51
|
Tong Y, Qian W. Targeting cancer stem cells with oncolytic virus. Stem Cell Investig 2014; 1:20. [PMID: 27358866 DOI: 10.3978/j.issn.2306-9759.2014.11.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells which are shown to be relatively resistant to conventional anticancer therapies and have been correlated to disease recurrence. Oncolytic viruses utilize methods of cell killing that differ from traditional therapies and thus are able to elude the typical mechanisms that CSCs use to resist current chemotherapies and radiotherapies. Moreover, genetically engineered oncolytic viruses may further augment the oncolytic effects. Here we review the recent data regarding the ability of several oncolytic viruses to eradicate CSCs.
Collapse
Affiliation(s)
- Yin Tong
- 1 Department of Hematology, Shanghai General Hospital, Shanghai 200080, China ; 2 Institute of Hematology, the First Afflilated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wenbin Qian
- 1 Department of Hematology, Shanghai General Hospital, Shanghai 200080, China ; 2 Institute of Hematology, the First Afflilated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
52
|
Bolyard C, Yoo JY, Wang PY, Saini U, Rath KS, Cripe TP, Zhang J, Selvendiran K, Kaur B. Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clin Cancer Res 2014; 20:6479-94. [PMID: 25294909 DOI: 10.1158/1078-0432.ccr-14-0463] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Novel therapeutic regimens are needed to improve dismal outcomes associated with late-stage ovarian cancer. Oncolytic viruses are currently being tested in patients with ovarian cancer. Here, we tested the therapeutic efficacy of combining doxorubicin with 34.5ENVE, an oncolytic herpes simplex virus transcriptionally driven by a modified stem cell-specific nestin promoter, and encoding for antiangiogenic Vasculostatin-120 (VStat120) for use against progressive ovarian cancer. EXPERIMENTAL DESIGN Antitumor efficacy of 34.5ENVE was assessed in ovarian cancer cell lines, mouse ascites-derived tumor cells, and primary patient ascites-derived tumor cells by standard MTT assay. The ability of conditioned medium derived from 34.5ENVE-infected ovarian cancer cells to inhibit endothelial cell migration was measured by a Transwell chamber assay. Scope of cytotoxic interactions between 34.5ENVE and doxorubicin were evaluated using Chou-Talalay synergy analysis. Viral replication, herpes simplex virus receptor expression, and apoptosis were evaluated. Efficacy of oncolytic viral therapy in combination with doxorubicin was evaluated in vivo in the murine xenograft model of human ovarian cancer. RESULTS Treatment with 34.5ENVE reduced cell viability of ovarian cancer cell lines, and mouse ascites-derived and patient ascites-derived ovarian tumor cells. Conditioned media from tumor cells infected with 34.5ENVE reduced endothelial cell migration. When combined with doxorubicin, 34.5ENVE killed synergistically with a significant increase in caspase-3/7 activation, and an increase in sub-G1 population of cells. The combination of doxorubicin and 34.5ENVE significantly prolonged survival in nude mice bearing intraperitoneal ovarian cancer tumors. CONCLUSIONS This study indicates significant antitumor efficacy of 34.5ENVE alone, and in combination with doxorubicin against disseminated peritoneal ovarian cancer.
