51
|
Abstract
One crucial barrier to progress in the treatment of cancer has been the inability to control the balance between cell proliferation and apoptosis: enter ceramide. Discoveries over the past 15 years have elevated this sphingolipid to the lofty position of a regulator of cell fate. Ceramide, it turns out, is a powerful tumour suppressor, potentiating signalling events that drive apoptosis, autophagic responses and cell cycle arrest. However, defects in ceramide generation and metabolism in cancer cells contribute to tumour cell survival and resistance to chemotherapy. This Review focuses on ceramide signalling and the targeting of specific metabolic junctures to amplify the tumour suppressive activities of ceramide. The potential of ceramide-based therapeutics in the treatment of cancer is also discussed.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Experimental Therapeutics, John Wayne Cancer Institute at Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, California 90404, USA.
| | | |
Collapse
|
52
|
Abstract
In the highly metastatic B16F10 melanoma cell line, activation of the signalling molecules that promote cell proliferation and survival on conventional adhesive culture dishes may also be responsible for the growth and resistance to anoikis of aggregates on a non-adhesive substratum. We have examined the influence of bacterial ADP-ribosyltransferases C3-like exoenzymes, which selectively modify RhoA, B and C proteins and inhibit signal pathways controlled by them. RNA interference [siRNA (small interfering RNA) Akt (also known as protein kinase B)] and a PI3K (phosphoinositide 3-kinase) inhibitor were used to analyse the changes caused by inhibiting the PI3K/Akt pathway. Inhibiting the activation of RhoA, B, C and Akt expression resulted in a decrease of the number of cells cultured in aggregates, and caspase 3 activation. RhoA activation and RhoB and RhoC expression were controlled by Akt, but not RhoA expression. Inhibiting Akt and RhoA reduced the expression of α5 integrin, and inactivated FAK (focal adhesion kinase) in B16F10 cells cultured as aggregates. Thus, inhibiting Rho subfamily proteins and Akt expression inactivates the FAK pathway and induces anoikis in anoikis-resistant cells. The activation of RhoA in melanoma cells can depend on PI3K/Akt activation, suggesting that PI3K/Akt is a suitable target for new therapeutic approaches.
Collapse
|
53
|
Ozawa H, Sonoda Y, Kato S, Suzuki E, Matsuoka R, Kanaya T, Kiuchi F, Hada N, Kasahara T. Sulfatides inhibit adhesion, migration, and invasion of murine melanoma B16F10 cell line in vitro. Biol Pharm Bull 2012; 35:2054-8. [PMID: 22972421 DOI: 10.1248/bpb.b12-00492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous sulfatide, such as 3-sulfated galactosylceramide (3-sulfatide) has been reported to be involved in neuronal development and regulation of tumor cell metastasis. Recently, a new 6-sulfated glucosylceramide (6-sulfatide) has been isolated from the ascidian, Ciona intestinalis. To determine the antitumor function of the new sulfatide, we examined the effects of synthetic 6-sulfatide and 3-sulfatide on the metastatic features of a murine melanoma cell line, B16F10. Both sulfatides significantly inhibited the adhesion of melanoma cells onto fibronectin-coated tissue plates and, the motility and invasion of the cells, with 6-sulfatide showing stronger inhibitory activities. In addition, both sulfatides inhibited α(5)-, and β(1)- but not α(v)- or β(3)-integrin expression. Furthermore, these sulfatides inhibited the activation of focal adhesion kinase, Akt, and extracellular signal-regulated kinase signaling pathways, which are thought to be important for cell migration and invasion. Therefore, these sulfatides may serve as promising drug candidates for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Hiroki Ozawa
- Faculty of Pharmacy, Keio University, 1–5–30 Shibakoen, Tokyo 105–8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kumar B, Yadav A, Lang JC, Cipolla MJ, Schmitt AC, Arradaza N, Teknos TN, Kumar P. YM155 reverses cisplatin resistance in head and neck cancer by decreasing cytoplasmic survivin levels. Mol Cancer Ther 2012; 11:1988-98. [PMID: 22723337 DOI: 10.1158/1535-7163.mct-12-0167] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of head and neck squamous cell carcinoma (HNSCC). However, acquisition of cisplatin resistance is common in patients with HNSCC, and it often leads to local and distant failure. In this study, we showed that survivin expression is significantly upregulated in HNSCC