51
|
Targeting the ATR-CHK1 Axis in Cancer Therapy. Cancers (Basel) 2017; 9:cancers9050041. [PMID: 28448462 PMCID: PMC5447951 DOI: 10.3390/cancers9050041] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Targeting the DNA damage response (DDR) is a new therapeutic approach in cancer that shows great promise for tumour selectivity. Key components of the DDR are the ataxia telangiectasia mutated and Rad3 related (ATR) and checkpoint kinase 1 (CHK1) kinases. This review article describes the role of ATR and its major downstream target, CHK1, in the DDR and why cancer cells are particularly reliant on the ATR-CHK1 pathway, providing the rationale for targeting these kinases, and validation of this hypothesis by genetic manipulation. The recent development of specific inhibitors and preclinical data using these inhibitors not only as chemosensitisers and radiosensitisers but also as single agents to exploit specific pathologies of tumour cells is described. These potent and specific inhibitors have now entered clinical trial and early results are presented.
Collapse
|
52
|
Jun DW, Hwang M, Kim YH, Kim KT, Kim S, Lee CH. DDRI-9: a novel DNA damage response inhibitor that blocks mitotic progression. Oncotarget 2017; 7:17699-710. [PMID: 26848527 PMCID: PMC4951243 DOI: 10.18632/oncotarget.7135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022] Open
Abstract
The DNA damage response (DDR) is an emerging target for cancer therapy. By modulating the DDR, including DNA repair and cell cycle arrest, the efficacy of anticancer drugs can be enhanced and side effects reduced. We previously screened a chemical library and identified novel DDR inhibitors including DNA damage response inhibitor-9 (DDRI-9; 1H-Purine-2,6-dione,7-[(4-fluorophenyl)methyl]-3,7-dihydro-3-methyl-8-nitro). In this study, we characterized DDRI-9 activity and found that it inhibited phosphorylated histone variant H2AX foci formation upon DNA damage, delayed DNA repair, and enhanced the cytotoxicity of etoposide and ionizing radiation. It also reduced the foci formation of DNA repair-related proteins, including the protein kinase ataxia-telangiectasia mutated, DNA-dependent protein kinase, breast cancer type 1 susceptibility protein, and p53-binding protein 1, but excluding mediator of DNA damage checkpoint protein 1. Cell cycle analysis revealed that DDRI-9 blocked mitotic progression. Like other mitotic inhibitors, DDRI-9 treatment resulted in the accumulation of mitotic protein and induced cell death. Thus, DDRI-9 may affect both DDR signal amplification and mitotic progression. This study suggests that DDRI-9 is a good lead molecule for the development of anticancer drugs.
Collapse
Affiliation(s)
- Dong Wha Jun
- New Experimental Therapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Mihwa Hwang
- New Experimental Therapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, Gyeonggi, Korea.,System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Yun-Hee Kim
- Molecular Imaging and Therapy Branch, Division of Convergence Technology, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Kyung-Tae Kim
- Molecular Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Sunshin Kim
- New Experimental Therapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, Korea
| |
Collapse
|
53
|
Ladstätter S, Tachibana-Konwalski K. A Surveillance Mechanism Ensures Repair of DNA Lesions during Zygotic Reprogramming. Cell 2016; 167:1774-1787.e13. [PMID: 27916276 PMCID: PMC5161750 DOI: 10.1016/j.cell.2016.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/29/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
Sexual reproduction culminates in a totipotent zygote with the potential to produce a whole organism. Sperm chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications generate a totipotent embryo. Active DNA demethylation of the paternal genome has been proposed to involve base excision and DNA repair-based mechanisms. The nature and consequence of DNA lesions generated during reprogramming are not known. Using mouse genetics and chemical biology, we discovered that Tet3-dependent zygotic reprogramming generates paternal DNA lesions that are monitored by a surveillance mechanism. In vivo structure-function rescue assays revealed that cohesin-dependent repair of paternal DNA lesions prevents activation of a Chk1-dependent checkpoint that delays mitotic entry. Culturing conditions affect checkpoint stringency, which has implications for human in vitro fertilization. We propose the zygotic checkpoint senses DNA lesions generated during paternal DNA demethylation and ensures reprogrammed loci are repaired before mitosis to prevent chromosome fragmentation, embryo loss, and infertility.
