Ager EI, Chong WW, Wen SW, Christophi C. Targeting the angiotensin II type 2 receptor (AT2R) in colorectal liver metastases.
Cancer Cell Int 2010;
10:19. [PMID:
20584290 PMCID:
PMC2902462 DOI:
10.1186/1475-2867-10-19]
[Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 06/28/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND
Blockade of the angiotensin (ANG) II type 1 receptor (AT1R) inhibits tumour growth in several cancers, including colorectal cancer (CRC) liver metastases. While AT1R blockade has been extensively studied, the potential of targeting the antagonistically acting AT2R in cancer has not been investigated. This study examined the effect of AT2R activation with the agonist CGP42112A in a mouse model of CRC liver metastases.
RESULTS
In vitro, mouse CRC cell (MoCR) proliferation was inhibited by treatment with CGP42112A in a dose dependent manner while apoptosis was increased. Immunofluorescent staining for key signalling and secondary messengers, PLA2 and iNOS, were also increased by CGP42112A treatment in vitro. Immunohistochemical staining for proliferation (PCNA) and the apoptosis (active caspase 3) markers confirmed a CGP42112A-associated inhibition of proliferation and induction of apoptosis of mouse CRC cells (MoCR) in vivo. However, angiogenesis and vascular endothelial growth factor (VEGF) appeared to be increased by CGP42112A treatment in vivo. This increase in VEGF secretion by MoCRs was confirmed in vitro. Despite this apparent pro-angiogenic effect, a syngenic orthotopic mouse model of CRC liver metastases showed a reduction in liver to body weight ratio, an indication of tumour burden, following CGP42112A treatment compared to untreated controls.
CONCLUSIONS
These results suggest that AT2R activation might provide a novel target to inhibit tumour growth. Its potential to stimulate angiogenesis could be compensated by combination with anti-angiogenic agents.
Collapse