51
|
Abstract
Cancer immunotherapy has recently generated much excitement after the continuing success of the immunomodulating anti-CTLA-4 and anti-PD-1 antibodies against various types of cancers. Aside from these immunomodulating antibodies, bispecific antibodies, chimeric antigen receptor T cells, and other technologies are being actively studied. Among the various approaches to cancer immunotherapy, 2 bispecific antibodies are currently approved for patient care. Many more bispecific antibodies are now in various phases of clinical development and will become the next generation of antibody-based therapies. Further understanding of immunology and advances in protein engineering will help to generate a greater variety of bispecific antibodies to fight cancer. Here, we focus on bispecific antibodies that recruit immune cells to engage and kill tumor cells.
Collapse
Affiliation(s)
- Siqi Chen
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Jing Li
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Qing Li
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Zhong Wang
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
52
|
Schanzer JM, Wartha K, Moessner E, Hosse RJ, Moser S, Croasdale R, Trochanowska H, Shao C, Wang P, Shi L, Weinzierl T, Rieder N, Bacac M, Ries CH, Kettenberger H, Schlothauer T, Friess T, Umana P, Klein C. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer. MAbs 2016; 8:811-27. [PMID: 26984378 PMCID: PMC4966845 DOI: 10.1080/19420862.2016.1160989] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Juergen M Schanzer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Katharina Wartha
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Ekkehard Moessner
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Ralf J Hosse
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Samuel Moser
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Rebecca Croasdale
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Halina Trochanowska
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Cuiying Shao
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Peng Wang
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Lei Shi
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Tina Weinzierl
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Natascha Rieder
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Marina Bacac
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Carola H Ries
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Hubert Kettenberger
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Tilman Schlothauer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Thomas Friess
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Pablo Umana
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Christian Klein
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| |
Collapse
|
53
|
Gaborit N, Lindzen M, Yarden Y. Emerging anti-cancer antibodies and combination therapies targeting HER3/ERBB3. Hum Vaccin Immunother 2016; 12:576-92. [PMID: 26529100 PMCID: PMC4964743 DOI: 10.1080/21645515.2015.1102809] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/11/2015] [Accepted: 09/26/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer progression depends on stepwise accumulation of oncogenic mutations and a select group of growth factors essential for tumor growth, metastasis and angiogenesis. Agents blocking the epidermal growth factor receptor (EGFR, also called HER1 and ERBB1) and the co-receptor called HER2/ERBB2 have been approved over the last decade as anti-cancer drugs. Because the catalytically defective member of the family, HER3/ERBB3, plays critical roles in emergence of resistance of carcinomas to various drugs, current efforts focus on antibodies and other anti-HER3/ERBB3 agents, which we review herein with an emphasis on drug combinations and some unique biochemical features of HER3/ERBB3.
Collapse
Affiliation(s)
- Nadège Gaborit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
54
|
Kemp JA, Shim MS, Heo CY, Kwon YJ. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 2016; 98:3-18. [PMID: 26546465 DOI: 10.1016/j.addr.2015.10.019] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/23/2022]
Abstract
The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Chan Yeong Heo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Plastic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Plastic Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Chemical Engineering and Materials Science,University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering,University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
55
|
Golay J, Choblet S, Iwaszkiewicz J, Cérutti P, Ozil A, Loisel S, Pugnière M, Ubiali G, Zoete V, Michielin O, Berthou C, Kadouche J, Mach JP, Duonor-Cérutti M. Design and Validation of a Novel Generic Platform for the Production of Tetravalent IgG1-like Bispecific Antibodies. THE JOURNAL OF IMMUNOLOGY 2016; 196:3199-211. [PMID: 26921308 DOI: 10.4049/jimmunol.1501592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/28/2016] [Indexed: 01/01/2023]
Abstract
We have designed and validated a novel generic platform for production of tetravalent IgG1-like chimeric bispecific Abs. The VH-CH1-hinge domains of mAb2 are fused through a peptidic linker to the N terminus of mAb1 H chain, and paired mutations at the CH1-CL interface mAb1 are introduced that force the correct pairing of the two different free L chains. Two different sets of these CH1-CL interface mutations, called CR3 and MUT4, were designed and tested, and prototypic bispecific Abs directed against CD5 and HLA-DR were produced (CD5xDR). Two different hinge sequences between mAb1 and mAb2 were also tested in the CD5xDR-CR3 or -MUT4 background, leading to bispecific Ab (BsAbs) with a more rigid or flexible structure. All four Abs produced bound with good specificity and affinity to CD5 and HLA-DR present either on the same target or on different cells. Indeed, the BsAbs were able to efficiently redirect killing of HLA-DR(+) leukemic cells by human CD5(+) cytokine-induced killer T cells. Finally, all BsAbs had a functional Fc, as shown by their capacity to activate human complement and NK cells and to mediate phagocytosis. CD5xDR-CR3 was chosen as the best format because it had overall the highest functional activity and was very stable in vitro in both neutral buffer and in serum. In vivo, CD5xDR-CR3 was shown to have significant therapeutic activity in a xenograft model of human leukemia.