Collapse
Affiliation(s)
- Chelsea Bolyard
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, Ohio
| | - Ji Young Yoo
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, Ohio
| | - Pin-Yi Wang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Uksha Saini
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Kellie S Rath
- Ohio Health Gynecologic Cancer Surgeons, Ohio Health Systems, Columbus, Ohio
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jianying Zhang
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Balveen Kaur
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
53
|
Ning J, Wakimoto H. Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy. Front Microbiol 2014; 5:303. [PMID: 24999342 PMCID: PMC4064532 DOI: 10.3389/fmicb.2014.00303] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/03/2014] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OV) are a class of antitumor agents that selectively kill tumor cells while sparing normal cells. Oncolytic herpes simplex virus (oHSV) has been investigated in clinical trials for patients with the malignant brain tumor glioblastoma for more than a decade. These clinical studies have shown the safety of oHSV administration to the human brain, however, therapeutic efficacy of oHSV as a single treatment remains unsatisfactory. Factors that could hamper the anti-glioblastoma efficacy of oHSV include: attenuated potency of oHSV due to deletion or mutation of viral genes involved in virulence, restricting viral replication and spread within the tumor; suboptimal oHSV delivery associated with intratumoral injection; virus infection-induced inflammatory and cellular immune responses which could inhibit oHSV replication and promote its clearance; lack of effective incorporation of oHSV into standard-of-care, and poor knowledge about the ability of oHSV to target glioblastoma stem cells (GSCs). In an attempt to address these issues, recent research efforts have been directed at: (1) design of new engineered viruses to enhance potency, (2) better understanding of the role of the cellular immunity elicited by oHSV infection of tumors, (3) combinatorial strategies with different antitumor agents with a mechanistic rationale, (4) “armed” viruses expressing therapeutic transgenes, (5) use of GSC-derived models in oHSV evaluation, and (6) combinations of these. In this review, we will describe the current status of oHSV clinical trials for glioblastoma, and discuss recent research advances and future directions toward successful oHSV-based therapy of glioblastoma.
Collapse
Affiliation(s)
- Jianfang Ning
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| |
Collapse
|
54
|
Zajakina A, Vasilevska J, Zhulenkovs D, Skrastina D, Spaks A, Plotniece A, Kozlovska T. High efficiency of alphaviral gene transfer in combination with 5-fluorouracil in a mouse mammary tumor model. BMC Cancer 2014; 14:460. [PMID: 24950740 PMCID: PMC4077127 DOI: 10.1186/1471-2407-14-460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/17/2014] [Indexed: 11/17/2022] Open
Abstract
Background The combination of virotherapy and chemotherapy may enable efficient tumor regression that would be unachievable using either therapy alone. In this study, we investigated the efficiency of transgene delivery and the cytotoxic effects of alphaviral vector in combination with 5-fluorouracil (5-FU) in a mouse mammary tumor model (4 T1). Methods Replication-deficient Semliki Forest virus (SFV) vectors carrying genes encoding fluorescent proteins were used to infect 4 T1 cell cultures treated with different doses of 5-FU. The efficiency of infection was monitored via fluorescence microscopy and quantified by fluorometry. The cytotoxicity of the combined treatment with 5-FU and alphaviral vector was measured using an MTT-based cell viability assay. In vivo experiments were performed in a subcutaneous 4 T1 mouse mammary tumor model with different 5-FU doses and an SFV vector encoding firefly luciferase. Results Infection of 4 T1 cells with SFV prior to 5-FU treatment did not produce a synergistic anti-proliferative effect. An alternative treatment strategy, in which 5-FU was used prior to virus infection, strongly inhibited SFV expression. Nevertheless, in vivo experiments showed a significant enhancement in SFV-driven transgene (luciferase) expression upon intratumoral and intraperitoneal vector administration in 4 T1 tumor-bearing mice pretreated with 5-FU: here, we observed a positive correlation between 5-FU dose and the level of luciferase expression. Conclusions Although 5-FU inhibited SFV-mediated transgene expression in 4 T1 cells in vitro, application of the drug in a mouse model revealed a significant enhancement of intratumoral transgene synthesis compared with 5-FU untreated mice. These results may have implications for efficient transgene delivery and the development of potent cancer treatment strategies using alphaviral vectors and 5-FU.