primary tumors and cell lines. In addition, survivin levels were significantly higher in human papilloma virus-negative patients that normally respond poorly to cisplatin treatment. Survivin expression was further increased in cisplatin-resistant cells (CAL27-CisR) as compared with its parent cells (CAL27). Therefore, we hypothesized that targeting of survivin in HNSCC could reverse the resistant phenotype in tumor cells, thereby enhancing the therapeutic efficacy of cisplatin. We used both in vitro and in vivo models to test the efficacy of YM155, a small molecule survivin inhibitor, either as a single agent or in combination with cisplatin. YM155 significantly decreased survivin levels and cell proliferation in a dose-dependent manner. In addition, YM155 pretreatment significantly reversed cisplatin resistance in cancer cells. Interestingly, YM155 treatment altered the dynamic localization of survivin in cells by inducing a rapid reduction in cytoplasmic survivin, which plays a critical role in its antiapoptotic function. In a severe combined immunodeficient mouse xenograft model, YM155 significantly enhanced the antitumor and antiangiogenic effects of cisplatin, with no added systemic toxicity. Taken together, our results suggest a potentially novel strategy to use YM155 to overcome the resistance in tumor cells, thereby enhancing the effectiveness of the chemotherapy in HNSCC.
Collapse
Affiliation(s)
- Bhavna Kumar
- Department of Otolaryngology–Head and Neck Surgery, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Bucur O, Stancu AL, Khosravi-Far R, Almasan A. Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death Dis 2012; 3:e263. [PMID: 22297295 PMCID: PMC3288344 DOI: 10.1038/cddis.2012.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
56
|
Thigmotropism of malignant melanoma cells. Dermatol Res Pract 2011; 2012:362784. [PMID: 22203839 PMCID: PMC3235666 DOI: 10.1155/2012/362784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/06/2011] [Indexed: 01/04/2023] Open
Abstract
During malignant melanoma (MM) progression including incipient metastasis, neoplastic cells follow some specific migration paths inside the skin. In particular, they progress along the dermoepidermal basement membrane, the hair follicles, the sweat gland apparatus, nerves, and the near perivascular space. These features evoke the thigmotropism phenomenon defined as a contact-sensing growth of cells. This process is likely connected to modulation in cell tensegrity (control of the cell shape). These specifically located paucicellular aggregates of MM cells do not appear to be involved in the tumorigenic growth phase, but rather they participate in the so-called "accretive" growth model. These MM cell collections are often part of the primary neoplasm, but they may, however, correspond to MM micrometastases and predict further local overt metastasis spread.
Collapse
|
57
|
Chu XY, Chen LB, Wang JH, Su QS, Yang JR, Lin Y, Xue LJ, Liu XB, Mo XB. Overexpression of survivin is correlated with increased invasion and metastasis of colorectal cancer. J Surg Oncol 2011; 105:520-8. [PMID: 22065492 DOI: 10.1002/jso.22134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/12/2011] [Indexed: 01/21/2023]
Abstract
BACKGROUND The aim of this study was to investigate the association of survivin expression with metastasis of colorectal cancer (CRC). METHODS RT-PCR and Western blot assays were performed to detect survivin expression in CRC cells and normal intestinal epithelial cell. The expression of survivin gene was also detected in 15 CRC tissues, surrounding and adjacent colon tissues. Moreover, survivin expression in 48 CRC tissues with or without lymph node metastasis was analyzed. Multivariate analysis for lymph node metastasis was performed using logistic regression model. RNA interference was used to inhibit survivin expression in CRC cells and analyze its effect on invasion and metastasis of CRC cells. RESULTS The expression levels of survivin mRNA and protein were higher in CRC cells than in normal intestinal epithelial cell line. The average levels of survivin mRNA and protein were higher in CRC tissues than surrounding or adjacent colon tissues (P < 0.05). High survivin expression was an independent factor for predicting lymph node metastasis of CRC (P = 0.043). RNAi-mediated survivin knockdown could significantly inhibit in vitro invasion and in vivo metastasis of CRC cells, which might be inactivation of matrix metalloproteinases. CONCLUSION Targeting survivin will be a potential strategy to suppress metastasis of CRC.