Collapse
Affiliation(s)
- Josée Golay
- Centro di Terapia Cellulare "G. Lanzani," Divisione di Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24122 Bergamo, Italy;
| | - Sylvie Choblet
- Centre National de la Recherche Scientifique UPS3044 "Baculovirus et Thérapie," F-30380 Saint-Christol-Lèz Alès, France
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pierre Cérutti
- Centre National de la Recherche Scientifique UPS3044 "Baculovirus et Thérapie," F-30380 Saint-Christol-Lèz Alès, France
| | - Annick Ozil
- Centre National de la Recherche Scientifique UPS3044 "Baculovirus et Thérapie," F-30380 Saint-Christol-Lèz Alès, France
| | - Séverine Loisel
- Animalerie, Faculté de Médecine, Université de Bretagne Occidentale-Université Européenne de Bretagne, 29238 Brest, France
| | - Martine Pugnière
- INSERM, U1194, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, Institut du Cancer de Montpellier, Institut Régional du Cancer, 34298 Montpellier, France
| | - Greta Ubiali
- Centro di Terapia Cellulare "G. Lanzani," Divisione di Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24122 Bergamo, Italy
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland; Ludwig Center for Cancer Research, University of Lausanne, CH-1011 Lausanne, Switzerland; Département d'oncologie, Université de Lausanne-Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | | | - Jean Kadouche
- MAT Biopharma, 91030 Evry, France; Immune Pharmaceuticals Inc., New York, NY 10016
| | - Jean-Pierre Mach
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland; and Biomunex Pharmaceuticals, 75006 Paris, France
| | - Martine Duonor-Cérutti
- Centre National de la Recherche Scientifique UPS3044 "Baculovirus et Thérapie," F-30380 Saint-Christol-Lèz Alès, France
| |
Collapse
|
56
|
Rodems TS, Iida M, Brand TM, Pearson HE, Orbuch RA, Flanigan BG, Wheeler DL. Adaptive responses to antibody based therapy. Semin Cell Dev Biol 2016; 50:153-63. [PMID: 26808665 DOI: 10.1016/j.semcdb.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 11/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) represent a large class of protein kinases that span the cellular membrane. There are 58 human RTKs identified which are grouped into 20 distinct families based upon their ligand binding, sequence homology and structure. They are controlled by ligand binding which activates intrinsic tyrosine-kinase activity. This activity leads to the phosphorylation of distinct tyrosines on the cytoplasmic tail, leading to the activation of cell signaling cascades. These signaling cascades ultimately regulate cellular proliferation, apoptosis, migration, survival and homeostasis of the cell. The vast majority of RTKs have been directly tied to the etiology and progression of cancer. Thus, using antibodies to target RTKs as a cancer therapeutic strategy has been intensely pursued. Although antibodies against the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) have shown promise in the clinical arena, the development of both intrinsic and acquired resistance to antibody-based therapies is now well appreciated. In this review we provide an overview of the RTK family, the biology of EGFR and HER2, as well as an in-depth review of the adaptive responses undertaken by cells in response to antibody based therapies directed against these receptors. A greater understanding of these mechanisms and their relevance in human models will lead to molecular insights in overcoming and circumventing resistance to antibody based therapy.