Collapse
Affiliation(s)
- Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Kikuë Tachibana-Konwalski
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna 1030, Austria.
| |
Collapse
|
54
|
Ronco C, Martin AR, Demange L, Benhida R. ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells. MEDCHEMCOMM 2016; 8:295-319. [PMID: 30108746 DOI: 10.1039/c6md00439c] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 12/15/2022]
Abstract
DNA inevitably undergoes a high number of damages throughout the cell cycle. To preserve the integrity of the genome, cells have developed a complex enzymatic machinery aimed at sensing and repairing DNA lesions, pausing the cell cycle to provide more time to repair, or induce apoptosis if damages are too severe. This so-called DNA-damage response (DDR) is yet considered as a major source of resistance to DNA-damaging treatments in oncology. Recently, it has been hypothesized that cancer stem cells (CSC), a sub-population of cancer cells particularly resistant and with tumour-initiating ability, allow tumour re-growth and cancer relapse. Therefore, DDR appears as a relevant target to sensitize cancer cells and cancer stem cells to classical radio- and chemotherapies as well as to overcome resistances. Moreover, the concept of synthetic lethality could be particularly efficiently exploited in DDR. Five kinases play pivotal roles in the DDR: ATM, ATR, CHK1, CHK2 and WEE1. Herein, we review the drugs targeting these proteins and the inhibitors used in the specific case of CSC. We also suggest molecules that may be of interest for preclinical and clinical researchers studying checkpoint inhibition to sensitize cancer and cancer stem cells to DNA-damaging treatments.
Collapse
Affiliation(s)
- Cyril Ronco
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice , UMR7272 - Parc Valrose , 06108 Nice Cedex 2 , France . ; ; Tel: +33 4 92076143
| | - Anthony R Martin
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice , UMR7272 - Parc Valrose , 06108 Nice Cedex 2 , France . ; ; Tel: +33 4 92076143
| | - Luc Demange
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice , UMR7272 - Parc Valrose , 06108 Nice Cedex 2 , France . ; ; Tel: +33 4 92076143.,Université Paris Descartes , Sorbonne Paris Cité , UFR des Sciences Pharmaceutiques , 4 avenue de l'Observatoire , Paris Fr-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , UFR Biomédicale des Saints Pères , 45 rue des Saints Pères , France
| | - Rachid Benhida
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice , UMR7272 - Parc Valrose , 06108 Nice Cedex 2 , France . ; ; Tel: +33 4 92076143
| |
Collapse
|
55
|
Worzella T, Butzler M, Hennek J, Hanson S, Simdon L, Goueli S, Cowan C, Zegzouti H. A Flexible Workflow for Automated Bioluminescent Kinase Selectivity Profiling. SLAS Technol 2016; 22:153-162. [PMID: 28095176 PMCID: PMC5418932 DOI: 10.1177/2211068216677248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kinase profiling during drug discovery is a necessary process to confirm inhibitor selectivity and assess off-target activities. However, cost and logistical limitations prevent profiling activities from being performed in-house. We describe the development of an automated and flexible kinase profiling workflow that combines ready-to-use kinase enzymes and substrates in convenient eight-tube strips, a bench-top liquid handling device, ADP-Glo Kinase Assay (Promega, Madison, WI) technology to quantify enzyme activity, and a multimode detection instrument. Automated methods were developed for kinase reactions and quantification reactions to be assembled on a Gilson (Middleton, WI) PIPETMAX, following standardized plate layouts for single- and multidose compound profiling. Pipetting protocols were customized at runtime based on user-provided information, including compound number, increment for compound titrations, and number of kinase families to use. After the automated liquid handling procedures, a GloMax Discover (Promega) microplate reader preloaded with SMART protocols was used for luminescence detection and automatic data analysis. The functionality of the automated workflow was evaluated with several compound-kinase combinations in single-dose or dose-response profiling formats. Known target-specific inhibitions were confirmed. Novel small molecule-kinase interactions, including off-target inhibitions, were identified and confirmed in secondary studies. By adopting this streamlined profiling process, researchers can quickly and efficiently profile compounds of interest on site.
Collapse
Affiliation(s)
| | - Matt Butzler
- 1 Promega Corporation, R&D Department, Madison, WI, USA
| | - Jacquelyn Hennek
- 1 Promega Corporation, R&D Department, Madison, WI, USA.,3 Exact Sciences Corporation, Madison, WI, USA
| | | | | | - Said Goueli
- 1 Promega Corporation, R&D Department, Madison, WI, USA
| | - Cris Cowan
- 1 Promega Corporation, R&D Department, Madison, WI, USA
| | | |
Collapse
|
56
|
Visconti R, Della Monica R, Grieco D. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J Exp Clin Cancer Res 2016; 35:153. [PMID: 27670139 PMCID: PMC5037895 DOI: 10.1186/s13046-016-0433-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
Major currently used anticancer therapeutics either directly damage DNA or target and upset basic cell division mechanisms like DNA replication and chromosome segregation. These insults elicit activation of cell cycle checkpoints, safeguard mechanisms that cells implement to correctly complete cell cycle phases, repair damage or eventually commit suicide in case damage is unrepairable. Although cancer cells appear to be advantageously defective in some aspects of checkpoint physiology, recent acquisitions on the biochemical mechanisms of the various checkpoints are offering new therapeutic approaches against cancer. Indeed, chemical manipulation of these mechanisms is providing new therapeutic strategies and tools to increase the killing efficacy of major cancer therapeutics as well as to directly promote cancer cell death. In this review we summarize developing concepts on how targeting cell cycle checkpoints may provide substantial improvement to cancer therapy.