Collapse
Affiliation(s)
- Xiao-Yuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Williams KC, Coppolino MG. Phosphorylation of membrane type 1-matrix metalloproteinase (MT1-MMP) and its vesicle-associated membrane protein 7 (VAMP7)-dependent trafficking facilitate cell invasion and migration. J Biol Chem 2011; 286:43405-16. [PMID: 22002060 DOI: 10.1074/jbc.m111.297069] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In multicellular organisms, uncontrolled movement of cells can contribute to pathological conditions, such as multiple sclerosis and cancer. In highly aggressive tumors, the expression of matrix metalloproteinases (MMPs) is linked to the capacity of tumor cells to invade surrounding tissue and current research indicates that the membrane-anchored membrane type 1-matrix metalloproteinase (MT1-MMP) has a central role in this process. Endocytosis and trafficking of MT1-MMP are essential for its proper function, and here we examine the phosphorylation, internalization, and recycling of this enzyme, and the associated biochemical signaling in HeLa and HT-1080 fibrosarcoma cells. Activation of protein kinase C with phorbol 12-myristate 13-acetate resulted in phosphorylation of endogenous MT1-MMP at Thr(567) in vivo. Mutation of Thr(567) to alanine (to mimic non-phosphorylated MT1-MMP) reduced internalization of MT1-MMP, whereas mutation of Thr(567) to glutamic acid (to mimic phosphorylation) resulted in decreased levels of MT1-MMP on the cell surface. The endosomal trafficking and recycling of MT1-MMP was found to be dependent upon Rab7 and VAMP7, and blocking the function of these proteins reduced cell migration and invasion. Intracellular trafficking of MT1-MMP was observed to be coupled to the trafficking of integrin α5 and phosphorylation of ERK that coincided with this was dependent on phosphorylation of MT1-MMP. Together, these results reveal important roles for MT1-MMP phosphorylation and trafficking in both cell signaling and cell invasion.
Collapse
Affiliation(s)
- Karla C Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
59
|
Yu T, Li J, Qiu Y, Sun H. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) facilitates curcumin-induced melanoma cell apoptosis by enhancing ceramide accumulation, JNK activation, and inhibiting PI3K/AKT activation. Mol Cell Biochem 2011; 361:47-54. [PMID: 21959977 DOI: 10.1007/s11010-011-1086-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/16/2011] [Indexed: 01/10/2023]
Abstract
The majority of metastatic melanomas are resistant to different chemotherapeutic agents, consequently, the search for novel anti-melanoma agents and adjuvant is urgent. Here, we found that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosphingolipid biosynthesis, enhanced curcumin-induced cell growth inhibition and apoptosis in two melanoma cell lines (WM-115 and B16). PDMP facilitated curcumin-induced ceramide accumulation; the latter contributed to melanoma cell apoptosis. PDMP also dramatically enhanced curcumin-induced c-Jun N-terminal kinase activation, which was important to melanoma cell apoptosis. Meanwhile, curcumin plus PDMP treatment largely inhibited the activation of pro-survival PI3K/AKT signal pathway. In conclusion, PDMP-sensitized curcumin-induced melanoma cell growth inhibition and apoptosis in vitro due to changes of multiple signal events. Combining PDMP with curcumin may represent a new therapeutic intervention against melanoma.
