first month was more pronounced in the LT group. Clusters of CTCs at baseline were associated with incomplete clearance of CTCs at day 30 (54.2% vs. 11.8%, p = 0.005), which in turn impacted negatively on survival (p = 0.038). CONCLUSION Incomplete clearance of CTCs after surgery could be a surrogate marker of HCC aggressiveness.
Collapse
Affiliation(s)
- Víctor Amado
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain; (V.A.); (J.Z.); (R.A.); (J.L.M.); (M.D.l.M.)
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
| | - Sandra González-Rubio
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y digestivas (CIBERehd), 28029 Madrid, Spain
| | - Javier Zamora
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain; (V.A.); (J.Z.); (R.A.); (J.L.M.); (M.D.l.M.)
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
| | - Rafael Alejandre
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain; (V.A.); (J.Z.); (R.A.); (J.L.M.); (M.D.l.M.)
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
| | - María Lola Espejo-Cruz
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
| | - Clara Linares
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y digestivas (CIBERehd), 28029 Madrid, Spain
| | | | - Gema García-Jurado
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
| | - José Luis Montero
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain; (V.A.); (J.Z.); (R.A.); (J.L.M.); (M.D.l.M.)
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y digestivas (CIBERehd), 28029 Madrid, Spain
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
- Department of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain; (V.A.); (J.Z.); (R.A.); (J.L.M.); (M.D.l.M.)
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y digestivas (CIBERehd), 28029 Madrid, Spain
- Correspondence:
| | - Gustavo Ferrín
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel De la Mata
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain; (V.A.); (J.Z.); (R.A.); (J.L.M.); (M.D.l.M.)
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (S.G.-R.); (M.L.E.-C.); (C.L.); (G.G.-J.); (R.C.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
92
|
Hong YM, Yoon KT, Cho M. Systemic immune-inflammation index predicts prognosis of sequential therapy with sorafenib and regorafenib in hepatocellular carcinoma. BMC Cancer 2021; 21:569. [PMID: 34006248 PMCID: PMC8130266 DOI: 10.1186/s12885-021-08124-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Background Regorafenib has shown promising results as a second-line therapy for patients with hepatocellular carcinoma (HCC) who progressed on sorafenib. Although there have been several data regarding the efficacy of sequential therapy with sorafenib and that of regorafenib in real-life, specific inflammation markers for predicting the prognosis have not been studied. This study aimed to investigate prognostic value of systemic inflammatory markers in patients with HCC who received sorafenib-regorafenib sequential therapy. Methods We retrospectively analyzed medical data of patients who received regorafenib for the treatment of HCC after sorafenib failure. Progression free survival (PFS) and overall survival (OS) were assessed using the Kaplan–Meier survival curves. Univariate and multivariate analyses were performed to analyze the factors associated with survival. Results A total of 58 patients who received at least one dose of regroafenib and fulfilled the eligibility criteria, good performance status (Eastern Cooperative Oncology Group [ECOG] 0–1) and preserved liver function (Child-Pugh-A), were included in the analysis. The median PFS was 3 months (95% confidence interval [CI] = 0.981–5.019) and the median OS was 8 months (95% CI = 5.761–10.239). Elevated systemic immune-inflammation index (SII ≥340) was independently associated with poor OS. In multivariate analysis, the SII (hazard ratio [HR] = 2.211, 95% CI = 1.089–4.489, P = 0.028) and alpha-fetoprotein (AFP) (HR = 2.750, 95% CI = 1.259–6.010, P = 0.011) were independent predictors of OS. Conclusion Elevated SII is associated with poor OS in patients with HCC who received sequential therapy with sorafenib and regorafenib. In addition, when selecting a treatment strategy, the SII can be used in combination with the AFP level as a promising prognostic tool for HCC.