Collapse
Affiliation(s)
| | - Rosa Della Monica
- DMMBM, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Naples, Italy
| | - Domenico Grieco
- DMMBM, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
57
|
Restelli V, Chilà R, Lupi M, Rinaldi A, Kwee I, Bertoni F, Damia G, Carrassa L. Characterization of a mantle cell lymphoma cell line resistant to the Chk1 inhibitor PF-00477736. Oncotarget 2016; 6:37229-40. [PMID: 26439697 PMCID: PMC4741926 DOI: 10.18632/oncotarget.5954] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/17/2015] [Indexed: 12/24/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by the chromosomal translocation t(11;14) that leads to constitutive expression of cyclin D1, a master regulator of the G1-S phase. Chk1 inhibitors have been recently shown to be strongly effective as single agents in MCL. To investigate molecular mechanisms at the basis of Chk1 inhibitor activity, a MCL cell line resistant to the Chk1 inhibitor PF-00477736 (JEKO-1 R) was obtained and characterized. The JEKO-1 R cell line was cross resistant to another Chk1 inhibitor (AZD-7762) and to the Wee1 inhibitor MK-1775. It displayed a shorter doubling time than parental cell line, likely due to a faster S phase. Cyclin D1 expression levels were decreased in resistant cell line and its re-overexpression partially re-established PF-00477736 sensitivity. Gene expression profiling showed an enrichment in gene sets involved in pro-survival pathways in JEKO-1 R. Dasatinib treatment partly restored PF-00477736 sensitivity in resistant cells suggesting that the pharmacological interference of pro-survival pathways can overcome the resistance to Chk1 inhibitors. These data further corroborate the involvement of the t(11;14) in cellular sensitivity to Chk1 inhibitors, fostering the clinical testing of Chk1 inhibitors as single agents in MCL.
Collapse
Affiliation(s)
- Valentina Restelli
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Rosaria Chilà
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Monica Lupi
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | - Ivo Kwee
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland.,Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland.,Lymphoma Unit, IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Laura Carrassa
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| |
Collapse
|
58
|
Yang SH, Kuo TC, Wu H, Guo JC, Hsu C, Hsu CH, Tien YW, Yeh KH, Cheng AL, Kuo SH. Perspectives on the combination of radiotherapy and targeted therapy with DNA repair inhibitors in the treatment of pancreatic cancer. World J Gastroenterol 2016; 22:7275-7288. [PMID: 27621574 PMCID: PMC4997635 DOI: 10.3748/wjg.v22.i32.7275] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/20/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to co-administration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA double-strand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer.
Collapse
|
59
|
Using Bioluminescent Kinase Profiling Strips to Identify Kinase Inhibitor Selectivity and Promiscuity. Methods Mol Biol 2016; 1360:59-73. [PMID: 26501902 DOI: 10.1007/978-1-4939-3073-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The advancement of a kinase inhibitor throughout drug discovery and development is predicated upon its selectivity towards the target of interest. Thus, profiling the compound against a broad panel of kinases is important for providing a better understanding of its activity and for obviating any off-target activities that can result in undesirable consequences. To assess the selectivity and potency of an inhibitor against multiple kinases, it is desirable to use a universal assay that can monitor the activity of all classes of kinases regardless of the nature of their substrates. The luminescent ADP-Glo kinase assay is a universal platform that measures kinase activity by quantifying the amount of the common kinase reaction product ADP. Here we present a method using standardized kinase profiling systems for inhibitor profiling studies based on ADP detection by luminescence. The kinase profiling systems are sets of kinases organized by family, presented in multi-tube strips containing eight enzymes, each with corresponding substrate strips, and standardized for optimal kinase activity. We show that using the kinase profiling strips we could quickly and easily generate multiple selectivity profiles using small or large kinase panels, and identify compound promiscuity within the kinome.