Collapse
Affiliation(s)
- Anna Zajakina
- Department of Cell Biology, Biomedical Research and Study Centre, Ratsupites Str,, 1, Riga LV-1067, Latvia.
| | | | | | | | | | | | | |
Collapse
|
55
|
Smith TT, Roth JC, Friedman GK, Gillespie GY. Oncolytic viral therapy: targeting cancer stem cells. Oncolytic Virother 2014; 2014:21-33. [PMID: 24834430 PMCID: PMC4018757 DOI: 10.2147/ov.s52749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as rare populations of tumor-initiating cancer cells that are capable of both self-renewal and differentiation. Extensive research is currently underway to develop therapeutics that target CSCs for cancer therapy, due to their critical role in tumorigenesis, as well as their resistance to chemotherapy and radiotherapy. To this end, oncolytic viruses targeting unique CSC markers, signaling pathways, or the pro-tumor CSC niche offer promising potential as CSCs-destroying agents/therapeutics. We provide a summary of existing knowledge on the biology of CSCs, including their markers and their niche thought to comprise the tumor microenvironment, and then we provide a critical analysis of the potential for targeting CSCs with oncolytic viruses, including herpes simplex virus-1, adenovirus, measles virus, reovirus, and vaccinia virus. Specifically, we review current literature regarding first-generation oncolytic viruses with their innate ability to replicate in CSCs, as well as second-generation viruses engineered to enhance the oncolytic effect and CSC-targeting through transgene expression.
Collapse
Affiliation(s)
- Tyrel T Smith
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Justin C Roth
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory K Friedman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
56
|
Braidwood L, Graham SV, Graham A, Conner J. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs. Oncolytic Virother 2013; 2:57-74. [PMID: 27512658 PMCID: PMC4918355 DOI: 10.2147/ov.s52601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs) have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVex(GM-CSF)]), is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with "standard-of-care" drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with "standard-of-care" drugs merits further investigation, both preclinically and in the clinic. Numerous publications report such studies of oncolytic HSV in combination with other drugs, and we review their findings here. Viral interactions with cellular hosts are complex and frequently involve intracellular signaling networks, thus creating diverse opportunities for synergistic or additive combinations with many anticancer drugs. We discuss potential mechanisms that may lead to synergistic interactions.
Collapse
Affiliation(s)
- Lynne Braidwood
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Jarrett Building, University of Glasgow, Glasgow, UK
| | - Alex Graham
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Joe Conner
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| |
Collapse
|
57
|
Biasoli D, Kahn SA, Cornélio TA, Furtado M, Campanati L, Chneiweiss H, Moura-Neto V, Borges HL. Retinoblastoma protein regulates the crosstalk between autophagy and apoptosis, and favors glioblastoma resistance to etoposide. Cell Death Dis 2013; 4:e767. [PMID: 23949216 PMCID: PMC3763445 DOI: 10.1038/cddis.2013.283] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/11/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
Glioblastomas (GBMs) are devastating tumors of the central nervous system, with a poor prognosis of 1-year survival. This results from a high resistance of GBM tumor cells to current therapeutic options, including etoposide (VP-16). Understanding resistance mechanisms may thus open new therapeutic avenues. VP-16 is a topoisomerase inhibitor that causes replication fork stalling and, ultimately, the formation of DNA double-strand breaks and apoptotic cell death. Autophagy has been identified as a VP-16 treatment resistance mechanism in tumor cells. Retinoblastoma protein (RB) is a classical tumor suppressor owing to its role in G1/S cell cycle checkpoint, but recent data have shown RB participation in many other cellular functions, including, counterintuitively, negative regulation of apoptosis. As GBMs usually display an amplification of the EGFR signaling involving the RB protein pathway, we questioned whether RB might be involved in mechanisms of resistance of GBM cells to VP-16. We observed that RB silencing increased VP-16-induced DNA double-strand breaks and p53 activation. Moreover, RB knockdown increased VP-16-induced apoptosis in GBM cell lines and cancer stem cells, the latter being now recognized essential to resistance to treatments and recurrence. We also showed that VP-16 treatment induced autophagy, and that RB silencing impaired this process by inhibiting the fusion of autophagosomes with lysosomes. Taken together, our data suggest that RB silencing causes a blockage on the VP-16-induced autophagic flux, which is followed by apoptosis in GBM cell lines and in cancer stem cells. Therefore, we show here, for the first time, that RB represents a molecular link between autophagy and apoptosis, and a resistance marker in GBM, a discovery with potential importance for anticancer treatment.