Collapse
Affiliation(s)
- Young Mi Hong
- Department of Internal Medicine, Liver Center, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, 20 Geumo-ro, Gyeongnam, 50612, Yangsan, South Korea
| | - K T Yoon
- Department of Internal Medicine, Liver Center, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, 20 Geumo-ro, Gyeongnam, 50612, Yangsan, South Korea
| | - Mong Cho
- Department of Internal Medicine, Liver Center, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, 20 Geumo-ro, Gyeongnam, 50612, Yangsan, South Korea.
| |
Collapse
|
93
|
Zarębska I, Gzil A, Durślewicz J, Jaworski D, Antosik P, Ahmadi N, Smolińska-Świtała M, Grzanka D, Szylberg Ł. The clinical, prognostic and therapeutic significance of liver cancer stem cells and their markers. Clin Res Hepatol Gastroenterol 2021; 45:101664. [PMID: 33667731 DOI: 10.1016/j.clinre.2021.101664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/24/2020] [Accepted: 02/17/2021] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of death among cancers. The poor prognosis of HCC might be caused by a population of cancer stem cells (CSC). CSC have similar characteristics to normal stem cells and are responsible for cancer recurrence, chemoresistance, radioresistance and metastasis. Liver cancer stem cells (LCSC) are identified via specific surface markers, such as CD44, CD90, CD133, and EpCAM (CD326). Recent studies suggested a complex interaction between mentioned LCSC markers and clinical features of HCC. A high expression of CSC is correlated with a negative prognostic factor after surgical resection of HCC and is connected with more aggressive tumor behavior. Moreover, LCSC might be responsible for increasing resistance to sorafenib, a kinase inhibitor drug. A reduction in the LCSC population may be crucial to successful advanced HCC therapy.
Collapse
Affiliation(s)
- Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland.
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Navid Ahmadi
- Chair and Department of Oncologic Pathology and Prophylactics, Greater Poland Cancer Center, Poznan University of Medical Sciences, Poland
| | - Marta Smolińska-Świtała
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland; Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
94
|
Ge Z, Helmijr JCA, Jansen MPHM, Boor PPC, Noordam L, Peppelenbosch M, Kwekkeboom J, Kraan J, Sprengers D. Detection of oncogenic mutations in paired circulating tumor DNA and circulating tumor cells in patients with hepatocellular carcinoma. Transl Oncol 2021; 14:101073. [PMID: 33915518 PMCID: PMC8100622 DOI: 10.1016/j.tranon.2021.101073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
In paired analysis CTCs were detected in 27% and ctDNA in 77% of HCC patients. The TERT promoter mutation C228T was present in all patients with one or more ctDNA mutations, or detectable CTCs. CtDNA (or TERT C228T) positivity was associated with macrovascular invasion and poor survival of advanced HCC patients.
Background and aims Circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) may be used for diagnostic or prognostic purposes in patients with hepatocellular carcinoma (HCC). We aim to determine whether CTCs or ctDNA are suitable to determine oncogenic mutations in HCC patients. Methods Twenty-six mostly advanced HCC patients were enrolled. 30 mL peripheral blood from each patient was obtained. CellSearch system was used for CTC detection. A sequencing panel covering 14 cancer-relevant genes was used to identify oncogenic mutations. TERT promoter C228T and C250T mutations were determined by droplet digital PCR. Results CTCs were detected in 27% (7/26) of subjects but at low numbers (median: 2 cells, range: 1–15 cells) and ctDNA in 77% (20/26) of patients. Mutations in ctDNA were identified in several genes: TERT promoter C228T (77%, 20/26), TP53 (23%, 6/26), CTNNB1 (12%, 3/26), PIK3CA (12%, 3/26) and NRAS (4%, 1/26). The TERT C228T mutation was present in all patients with one or more ctDNA mutations, or detectable CTCs. The TERT C228T and TP53 mutations detected in ctDNA were present at higher levels in matched primary HCC tumor tissue. The maximal variant allele frequency (VAF) of ctDNA was linearly correlated with largest tumor size and AFP level (Log10). CtDNA (or TERT C228T) positivity was associated with macrovascular invasion, and positivity of ctDNA (or TERT C228T) or CTCs (≥ 2) correlated with poor patient survival. Conclusions Oncogenic mutations could be detected in ctDNA from advanced HCC patients. CtDNA analysis may serve as a promising liquid biopsy to identify druggable mutations.