Collapse
|
60
|
Choi M, Kipps T, Kurzrock R. ATM Mutations in Cancer: Therapeutic Implications. Mol Cancer Ther 2016; 15:1781-91. [PMID: 27413114 DOI: 10.1158/1535-7163.mct-15-0945] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/25/2016] [Indexed: 01/25/2023]
Abstract
Activation of checkpoint arrest and homologous DNA repair are necessary for maintenance of genomic integrity during DNA replication. Germ-line mutations of the ataxia telangiectasia mutated (ATM) gene result in the well-characterized ataxia telangiectasia syndrome, which manifests with an increased cancer predisposition, including a 20% to 30% lifetime risk of lymphoid, gastric, breast, central nervous system, skin, and other cancers. Somatic ATM mutations or deletions are commonly found in lymphoid malignancies, as well as a variety of solid tumors. Such mutations may result in chemotherapy resistance and adverse prognosis, but may also be exploited by existing or emerging targeted therapies that produce synthetic lethal states. Mol Cancer Ther; 15(8); 1781-91. ©2016 AACR.
Collapse
Affiliation(s)
- Michael Choi
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California.
| | - Thomas Kipps
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California
| |
Collapse
|
61
|
Ke B, Tian M, Li J, Liu B, He G. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy. Med Res Rev 2016; 36:983-1035. [PMID: 27357603 DOI: 10.1002/med.21398] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/04/2016] [Accepted: 05/28/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Bowen Ke
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Mao Tian
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Jingjing Li
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Bo Liu
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Gu He
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| |
Collapse
|
62
|
Gao X, Han L, Ren Y. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations. Molecules 2016; 21:molecules21050591. [PMID: 27164065 PMCID: PMC6273173 DOI: 10.3390/molecules21050591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 12/11/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q2 values (0.531, 0.726), fitted correlation r2 coefficients (higher than 0.90), and standard error of prediction (less than 0.250). These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity.
Collapse
Affiliation(s)
- Xiaodong Gao
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Liping Han
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yujie Ren
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
63
|
Derenzini E, Agostinelli C, Imbrogno E, Iacobucci I, Casadei B, Brighenti E, Righi S, Fuligni F, Ghelli Luserna Di Rorà A, Ferrari A, Martinelli G, Pileri S, Zinzani PL. Constitutive activation of the DNA damage response pathway as a novel therapeutic target in diffuse large B-cell lymphoma. Oncotarget 2016; 6:6553-69. [PMID: 25544753 PMCID: PMC4466634 DOI: 10.18632/oncotarget.2720] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/08/2014] [Indexed: 11/25/2022] Open
Abstract
The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL.
Collapse
Affiliation(s)
- Enrico Derenzini
- Institute of Hematology and Medical Oncology L.A. Seragnoli, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Claudio Agostinelli
- Haematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Enrica Imbrogno
- Institute of Hematology and Medical Oncology L.A. Seragnoli, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Ilaria Iacobucci
- Institute of Hematology and Medical Oncology L.A. Seragnoli, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Beatrice Casadei
- Institute of Hematology and Medical Oncology L.A. Seragnoli, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Elisa Brighenti
- Institute of Hematology and Medical Oncology L.A. Seragnoli, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Simona Righi
- Haematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Fabio Fuligni
- Haematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Andrea Ghelli Luserna Di Rorà
- Institute of Hematology and Medical Oncology L.A. Seragnoli, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Anna Ferrari
- Institute of Hematology and Medical Oncology L.A. Seragnoli, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Giovanni Martinelli
- Institute of Hematology and Medical Oncology L.A. Seragnoli, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Stefano Pileri
- Haematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology and Medical Oncology L.A. Seragnoli, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| |
Collapse
|
64
|
Walton MI, Eve PD, Hayes A, Henley AT, Valenti MR, De Haven Brandon AK, Box G, Boxall KJ, Tall M, Swales K, Matthews TP, McHardy T, Lainchbury M, Osborne J, Hunter JE, Perkins ND, Aherne GW, Reader JC, Raynaud FI, Eccles SA, Collins I, Garrett MD. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-cell lymphoma. Oncotarget 2016; 7:2329-42. [PMID: 26295308 PMCID: PMC4823038 DOI: 10.18632/oncotarget.4919] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/11/2015] [Indexed: 12/17/2022] Open
Abstract
CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition.