Collapse
Affiliation(s)
- Teng Yu
- Jining Medical University, Jining, Shandong Province, People's Republic of China.
| | | | | | | |
Collapse
|
60
|
Dallaglio K, Marconi A, Pincelli C. Survivin: a dual player in healthy and diseased skin. J Invest Dermatol 2011; 132:18-27. [PMID: 21900948 DOI: 10.1038/jid.2011.279] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Survivin belongs to the inhibitor of apoptosis (IAP) protein family, and, in addition to the antiapoptotic functions, it also regulates the cell cycle. The survivin gene generates five major isoforms with diverse and opposite functions. Survivin is highly expressed in cancer and in few normal adult tissues, including skin. It is mostly detected in the nucleus of keratinocyte stem cells (KSCs), but it is also expressed in melanocytes and fibroblasts. Survivin isoforms are differentially detected in subpopulations of human keratinocytes, exerting contrasting activities. Survivin has an important role in the regulation of cell cycle in keratinocytes, and it protects these cells from anoikis and UV-induced apoptosis. In melanoma, survivin is abundantly expressed, and its subcellular localization varies depending upon tumor thickness and invasiveness. Survivin overexpression has been shown in squamous cell carcinoma (SCC), and it is also involved in UVB-induced carcinogenesis. The presence of survivin both in the nucleus and in the cytoplasm throughout the epidermal layers of psoriatic lesions suggests the involvement of this protein in the keratinocyte alterations typical of this disease. Additional studies on the expression of survivin isoforms and their subcellular localization in relation to function will confirm the key role of survivin in the skin and will open the field to new therapeutic strategies for many cutaneous conditions.
Collapse
Affiliation(s)
- Katiuscia Dallaglio
- Institute of Dermatology, School of Biosciences and Biotechnologies, University of Modena and Reggio Emilia, Modena, Italy
| | | | | |
Collapse
|
61
|
Nabzdyk CS, Lancero H, Nguyen KP, Salek S, Conte MS. RNA interference-mediated survivin gene knockdown induces growth arrest and reduced migration of vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2011; 301:H1841-9. [PMID: 21856925 DOI: 10.1152/ajpheart.00089.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G(2)/M fraction consistent with a mitotic defect; 4',6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G(2)/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall.
Collapse
Affiliation(s)
- Christoph S Nabzdyk
- Division of Vascular and Endovascular Surgery, Laboratory for Accelerated Vascular Research, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
62
|
Knight BB, Oprea-Ilies GM, Nagalingam A, Yang L, Cohen C, Saxena NK, Sharma D. Survivin upregulation, dependent on leptin-EGFR-Notch1 axis, is essential for leptin-induced migration of breast carcinoma cells. Endocr Relat Cancer 2011; 18:413-28. [PMID: 21555376 PMCID: PMC3361735 DOI: 10.1530/erc-11-0075] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obese breast cancer patients exhibit a higher risk for larger tumor burden and an increased likelyhood of metastasis. The molecular effects of obesity on carcinogenesis are mediated by the autocrine and paracrine effects of the adipocytokine leptin. Leptin participates in the tumor progression and metastasis of human breast. We show that leptin induces clonogenicity and increases the migration potential of breast cancer cells. We found that survivin expression is induced in response to leptin. In this study, we examine the role and leptin-mediated regulation of survivin. Leptin treatment leads to survivin upregulation, due in part to the activation of Notch1 and the release of a transcriptionally active Notch1 intracellular domain (NICD). Chromatin immunoprecipitation analysis shows that NICD gets recruited to the survivin promoter at the CSL (CBF1/RBP-Jk, Su(H), Lag-1) binding site in response to leptin treatment. Inhibition of Notch1 activity inhibits leptin-induced survivin upregulation. Leptin-induced transactivation of epidermal growth factor receptor (EGFR) is involved in leptin-mediated Notch1 and survivin upregulation, demonstrating a novel upstream role of leptin-EGFR-Notch1 axis. We further show that leptin-induced migration of breast cancer cells requires survivin, as overexpression of survivin further increases, whereas silencing survivin abrogates leptin-induced migration. Using a pharmacological approach to inhibit survivin, we show that 3-hydroxy-3-methylglutaryl-coenzyme-A-reductase inhibitors, such as lovastatin, can effectively inhibit leptin-induced survivin expression and migration. Importantly, leptin increased breast tumor growth in nude mice. These data show a novel role for survivin in leptin-induced migration and put forth pharmacological survivin inhibition as a potential novel therapeutic strategy. This conclusion is supported by in vivo data showing the overexpression of leptin and survivin in epithelial cells of high-grade ductal carcinomas in situ and in high-grade invasive carcinomas.