Collapse
Affiliation(s)
- Tamara S Rodems
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Toni M Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Hannah E Pearson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Rachel A Orbuch
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Bailey G Flanigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| |
Collapse
|
57
|
Zhang H, Liu Z, Liu S. HMGB1 induced inflammatory effect is blocked by CRISPLD2 via MiR155 in hepatic fibrogenesis. Mol Immunol 2016; 69:1-6. [DOI: 10.1016/j.molimm.2015.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022]
|
58
|
Zhu Y, Choi SH, Shah K. Multifunctional receptor-targeting antibodies for cancer therapy. Lancet Oncol 2015; 16:e543-e554. [DOI: 10.1016/s1470-2045(15)00039-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/29/2022]
|
59
|
Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015; 67:95-106. [DOI: 10.1016/j.molimm.2015.01.003] [Citation(s) in RCA: 417] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022]
|
60
|
Francis DM, Huang S, Armstrong EA, Werner LR, Hullett C, Li C, Morris ZS, Swick AD, Kragh M, Lantto J, Kimple RJ, Harari PM. Pan-HER Inhibitor Augments Radiation Response in Human Lung and Head and Neck Cancer Models. Clin Cancer Res 2015; 22:633-43. [PMID: 26420857 DOI: 10.1158/1078-0432.ccr-15-1664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/03/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Aberrant regulation of the EGF receptor family (EGFR, HER2, HER3, HER4) contributes to tumorigenesis and metastasis in epithelial cancers. Pan-HER represents a novel molecular targeted therapeutic composed of a mixture of six monoclonal antibodies against EGFR, HER2, and HER3. EXPERIMENTAL DESIGN In the current study, we examine the capacity of Pan-HER to augment radiation response across a series of human lung and head and neck cancers, including EGFR inhibitor-resistant cell lines and xenografts. RESULTS Pan-HER demonstrates superior antiproliferative and radiosensitizing impact when compared with cetuximab. The mechanisms underlying these effects appear to involve attenuation of DNA damage repair, enhancement of programmed cell death, cell-cycle redistribution, and induction of cellular senescence. Combined treatment of Pan-HER with single or fractionated radiation in human tumor xenografts reveals a potent antitumor and regrowth delay impact compared with Pan-HER or radiation treatment alone. CONCLUSIONS These data highlight the capacity of Pan-HER to augment radiation response in lung and head and neck cancer models and support investigation of Pan-HER combined with radiation as a promising clinical therapeutic strategy.
Collapse
Affiliation(s)
- David M Francis
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Shyhmin Huang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Eric A Armstrong
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lauryn R Werner
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Craig Hullett
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Chunrong Li
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Adam D Swick
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
61
|
Prat M, Oltolina F, Basilico C. Monoclonal Antibodies against the MET/HGF Receptor and Its Ligand: Multitask Tools with Applications from Basic Research to Therapy. Biomedicines 2014; 2:359-383. [PMID: 28548076 PMCID: PMC5344273 DOI: 10.3390/biomedicines2040359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies can be seen as valuable tools for many aspects of basic as well as applied sciences. In the case of MET/HGFR, they allowed the identification of truncated isoforms of the receptor, as well as the dissection of different epitopes, establishing structure-function relationships. Antibodies directed against MET extracellular domain were found to be full or partial receptor agonists or antagonists. The agonists can mimic the effects of the different isoforms of the natural ligand, but with the advantage of being more stable than the latter. Thus, some agonist antibodies promote all the biological responses triggered by MET activation, including motility, proliferation, morphogenesis, and protection from apoptosis, while others can induce only a migratory response. On the other hand, antagonists can inhibit MET-driven biological functions either by competing with the ligand or by removing the receptor from the cell surface. Since MET/HGFR is often over-expressed and/or aberrantly activated in tumors, monoclonal antibodies can be used as probes for MET detection or as "bullets" to target MET-expressing tumor cells, thus pointing to their use in diagnosis and therapy.
Collapse
Affiliation(s)
- Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Francesca Oltolina
- Department of Health Sciences, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Cristina Basilico
- Laboratory of Exploratory Research, Candiolo Cancer Institute, Str. Prov. 142, 10060 Candiolo, Italy.
| |
Collapse
|