Collapse
Affiliation(s)
- Mike I. Walton
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Paul D. Eve
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Alan T. Henley
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Melanie R. Valenti
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Alexis K. De Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Gary Box
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Kathy J. Boxall
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Matthew Tall
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Karen Swales
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Thomas P. Matthews
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Tatiana McHardy
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Michael Lainchbury
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - James Osborne
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jill E. Hunter
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Neil D. Perkins
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - G. Wynne Aherne
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | | | - Florence I. Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Suzanne A. Eccles
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Michelle D. Garrett
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| |
Collapse
|
65
|
Abstract
There is an extensive and growing body of evidence that DNA replication stress is a major driver in the development and progression of many cancers, and that these cancers rely heavily on replication stress response pathways for their continued proliferation. This raises the possibility that the pathways that ordinarily protect cells from the accumulation of cancer-causing mutations may actually prove to be effective therapeutic targets for a wide range of malignancies. In this review, we explore the mechanisms by which sustained proliferation can lead to replication stress and genome instability, and discuss how the pattern of mutations observed in human cancers is supportive of this oncogene-induced replication stress model. Finally, we go on to consider the implications of replication stress both as a prognostic indicator and, more encouragingly, as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Elaine M Taylor
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Howard D Lindsay
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| |
Collapse
|
66
|
Kim MK, Min DJ, Wright G, Goldlust I, Annunziata CM. Loss of compensatory pro-survival and anti-apoptotic modulator, IKKε, sensitizes ovarian cancer cells to CHEK1 loss through an increased level of p21. Oncotarget 2015; 5:12788-802. [PMID: 25474241 PMCID: PMC4350339 DOI: 10.18632/oncotarget.2665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/27/2014] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer (OC) is extremely heterogeneous, implying that therapeutic strategies should be specifically designed based on molecular characteristics of an individual's tumor. Previously, we showed that IKKε promotes invasion and metastasis in a subset of OCs. Here, we identified CHEK1 as an IKKε-dependent lethal gene from shRNA kinome library screen. In subsequent pharmacological intervention studies, the co-inhibition of IKKε and CHEK1 was more effective in killing OC cells than single treatment. At the molecular level, co-inhibition dramatically decreased pro-survival proteins, but increased proteins involved in DNA damage and apoptosis. IKKε-knockdown increased p21 levels, while overexpression of wild-type IKKε, but not a kinase dead IKKε mutant decreased p21 levels. We further demonstrated that the depletion of p21 rendered OC cells more resistant to cell death induced by co-inhibition of IKKε and CHEK1. In conclusion, we revealed a novel interplay between IKKε, CHEK1 and p21 signaling in survival of OC. Our study provides a rationale for the clinical development of specific IKKε inhibitor and for usage of IKKε as an exploratory marker for resistance to CHEK1 inhibitors in the clinic. The interplay provides one potential explanation as to why very few clinical responses were achieved in patients treated with single-agent CHEK1 inhibitors.
Collapse
Affiliation(s)
- Marianne K Kim
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Dong J Min
- Transgenic Oncogenic and Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - George Wright
- Biometrics Research Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Ian Goldlust
- NIH Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD 20892
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
67
|
Iacobucci I, Di Rorà AGL, Falzacappa MVV, Agostinelli C, Derenzini E, Ferrari A, Papayannidis C, Lonetti A, Righi S, Imbrogno E, Pomella S, Venturi C, Guadagnuolo V, Cattina F, Ottaviani E, Abbenante MC, Vitale A, Elia L, Russo D, Zinzani PL, Pileri S, Pelicci PG, Martinelli G. In vitro and in vivo single-agent efficacy of checkpoint kinase inhibition in acute lymphoblastic leukemia. J Hematol Oncol 2015; 8:125. [PMID: 26542114 PMCID: PMC4635624 DOI: 10.1186/s13045-015-0206-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although progress in children, in adults, ALL still carries a dismal outcome. Here, we explored the in vitro and in vivo activity of PF-00477736 (Pfizer), a potent, selective ATP-competitive small-molecule inhibitor of checkpoint kinase 1 (Chk1) and with lower efficacy of checkpoint kinase 2 (Chk2). METHODS The effectiveness of PF-00477736 as single agent in B-/T-ALL was evaluated in vitro and in vivo studies as a single agent. The efficacy of the compound in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed using different B-/T-ALL cell lines. Finally, the action of PF-00477736 was assessed in vivo using leukemic mouse generated by a single administration of the tumorigenic agent N-ethyl-N-nitrosourea. RESULTS Chk1 and Chk2 are overexpressed concomitant with the presence of genetic damage as suggested by the nuclear labeling for γ-H2A.X (Ser139) in 68 % of ALL patients. In human B- and T-ALL cell lines, inhibition of Chk1/2 as a single treatment strategy efficiently triggered the Chk1-Cdc25-Cdc2 pathway resulting in a dose- and time-dependent cytotoxicity, induction of apoptosis, and increased DNA damage. Moreover, treatment with PF-00477736 showed efficacy ex vivo in primary leukemic blasts separated from 14 adult ALL patients and in vivo in mice transplanted with T-ALL, arguing in favor of its future clinical evaluation in leukemia. CONCLUSIONS In vitro, ex vivo, and in vivo results support the inhibition of Chk1 as a new therapeutic strategy in acute lymphoblastic leukemia, and they provide a strong rationale for its future clinical investigation.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy.