Collapse
Affiliation(s)
- Zhouhong Ge
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jean C A Helmijr
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maurice P H M Jansen
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Patrick P C Boor
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Lisanne Noordam
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Maikel Peppelenbosch
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jaap Kwekkeboom
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jaco Kraan
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
95
|
Hu CL, Zhang YJ, Zhang XF, Fei X, Zhang H, Li CG, Sun B. 3D Culture of Circulating Tumor Cells for Evaluating Early Recurrence and Metastasis in Patients with Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:2673-2688. [PMID: 33888992 PMCID: PMC8057830 DOI: 10.2147/ott.s298427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Circulating tumor cells (CTCs) are considered to be a key factor involved in tumor metastasis. However, the isolation and culture of CTCs in vitro remains challenging, and their clinical application for predicting prognosis and survival is still limited. The development of accurate evaluating system for CTCs will benefit for clinical assessment of HCC. Methods Density gradient centrifugation and magnetic separation based on CD45 antibody were used to isolate CTCs. 3D culture was used to maintain and amplify CTCs and HCC cells. Cellular immunofluorescence was used to identify CTCs and spheroids. The cutoff value of CTC spheroid was calculated using X-tile software. The relationship between clinicopathological variables and CTC spheroids in HCC patients is analyzed. In vivo models were used to evaluate tumor growth and metastasis of CTC spheroids. Results Patient-derived CTCs/HCC cells were isolated and expanded to form spheroids using 3D culture. CTC spheroids could be used to predict short-term recurrence of CTCs compared with conventional CTC enumeration. Different cell lines exhibited different formation rates and grew to different sizes. Identification of CTC spheroids revealed that EpCAM and β-catenin were expressed in spheroids derived from HCC cells and in the HCC/CTCs. EpCAM-positive HCC cells exhibited improved spheroid formation in 3D culture and were more tumorigenic and likely to metastasize to the lung in vivo. Abnormal activation of the Wnt/β-catenin signaling pathway was observed in EpCAM positive cells. Conclusion CTC spheroids could predict prognosis of HCC more precisely compared with conventional CTC enumeration. EpCAM may participate in the formation and survival of CTC spheroids which dependent on Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong-Li Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Yan-Jun Zhang
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, People's Republic of China
| | - Xiao-Feng Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Chun-Guang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| |
Collapse
|
96
|
Li W, Liu K, Chen Y, Zhu M, Li M. Role of Alpha-Fetoprotein in Hepatocellular Carcinoma Drug Resistance. Curr Med Chem 2021; 28:1126-1142. [PMID: 32729413 DOI: 10.2174/0929867327999200729151247] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and a major cause of cancer-related deaths worldwide because of its high recurrence rate and poor prognosis. Surgical resection is currently the major treatment measure for patients in the early and middle stages of the disease. Because due to late diagnosis, most patients already miss the opportunity for surgery upon disease confirmation, conservative chemotherapy (drug treatment) remains an important method of comprehensive treatment for patients with middle- and late-stage liver cancer. However, multidrug resistance (MDR) in patients with HCC severely reduces the treatment effect and is an important obstacle to chemotherapeutic success. Alpha-fetoprotein (AFP) is an important biomarker for the diagnosis of HCC. The serum expression levels of AFP in many patients with HCC are increased, and a persistently increased AFP level is a risk factor for HCC progression. Many studies have indicated that AFP functions as an immune suppressor, and AFP can promote malignant transformation during HCC development and might be involved in the process of MDR in patients with liver cancer. This review describes drug resistance mechanisms during HCC drug treatment and reviews the relationship between the mechanism of AFP in HCC development and progression and HCC drug resistance.