Collapse
Affiliation(s)
- D Biasoli
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - S A Kahn
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T A Cornélio
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Furtado
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - L Campanati
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H Chneiweiss
- Glial Plasticity Laboratory, Center for Psychiatry and Neuroscience, U894 Inserm, Paris Descartes University, Paris, France
| | - V Moura-Neto
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H L Borges
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
58
|
N-acetylcysteine amide augments the therapeutic effect of neural stem cell-based antiglioma oncolytic virotherapy. Mol Ther 2013; 21:2063-73. [PMID: 23883863 DOI: 10.1038/mt.2013.179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/20/2013] [Indexed: 12/16/2022] Open
Abstract
Current research has evaluated the intrinsic tumor-tropic properties of stem cell carriers for targeted anticancer therapy. Our laboratory has been extensively studying in the preclinical setting, the role of neural stem cells (NSCs) as delivery vehicles of CRAd-S-pk7, a gliomatropic oncolytic adenovirus (OV). However, the mediated toxicity of therapeutic payloads, such as oncolytic adenoviruses, toward cell carriers has significantly limited this targeted delivery approach. Following this rationale, in this study, we assessed the role of a novel antioxidant thiol, N-acetylcysteine amide (NACA), to prevent OV-mediated toxicity toward NSC carriers in an orthotropic glioma xenograft mouse model. Our results show that the combination of NACA and CRAd-S-pk7 not only increases the viability of these cell carriers by preventing reactive oxygen species (ROS)-induced apoptosis of NSCs, but also improves the production of viral progeny in HB1.F3.CD NSCs. In an intracranial xenograft mouse model, the combination treatment of NACA and NSCs loaded with CRAd-S-pk7 showed enhanced CRAd-S-pk7 production and distribution in malignant tissues, which improves the therapeutic efficacy of NSC-based targeted antiglioma oncolytic virotherapy. These data demonstrate that the combination of NACA and NSCs loaded with CRAd-S-pk7 may be a desirable strategy to improve the therapeutic efficacy of antiglioma oncolytic virotherapy.
Collapse
|
59
|
Li H, Nakashima H, Decklever TD, Nace RA, Russell SJ. HSV-NIS, an oncolytic herpes simplex virus type 1 encoding human sodium iodide symporter for preclinical prostate cancer radiovirotherapy. Cancer Gene Ther 2013; 20:478-85. [PMID: 23868101 PMCID: PMC3747331 DOI: 10.1038/cgt.2013.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022]
Abstract
Several clinical trials have shown that oncolytic herpes simplex virus type 1 (oHSV-1) can be safely administered to patients. However, virus replication in tumor tissue has generally not been monitored in these oHSV clinical trials, and the data suggest that its oncolytic potency needs to be improved. To facilitate noninvasive monitoring of the in vivo spread of an oHSV and to increase its antitumor efficacy, the gene coding for human sodium iodide symporter (NIS) was incorporated into a recombinant oHSV genome and the corresponding virus (oHSV-NIS) rescued in our laboratory. Our data demonstrate that a human prostate cancer cell line, LNCap, efficiently concentrates radioactive iodine after the cells have been infected in vitro or in vivo. In vivo replication of oHSV-NIS in tumors was noninvasively monitored by computed tomography/single-photon emission computed tomography imaging of the biodistribution of pertechnetate and was confirmed. LNCap xenografts in nude mice were eradicated by intratumoral administration of oHSV-NIS. Systemic administration of oHSV-NIS prolonged the survival of tumor-bearing mice, and the therapeutic effect was further enhanced by administration of 131I after the intratumoral spread of the virus had peaked. oHSV-NIS has the potential to substantially enhance the outcomes of standard therapy for patients with prostate cancer.
Collapse
Affiliation(s)
- H Li
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
60
|
|
61
|
Friedman GK, Raborn J, Kelly VM, Cassady KA, Markert JM, Gillespie GY. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy. Front Oncol 2013; 3:28. [PMID: 23450706 PMCID: PMC3584319 DOI: 10.3389/fonc.2013.00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 01/17/2023] Open
Abstract
While glioblastoma multiforme (GBM) is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs) remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed “glioma stem cells” (GSCs), “glioma progenitor cells,” or “glioma-initiating cells,” which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGG must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses (oHSV), genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oHSV.