| | - Andrea Ghelli Luserna Di Rorà
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | | | - Claudio Agostinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Enrico Derenzini
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Anna Ferrari
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Cristina Papayannidis
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Simona Righi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Enrica Imbrogno
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Silvia Pomella
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Claudia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Viviana Guadagnuolo
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Federica Cattina
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy.,Hematology and BMT Unit, University of Brescia, Brescia, Italy
| | - Emanuela Ottaviani
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Maria Chiara Abbenante
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Antonella Vitale
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - Loredana Elia
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - Domenico Russo
- Hematology and BMT Unit, University of Brescia, Brescia, Italy
| | - Pier Luigi Zinzani
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | - Stefano Pileri
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy
| | | | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seragnoli", University of Bologna, Bologna, Italy.
| |
Collapse
|
68
|
Massey AJ, Stokes S, Browne H, Foloppe N, Fiumana A, Scrace S, Fallowfield M, Bedford S, Webb P, Baker L, Christie M, Drysdale MJ, Wood M. Identification of novel, in vivo active Chk1 inhibitors utilizing structure guided drug design. Oncotarget 2015; 6:35797-812. [PMID: 26437226 PMCID: PMC4742142 DOI: 10.18632/oncotarget.5929] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022] Open
Abstract
Chk1 kinase is a critical component of the DNA damage response checkpoint especially in cancer cells and targeting Chk1 is a potential therapeutic opportunity for potentiating the anti-tumor activity of DNA damaging chemotherapy drugs. Fragment elaboration by structure guided design was utilized to identify and develop a novel series of Chk1 inhibitors culminating in the identification of V158411, a potent ATP-competitive inhibitor of the Chk1 and Chk2 kinases. V158411 abrogated gemcitabine and camptothecin induced cell cycle checkpoints, resulting in the expected modulation of cell cycle proteins and increased cell death in cancer cells. V158411 potentiated the cytotoxicity of gemcitabine, cisplatin, SN38 and camptothecin in a variety of p53 deficient human tumor cell lines in vitro, p53 proficient cells were unaffected. In nude mice, V158411 showed minimal toxicity as a single agent and in combination with irinotecan. In tumor bearing animals, V158411 was detected at high levels in the tumor with a long elimination half-life; no pharmacologically significant in vivo drug-drug interactions with irinotecan were identified through analysis of the pharmacokinetic profiles. V158411 potentiated the anti-tumor activity of irinotecan in a variety of human colon tumor xenograft models without additional systemic toxicity. These results demonstrate the opportunity for combining V158411 with standard of care chemotherapeutic agents to potentiate the therapeutic efficacy of these agents without increasing their toxicity to normal cells. Thus, V158411 would warrant further clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon Scrace
- Vernalis Research, Granta Park, Cambridge, UK
- Horizon Discovery, Cambridge Research Park, Waterbeach, Cambridge, UK
| | | | | | - Paul Webb
- Vernalis Research, Granta Park, Cambridge, UK
| | - Lisa Baker
- Vernalis Research, Granta Park, Cambridge, UK
| | | | - Martin J. Drysdale
- Vernalis Research, Granta Park, Cambridge, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, UK
| | - Mike Wood
- Vernalis Research, Granta Park, Cambridge, UK
| |
Collapse
|
69
|
Manic G, Obrist F, Sistigu A, Vitale I. Trial Watch: Targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol Cell Oncol 2015; 2:e1012976. [PMID: 27308506 PMCID: PMC4905354 DOI: 10.1080/23723556.2015.1012976] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/25/2015] [Accepted: 01/26/2015] [Indexed: 02/08/2023]
Abstract
The ataxia telangiectasia mutated serine/threonine kinase (ATM)/checkpoint kinase 2 (CHEK2, best known as CHK2) and the ATM and Rad3-related serine/threonine kinase (ATR)/CHEK1 (best known as CHK1) cascades are the 2 major signaling pathways driving the DNA damage response (DDR), a network of processes crucial for the preservation of genomic stability that act as a barrier against tumorigenesis and tumor progression. Mutations and/or deletions of ATM and/or CHK2 are frequently found in tumors and predispose to cancer development. In contrast, the ATR-CHK1 pathway is often upregulated in neoplasms and is believed to promote tumor growth, although some evidence indicates that ATR and CHK1 may also behave as haploinsufficient oncosuppressors, at least in a specific genetic background. Inactivation of the ATM-CHK2 and ATR-CHK1 pathways efficiently sensitizes malignant cells to radiotherapy and chemotherapy. Moreover, ATR and CHK1 inhibitors selectively kill tumor cells that present high levels of replication stress, have a deficiency in p53 (or other DDR players), or upregulate the ATR-CHK1 module. Despite promising preclinical results, the clinical activity of ATM, ATR, CHK1, and CHK2 inhibitors, alone or in combination with other therapeutics, has not yet been fully demonstrated. In this Trial Watch, we give an overview of the roles of the ATM-CHK2 and ATR-CHK1 pathways in cancer initiation and progression, and summarize the results of clinical studies aimed at assessing the safety and therapeutic profile of regimens based on inhibitors of ATR and CHK1, the only 2 classes of compounds that have so far entered clinics.