Collapse
Affiliation(s)
- Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| |
Collapse
|
97
|
Zhu AX, Finn RS, Kang YK, Yen CJ, Galle PR, Llovet JM, Assenat E, Brandi G, Motomura K, Ohno I, Daniele B, Vogel A, Yamashita T, Hsu CH, Gerken G, Bilbruck J, Hsu Y, Liang K, Widau RC, Wang C, Abada P, Kudo M. Serum alpha-fetoprotein and clinical outcomes in patients with advanced hepatocellular carcinoma treated with ramucirumab. Br J Cancer 2021; 124:1388-1397. [PMID: 33531690 PMCID: PMC8039038 DOI: 10.1038/s41416-021-01260-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Post hoc analyses assessed the prognostic and predictive value of baseline alpha-fetoprotein (AFP), as well as clinical outcomes by AFP response or progression, during treatment in two placebo-controlled trials (REACH, REACH-2). METHODS Serum AFP was measured at baseline and every three cycles. The prognostic and predictive value of baseline AFP was assessed by Cox regression models and Subpopulation Treatment Effect Pattern Plot method. Associations between AFP (≥ 20% increase) and radiographic progression and efficacy were assessed. RESULTS Baseline AFP was confirmed as a continuous (REACH, REACH-2; p < 0.0001) and dichotomous (≥400 vs. <400 ng/ml; REACH, p < 0.01) prognostic factor, and was predictive for ramucirumab survival benefit in REACH (p = 0.0042 continuous; p < 0.0001 dichotomous). Time to AFP (hazard ratio [HR] 0.513; p < 0.0001) and radiographic (HR 0.549; p < 0.0001) progression favoured ramucirumab. Association between AFP and radiographic progression was shown for up to 6 (odds ratio [OR] 5.1; p < 0.0001) and 6-12 weeks (OR 1.8; p = 0.0065). AFP response was higher with ramucirumab vs. placebo (p < 0.0001). Survival was longer in patients with an AFP response than patients without (13.6 vs. 5.6 months, HR 0.451; 95% confidence interval, 0.354-0.574; p < 0.0001). CONCLUSIONS AFP is an important prognostic factor and a predictive biomarker for ramucirumab survival benefit. AFP ≥ 400 ng/ml is an appropriate selection criterion for ramucirumab. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, REACH (NCT01140347) and REACH-2 (NCT02435433).
Collapse
Affiliation(s)
- Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Jiahui International Cancer Center, Jiahui Health, Shanghai, China.
| | - Richard S Finn
- Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Chia-Jui Yen
- National Cheng Kung University Hospital, Tainan, Taiwan
| | | | - Josep M Llovet
- Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut d'Investigations Biomèdiques August Pi i Sunyer, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Eric Assenat
- Department of Medical Oncology, CHU de Montpellier, Montpellier, France
| | | | | | - Izumi Ohno
- National Cancer Center Hospital East-Hepatobiliary and Pancreatic Oncology, Kashiwa, Japan
| | - Bruno Daniele
- Azienda Ospedaliera Gaetano Rummo, Benevento, Italy
- Ospedale del Mare, Napoli, Italy
| | - Arndt Vogel
- Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Chih-Hung Hsu
- National Taiwan University Hospital, Taipei, Taiwan, ROC
| | | | | | - Yanzhi Hsu
- Eli Lilly and Company, New York, NY, USA
| | - Kun Liang
- Eli Lilly and Company, Branchburg, NJ, USA
| | | | | | - Paolo Abada
- Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
98
|
Wei X, Zhao L, Ren R, Ji F, Xue S, Zhang J, Liu Z, Ma Z, Wang XW, Wong L, Liu N, Shi J, Guo X, Roessler S, Zheng X, Ji J. MiR-125b Loss Activated HIF1α/pAKT Loop, Leading to Transarterial Chemoembolization Resistance in Hepatocellular Carcinoma. Hepatology 2021; 73:1381-1398. [PMID: 32609900 PMCID: PMC9258000 DOI: 10.1002/hep.31448] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Transarterial chemoembolization (TACE) is a standard locoregional therapy for patients with hepatocellular carcinoma (HCC) patients with a variable overall response in efficacy. We aimed to identify key molecular signatures and related pathways leading to HCC resistance to TACE, with the hope of developing effective approaches in preselecting patients with survival benefit from TACE. APPROACH AND RESULTS Four independent HCC cohorts with 680 patients were used. MicroRNA (miRNA) transcriptome analysis in patients with HCC revealed a 41-miRNA signature related to HCC recurrence after adjuvant TACE, and miR-125b was the top reduced miRNA in patients with HCC recurrence. Consistently, patients with HCC with low miR-125b expression in tumor had significantly shorter time to recurrence following adjuvant TACE in two independent cohorts. Loss of miR-125b in HCC noticeably activated the hypoxia inducible factor 1 alpha subunit (HIF1α)/pAKT loop in vitro and in vivo. miR-125b directly attenuated HIF1α translation through binding to HIF1A internal ribosome entry site region and targeting YB-1, and blocked an autocrine HIF1α/platelet-derived growth factor β (PDGFβ)/pAKT/HIF1α loop of HIF1α translation by targeting the PDGFβ receptor. The miR-125b-loss/HIF1α axis induced the expression of CD24 and erythropoietin (EPO) and enriched a TACE-resistant CD24-positive cancer stem cell population. Consistently, patients with high CD24 or EPO in HCC had poor prognosis following adjuvant TACE therapy. Additionally, in patients with HCC having TACE as their first-line therapy, high EPO in blood before TACE was also noticeably related to poor response to TACE. CONCLUSIONS MiR-125b loss activated the HIF1α/pAKT loop, contributing to HCC resistance to TACE and the key nodes in this axis hold the potential in assisting patients with HCC to choose TACE therapy.