Collapse
Affiliation(s)
- Gregory K Friedman
- Brain Tumor Research Program, Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
62
|
Auffinger B, Ahmed AU, Lesniak MS. Oncolytic virotherapy for malignant glioma: translating laboratory insights into clinical practice. Front Oncol 2013; 3:32. [PMID: 23443138 PMCID: PMC3580888 DOI: 10.3389/fonc.2013.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/04/2013] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme, one of the most common and aggressive brain tumors in adults, is highly resistant to currently available therapies and often recurs. Due to its poor prognosis and difficult management, there is an urgent need for the development and translation of new anti-glioma therapeutic approaches into the clinic. In this context, oncolytic virotherapy arises as an exciting treatment option for glioma patients. These natural or genetically engineered viruses are able to effectively infect cancer cells, inducing a specific anti-tumor cytotoxic effect. In addition, some viruses have been redesigned to modulate glioma microenvironment, to express cytokines to boost a systemic anti-glioma immune response and to incorporate angiostatic genes to decrease glioma vasculature. Although recent clinical trials have confirmed the safety of oncolytic virotherapies in the brain, their moderate clinical efficacy has not yet matched the encouraging preclinical laboratory results. In this review, we will discuss the leading anti-glioma virotherapy approaches that are presently under preclinical and clinical evaluation. We will also review different delivery methods, in vivo virus behavior, fate, replication, intratumoral spread, activation of anti-tumor immune response, and targeting of glioma stem cells. We will focus on the advantages and limitations of each therapeutic approach and how to overcome these hurdles to effectively translate exciting laboratory results into promising clinical trials.
Collapse
Affiliation(s)
- Brenda Auffinger
- The Brain Tumor Center, The University of Chicago Chicago, IL, USA
| | | | | |
Collapse
|
63
|
Tobias A, Ahmed A, Moon KS, Lesniak MS. The art of gene therapy for glioma: a review of the challenging road to the bedside. J Neurol Neurosurg Psychiatry 2013; 84:213-22. [PMID: 22993449 PMCID: PMC3543505 DOI: 10.1136/jnnp-2012-302946] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumour that is unvaryingly fatal in humans despite even aggressive therapeutic approaches such as surgical resection followed by chemotherapy and radiotherapy. Unconventional treatment options such as gene therapy provide an intriguing option for curbing glioma related deaths. To date, gene therapy has yielded encouraging results in preclinical animal models as well as promising safety profiles in phase I clinical trials, but has failed to demonstrate significant therapeutic efficacy in phase III clinical trials. The most widely studied antiglioma gene therapy strategies are suicide gene therapy, genetic immunotherapy and oncolytic virotherapy, and we have attributed the challenging transition of these modalities into the clinic to four major roadblocks: (1) anatomical features of the central nervous system, (2) the host immune system, (3) heterogeneity and invasiveness of GBM and (4) limitations in current GBM animal models. In this review, we discuss possible ways to jump these hurdles and develop new gene therapies that may be used alone or in synergy with other modalities to provide a powerful treatment option for patients with GBM.