Collapse
Affiliation(s)
| | - Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “TorVergata”; Rome, Italy
| |
Collapse
|
70
|
Bhattacharjee V, Zhou Y, Yen TJ. A synthetic lethal screen identifies the Vitamin D receptor as a novel gemcitabine sensitizer in pancreatic cancer cells. Cell Cycle 2015; 13:3839-56. [PMID: 25558828 DOI: 10.4161/15384101.2014.967070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overcoming chemoresistance of pancreatic cancer (PCa) cells should significantly extend patient survival. The current treatment modalities rely on a variety of DNA damaging agents including gemcitabine, FOLFIRINOX, and Abraxane that activate cell cycle checkpoints, which allows cells to survive these drug treaments. Indeed, these treatment regimens have only extended patient survival by a few months. The complex microenvironment of PCa tumors has been shown to complicate drug delivery thus decreasing the sensitivity of PCa tumors to chemotherapy. In this study, a genome-wide siRNA library was used to conduct a synthetic lethal screen of Panc1 cells that was treated with gemcitabine. A sublethal dose (50 nM) of the drug was used to model situations of limiting drug availability to PCa tumors in vivo. Twenty-seven validated sensitizer genes were identified from the screen including the Vitamin D receptor (VDR). Gemcitabine sensitivity was shown to be VDR dependent in multiple PCa cell lines in clonogenic survival assays. Sensitization was not achieved through checkpoint override but rather through disrupting DNA repair. VDR knockdown disrupted the cells' ability to form phospho-γH2AX and Rad51 foci in response to gemcitabine treatment. Disruption of Rad51 foci formation, which compromises homologous recombination, was consistent with increased sensitivity of PCa cells to the PARP inhibitor Rucaparib. Thus inhibition of VDR in PCa cells provides a new way to enhance the efficacy of genotoxic drugs.
Collapse
Affiliation(s)
- V Bhattacharjee
- a Fox Chase Cancer Center ; Institute for Cancer Research ; Philadelphia , PA USA
| | | | | |
Collapse
|
71
|
Buscemi G, Ricci C, Zannini L, Fontanella E, Plevani P, Delia D. Bimodal regulation of p21(waf1) protein as function of DNA damage levels. Cell Cycle 2015; 13:2901-12. [PMID: 25486478 PMCID: PMC4615108 DOI: 10.4161/15384101.2014.946852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human p21Waf1 protein is well known for being transcriptionally induced by p53 and activating the cell cycle checkpoint arrest in response to DNA breaks. Here we report that p21Waf1 protein undergoes a bimodal regulation, being upregulated in response to low doses of DNA damage but rapidly and transiently degraded in response to high doses of DNA lesions. Responsible for this degradation is the checkpoint kinase Chk1, which phosphorylates p21Waf1 on T145 and S146 residues and induces its proteasome-dependent proteolysis. The initial p21Waf1 degradation is then counteracted by the ATM-Chk2 pathway, which promotes the p53-dependent accumulation of p21Waf1 at any dose of damage. We also found that p21Waf1 ablation favors the activation of an apoptotic program to eliminate otherwise irreparable cells. These findings support a model in which in human cells a balance between ATM-Chk2-p53 and the ATR-Chk1 pathways modulates p21Waf1 protein levels in relation to cytostatic and cytotoxic doses of DNA damage.