Collapse
Affiliation(s)
- Xiyang Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lei Zhao
- Shandong Cancer Hospital and Institute, Shandong Cancer Hospital of Shandong First Medical University, Jinan, China
| | - Ruizhe Ren
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fubo Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuting Xue
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jianjuan Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhaogang Liu
- Shandong Cancer Hospital and Institute, Shandong Cancer Hospital of Shandong First Medical University, Jinan, China
| | - Zhao Ma
- Shandong Cancer Hospital and Institute, Shandong Cancer Hospital of Shandong First Medical University, Jinan, China
| | - Xin W. Wang
- Liver Cancer Program and Laboratory of Human Carcinogenesis, Cancer for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Linda Wong
- University of Hawaii Cancer Center, Honolulu, HI
| | - Niya Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiong Shi
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xing Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
99
|
Yamashita T, Kaneko S. Liver cancer stem cells: Recent progress in basic and clinical research. Regen Ther 2021; 17:34-37. [PMID: 33816720 PMCID: PMC7988346 DOI: 10.1016/j.reth.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis was proposed over 4 decades ago and states that tumor growth is maintained by a small subset of cancer cells analogous to normal tissue stem cells in terms of self-renewal and differentiation capacity. Advances in CSC isolation were initially achieved in hematological malignancies and later in solid tumors, including hepatocellular carcinoma (HCC), the major histological type of liver cancer. Increasing evidence suggests the importance of liver CSCs for tumor growth, metastasis, and chemo/radiation resistance in HCC, but the application of the liver CSC concept for the clinical diagnosis and treatment of HCC has not yet been achieved to the extent initially expected. Furthermore, the heterogeneity and plasticity of liver CSCs has recently been noted and might be related to drug resistance and the rapid growth and/or metastasis of the tumor after treatment. Here, we introduce our recent advancement in liver CSC research and discuss the clinical implications, which may lead to the development of improved diagnostics and treatment in HCC.
Collapse
Affiliation(s)
- Taro Yamashita
- Department of General Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
- Corresponding author. Department of General Medicine, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| |
Collapse
|
100
|
Abstract
Accumulating evidence strongly indicates that the presence of cancer stem cells (CSCs) leads to the emergence of worse clinical scenarios, such as chemo- and radiotherapy resistance, metastasis, and cancer recurrence. CSCs are a highly tumorigenic population characterized by self-renewal capacity and differentiation potential. Thus, CSCs establish a hierarchical intratumor organization that enables tumor adaptation to evade the immune response and resist anticancer therapy. YY1 functions as a transcription factor, RNA-binding protein, and 3D chromatin regulator. Thus, YY1 has multiple effects and regulates several molecular processes. Emerging evidence indicates that the development of lethal YY1-mediated cancer phenotypes is associated with the presence of or enrichment in cancer stem-like cells. Therefore, it is necessary to investigate whether and to what extent YY1 regulates the CSC phenotype. Since CSCs mirror the phenotypic behavior of stem cells, we initially describe the roles played by YY1 in embryonic and adult stem cells. Next, we scrutinize evidence supporting the contributions of YY1 in CSCs from a number of various cancer types. Finally, we identify new areas for further investigation into the YY1-CSCs axis, including the participation of YY1 in the CSC niche.
Collapse
|