Collapse
Affiliation(s)
- Brandi B. Knight
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta GA 30322
| | - Gabriela M. Oprea-Ilies
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta GA 30322
| | - Arumugam Nagalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta GA 30322
| | - Lily Yang
- Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta GA 30322
- Department of Surgery, Emory University School of Medicine, Atlanta GA 30322
| | - Cynthia Cohen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta GA 30322
| | - Neeraj K. Saxena
- Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201
- Address correspondence to: Dipali Sharma, 1650 Orleans Street, CRB 1, Rm 145 Baltimore, MD 21231 Office: 410-455-1345 FAX: 410-614-4073 & Neeraj K. Saxena, 22 S. Greene Street, Baltimore, MD 21201. Tel.410-706-6949
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore MD 21231
- Address correspondence to: Dipali Sharma, 1650 Orleans Street, CRB 1, Rm 145 Baltimore, MD 21231 Office: 410-455-1345 FAX: 410-614-4073 & Neeraj K. Saxena, 22 S. Greene Street, Baltimore, MD 21201. Tel.410-706-6949
| |
Collapse
|
63
|
Gremel G, Ryan D, Rafferty M, Lanigan F, Hegarty S, Lavelle M, Murphy I, Unwin L, Joyce C, Faller W, McDermott EW, Sheahan K, Ponten F, Gallagher WM. Functional and prognostic relevance of the homeobox protein MSX2 in malignant melanoma. Br J Cancer 2011; 105:565-74. [PMID: 21730974 PMCID: PMC3170959 DOI: 10.1038/bjc.2011.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: The homeobox containing transcription factor MSX2 is a key regulator of embryonic development and has been implicated to have a role in breast and pancreatic cancer. Methods: Using a selection of two- and three-dimensional in vitro assays and tissue microarrays (TMAs), the clinical and functional relevance of MSX2 in malignant melanoma was explored. A doxycyline-inducible over-expression system was applied to study the relevance of MSX2 in vitro. For TMA construction, tumour material from 218 melanoma patients was used. Results: Ectopic expression of MSX2 resulted in the induction of apoptosis and reduced the invasive capacity of melanoma cells in three-dimensional culture. MSX2 over-expression was shown to affect several signalling pathways associated with cell invasion and survival. Downregulation of N-Cadherin, induction of p21 and inhibition of both BCL2 and Survivin were observed. Cytoplasmic MSX2 expression was found to correlate significantly with increased recurrence-free survival (P=0.008). Nuclear expression of MSX2 did not result in significant survival correlations, suggesting that the beneficial effect of MSX2 may be independent of its DNA binding activity. Conclusions: MSX2 may be an important regulator of melanoma cell invasion and survival. Cytoplasmic expression of the protein was identified as biomarker for good prognosis in malignant melanoma patients.