Collapse
Affiliation(s)
- Alex Tobias
- Brain Tumour Center, The University of Chicago, 5841 South Maryland Ave, MC 3026, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
64
|
Low-dose metronomic chemotherapy: from past experience to new paradigms in the treatment of cancer. Drug Discov Today 2013; 18:193-201. [PMID: 22868084 DOI: 10.1016/j.drudis.2012.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/28/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
|
65
|
Concurrent chemotherapy inhibits herpes simplex virus-1 replication and oncolysis. Cancer Gene Ther 2013; 20:133-40. [PMID: 23348635 DOI: 10.1038/cgt.2012.97] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herpes simplex virus-1 (HSV-1) replication in cancer cells leads to their destruction (viral oncolysis) and has been under investigation as an experimental cancer therapy in clinical trials as single agents, and as combinations with chemotherapy. Cellular responses to chemotherapy modulate viral replication, but these interactions are poorly understood. To investigate the effect of chemotherapy on HSV-1 oncolysis, viral replication in cells exposed to 5-fluorouracil (5-FU), irinotecan (CPT-11), methotrexate (MTX) or a cytokine (tumor necrosis factor-α (TNF-α)) was examined. Exposure of colon and pancreatic cancer cells to 5-FU, CPT-11 or MTX in vitro significantly antagonizes both HSV-1 replication and lytic oncolysis. Nuclear factor-κB (NF-κB) activation is required for efficient viral replication, and experimental inhibition of this response with an IκBα dominant-negative repressor significantly antagonizes HSV-1 replication. Nonetheless, cells exposed to 5-FU, CPT-11, TNF-α or HSV-1 activate NF-κB. Cells exposed to MTX do not activate NF-κB, suggesting a possible role for NF-κB inhibition in the decreased viral replication observed following exposure to MTX. The role of eukaryotic initiation factor 2α (eIF-2α) dephosphorylation was examined; HSV-1-mediated eIF-2α dephosphorylation proceeds normally in HT29 cells exposed to 5-FU, CPT-11 or MTX. This report demonstrates that cellular responses to chemotherapeutic agents provide an unfavorable environment for HSV-1-mediated oncolysis, and these observations are relevant to the design of both preclinical and clinical studies of HSV-1 oncolysis.
Collapse
|
66
|
Xu C, Li H, Su C, Li Z. Viral therapy for pancreatic cancer: tackle the bad guys with poison. Cancer Lett 2013; 333:1-8. [PMID: 23354590 DOI: 10.1016/j.canlet.2013.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is one of the most devastating diseases with very poor prognosis. Only a small proportion is curable by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Therefore, there is an urgent need for the development of novel therapeutic approaches to improve the patient outcome. Recently the viral therapy is emerging as a novel effective therapeutic approach for cancer with the potential to selectively treat both primary tumor and metastatic lesions. This review provides an overview of the current status of viral treatment for pancreatic cancer, both in the laboratories and in clinical settings.
Collapse
Affiliation(s)
- Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | |
Collapse
|
67
|
Song X, Wang H, Jia R, Cun B, Zhao X, Zhou Y, Xu X, Qian G, Ge S, Fan X. Combined treatment with an oncolytic adenovirus and antitumor activity of vincristine against retinoblastoma cells. Int J Mol Sci 2012; 13:10736-10749. [PMID: 23109819 PMCID: PMC3472711 DOI: 10.3390/ijms130910736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/16/2022] Open
Abstract
Treatment trends of retinoblastoma (RB) have gradually evolved from eye enucleation and external radiation to local treatment. Combined treatment with an oncolytic virus and chemotherapy is currently a new method in RB treatment. To investigate the therapeutic effect of oncolytic adenovirus SG600 in combination with vincristine (VCR) on retinoblastoma in vitro, the cell viability, cell cycle effects and apoptotic activity of HXO-RB44 cells treated with SG600, VCR or SG600 plus VCR were measured using a cell counting kit-8-based procedure and flow cytometry. Western blot analysis for Akt, p-Akt, p-p53 and p-Rb protein was performed to investigate the underlying mechanisms of combined therapy. The combination therapy exerted a synergistic antitumor effect via a type of G2/M and S phase arrest rather than the induction of apoptosis. The combination of VCR and SG600 further reduced Akt phosphorylation compared with cells treated with VCR alone, suggesting that SG600 could overcome chemoresistance, perhaps by down-regulating Akt in RB cells. An increase in the expression of p-p53 and decrease in p-Rb expression in HXO-RB44 after co-treatment might be associated with cell cycle block. Western blot examination revealed that VCR might enhance SG600 replication. These results suggest that viro-chemo combination therapy is a feasible and potentially promising approach for the treatment of retinoblastoma.
Collapse
Affiliation(s)
- Xin Song
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; E-Mails: (X.S.); (R.J.); (B.C.); (X.Z.); (Y.Z.); (X.X.)
| | - Haibo Wang
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; E-Mails: (H.W.); (G.Q.)
| | - Renbing Jia
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; E-Mails: (X.S.); (R.J.); (B.C.); (X.Z.); (Y.Z.); (X.X.)
| | - Biyun Cun
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; E-Mails: (X.S.); (R.J.); (B.C.); (X.Z.); (Y.Z.); (X.X.)
| | - Xiaoping Zhao
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; E-Mails: (X.S.); (R.J.); (B.C.); (X.Z.); (Y.Z.); (X.X.)
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; E-Mails: (X.S.); (R.J.); (B.C.); (X.Z.); (Y.Z.); (X.X.)
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; E-Mails: (X.S.); (R.J.); (B.C.); (X.Z.); (Y.Z.); (X.X.)
| | - Guanxiang Qian
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; E-Mails: (H.W.); (G.Q.)
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; E-Mails: (X.S.); (R.J.); (B.C.); (X.Z.); (Y.Z.); (X.X.)
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; E-Mails: (H.W.); (G.Q.)
- Authors to whom correspondence should be addressed; E-Mails: (S.G.); (X.F.); Tel.: +86-021-6313-5606 (S.G.); +86-021-2327-1699 (ext. 5586) (X.F.); Fax: +86-021-6313-7148 (S.G.); +86-021-6313-7148 (X.F.)
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; E-Mails: (X.S.); (R.J.); (B.C.); (X.Z.); (Y.Z.); (X.X.)
- Authors to whom correspondence should be addressed; E-Mails: (S.G.); (X.F.); Tel.: +86-021-6313-5606 (S.G.); +86-021-2327-1699 (ext. 5586) (X.F.); Fax: +86-021-6313-7148 (S.G.); +86-021-6313-7148 (X.F.)
| |
Collapse
|
68
|
Lee C, Fotovati A, Triscott J, Chen J, Venugopal C, Singhal A, Dunham C, Kerr JM, Verreault M, Yip S, Wakimoto H, Jones C, Jayanthan A, Narendran A, Singh SK, Dunn SE. Polo-like kinase 1 inhibition kills glioblastoma multiforme brain tumor cells in part through loss of SOX2 and delays tumor progression in mice. Stem Cells 2012; 30:1064-75. [PMID: 22415968 DOI: 10.1002/stem.1081] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) ranks among the deadliest types of cancer and given these new therapies are urgently needed. To identify molecular targets, we queried a microarray profiling 467 human GBMs and discovered that polo-like kinase 1 (PLK1) was highly expressed in these tumors and that it clustered with the proliferative subtype. Patients with PLK1-high tumors were more likely to die from their disease suggesting that current therapies are inactive against such tumors. This prompted us to examine its expression in brain tumor initiating cells (BTICs) given their association with treatment failure. BTICs isolated from patients expressed 110-470 times more PLK1 than normal human astrocytes. Moreover, BTICs rely on PLK1 for survival because the PLK1 inhibitor BI2536 inhibited their growth in tumorsphere cultures. PLK1 inhibition suppressed growth, caused G(2) /M arrest, induced apoptosis, and reduced the expression of SOX2, a marker of neural stem cells, in SF188 cells. Consistent with SOX2 inhibition, the loss of PLK1 activity caused the cells to differentiate based on elevated levels of glial fibrillary acidic protein and changes in cellular morphology. We then knocked glial fibrillary acidic protein (GFAP) down SOX2 with siRNA and showed that it too inhibited cell growth and induced cell death. Likewise, in U251 cells, PLK1 inhibition suppressed cell growth, downregulated SOX2, and induced cell death. Furthermore, BI2536 delayed tumor growth of U251 cells in an orthotopic brain tumor model, demonstrating that the drug is active against GBM. In conclusion, PLK1 level is elevated in GBM and its inhibition restricts the growth of brain cancer cells.
Collapse
Affiliation(s)
- Cathy Lee
- Department of Pediatrics, Child and Family Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|