Collapse
Affiliation(s)
- G Gremel
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
|
65
|
Roles of BIM induction and survivin downregulation in lapatinib-induced apoptosis in breast cancer cells with HER2 amplification. Oncogene 2011; 30:4097-106. [PMID: 21499301 DOI: 10.1038/onc.2011.111] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lapatinib, a dual tyrosine kinase inhibitor of the epidermal growth factor receptor and human epidermal growth factor receptor 2 (HER2), is clinically active in patients with breast cancer positive for HER2 amplification. The mechanism of this anti-tumor action has remained unclear, however. We have now investigated the effects of lapatinib in HER2 amplification-positive breast cancer cells with or without an activating PIK3CA mutation. Lapatinib induced apoptosis in association with upregulation of the pro-apoptotic protein Bcl-2 interacting mediator of cell death (BIM) through inhibition of the MEK-ERK signaling pathway in breast cancer cells with HER2 amplification. RNA interference (RNAi)-mediated depletion of BIM inhibited lapatinib-induced apoptosis, implicating BIM induction in this process. The pro-apoptotic effect of lapatinib was less pronounced in cells with a PIK3CA mutation than in those without one. Lapatinib failed to inhibit AKT phosphorylation in PIK3CA mutant cells, likely because of hyperactivation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway by the mutation. Depletion of PIK3CA (a catalytic subunit of PI3K) revealed that survivin expression is regulated by the PI3K pathway in these cells, suggesting that insufficient inhibition of PI3K-survivin signaling is responsible for the limited pro-apoptotic effect of lapatinib in HER2 amplification-positive cells with a PIK3CA mutation. Consistent with this notion, depletion of survivin by RNAi or treatment with a PI3K inhibitor markedly increased the level of apoptosis in PIK3CA mutant cells treated with lapatinib. Our results thus suggest that inhibition of both PI3K-survivin and MEK-ERK-BIM pathways is required for effective induction of apoptosis in breast cancer cells with HER2 amplification.
Collapse
|
66
|
Hiscox S, Barrett-Lee P, Nicholson RI. Therapeutic targeting of tumor-stroma interactions. Expert Opin Ther Targets 2011; 15:609-21. [PMID: 21388336 DOI: 10.1517/14728222.2011.561201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Cancers exist within a complex microenvironment populated by diverse cell types within a protein-rich extracellular matrix. It is becoming increasingly apparent that molecular interactions between epithelial cells and cells in the surrounding stroma promote growth, invasion and spread of the tumor itself and thus represents a crucial underlying driving force in tumorigenesis. AREAS COVERED This article reviews how key interactions between tumor epithelial cells and surrounding mesenchymal and immune cells can promote tumor progression and highlights molecular elements that might represent novel therapeutic targets. EXPERT OPINION The tumor microenvironment is increasingly being viewed as a potential therapeutic target with a number of strategies being developed to disrupt tumor-stroma interactions, in order to delay or circumvent tumor progression. Targeting elements of the tumor microenvironment, or signaling pathways in tumor cells activated as a consequence of stromal interactions, may prove a useful therapeutic strategy to prevent tumor development and progression. However, given the tumor cells' ability to circumvent various therapeutic agents when given as monotherapy, the success of these agents is likely to be seen when used in combination with existing treatments.
Collapse
Affiliation(s)
- Stephen Hiscox
- Cardiff University, Welsh School of Pharmacy, Cardiff, UK.
| | | | | |
Collapse
|
67
|
Abstract
Survivin, the smallest member of the inhibitors of apoptosis proteins (IAPs), plays an important role in the control of apoptosis, cell division, and cell migration/metastasis. Survivin is expressed and required for normal fetal development but is then generally no longer present in most adult tissues. However, reexpression of survivin is observed in numerous human cancers where presence of the protein is associated with enhanced proliferation, metastasis, poor prognosis, and decreased patient survival. Given the relatively selective expression in cancer cells, but not in normal tissue (tumor-associated antigen), and its importance in tumor cell biology, survivin has emerged as an attractive target for cancer treatment. Here, we discuss some aspects of survivin biology by focusing on why the protein appears to be so important for cancer cells and then discuss strategies that harness this dependence to eradicate tumors and situate survivin as a potential Achilles' heel of cancer.
Collapse
Affiliation(s)
- Alvaro Lladser
- Laboratory of Gene Immunotherapy, Fundacion Ciencia para la Vida, Santiago, Chile
| | | | | | | |
Collapse
|