Collapse
Affiliation(s)
- G Buscemi
- a Department of Experimental Oncology; Fondazione IRCCS Istituto Nazionale dei Tumori ; Milan , Italy
| | | | | | | | | | | |
Collapse
|
72
|
Targeting the Checkpoint to Kill Cancer Cells. Biomolecules 2015; 5:1912-37. [PMID: 26295265 PMCID: PMC4598780 DOI: 10.3390/biom5031912] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022] Open
Abstract
Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells.
Collapse
|
73
|
Abstract
In order to maintain genomic stability, cells have developed sophisticated signalling pathways to enable DNA damage or DNA replication stress to be resolved. Key mediators of this DNA damage response (DDR) are the ATM and ATR kinases, which induce cell cycle arrest and facilitate DNA repair via their downstream targets. Inhibiting the DDR has become an attractive therapeutic concept in cancer therapy, since (i) resistance to genotoxic therapies has been associated with increased DDR signalling, and (ii) many cancers have defects in certain components of the DDR rendering them highly dependent on the remaining DDR pathways for survival. ATM and ATR act as the apical regulators of the response to DNA double strand breaks and replication stress, respectively, with overlapping but non-redundant activities. Highly selective small molecule inhibitors of ATM and ATR are currently in preclinical and clinical development, respectively. Preclinical data have provided a strong rationale for clinical testing of these compounds both in combination with radio- or chemotherapy, and in synthetic lethal approaches to treat tumours with deficiencies in certain DDR components. Whole genome sequencing studies have reported that mutations in DDR genes occur with a high frequency in many common tumour types, suggesting that a synthetic lethal approach with ATM or ATR inhibitors could have widespread utility, providing that appropriate biomarkers are developed.
Collapse
Affiliation(s)
- Anika Maria Weber
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, The Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anderson Joseph Ryan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, The Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
74
|
Kim MK, James J, Annunziata CM. Topotecan synergizes with CHEK1 (CHK1) inhibitor to induce apoptosis in ovarian cancer cells. BMC Cancer 2015; 15:196. [PMID: 25884494 PMCID: PMC4379550 DOI: 10.1186/s12885-015-1231-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/19/2015] [Indexed: 12/29/2022] Open
Abstract
Background Topotecan (TPT) is a therapeutic option for women with platinum-resistant or -refractory ovarian cancer. However, the dose-limiting toxicity of TPT is myelosuppression. This led us to seek a combination treatment to augment TPT anti-cancer activity in a cancer-targeted manner. Ovarian serous cancers, a major subtype, show dysregulated DNA repair pathway and often display a high level of CHEK1 (CHK1), a cell cycle regulator and DNA damage sensor. CHEK1 inhibitors are a novel approach to treatment, and have been used as single agents or in combination chemotherapy in many cancers. Methods We evaluated the cellular effects of TPT in a panel of high grade serous (HGS) and non-HGS ovarian cancer cells. We then determined IC50s of TPT in the absence and presence of CHEK1 inhibitor, PF477736. Synergism between TPT and PF477736 was calculated based on cellular viability assays. Cytotoxic effect of the combined treatment was compared with apoptotic activities by Caspase3/7 activity assay and Western blotting of cleaved-PARP1 and γH2AX. Results Non-HGS ovarian cancer cells were generally more sensitive to TPT treatment compared to HGS ovarian cancer cells. When combined with CHEK1 inhibitor, TPT potently and synergistically inhibited the proliferation of HGS ovarian cancer cells. This dramatic synergism in cellular toxicity was consistent with increases in markers of apoptosis. Conclusions Our findings suggest that the addition of CHEK1 inhibitor increases the response of ovarian cancer cells to TPT. Furthermore, reduced dosages of both drugs achieved maximal cytotoxic effects by combining TPT with CHEK1 inhibitor. This strategy would potentially minimize side effects of the drugs for extended clinical benefit. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1231-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marianne K Kim
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Jana James
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
75
|
Gomha SM, Abdulla MM, Abou-Seri SM. Identification of novel aminothiazole and aminothiadiazole conjugated cyanopyridines as selective CHK1 inhibitors. Eur J Med Chem 2015; 92:459-70. [PMID: 25594740 DOI: 10.1016/j.ejmech.2015.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
Abstract
Inhibitors of checkpoint kinase 1 (CHK1) are of current interest as potential anti-tumor agents. Novel series of cyanopyridyl-aminothiadiazoles (synthesized from reaction of 1-(3-cyano-4,6-diphenylpyridin-2-yl)-3-phenylthiourea (14) with hydrazonoyl halides) and cyanopyridyl-aminothiazolyl-thiadiazoles (synthesized from treatment of 14 with ethyl chloroacetate followed by reaction of the obtained cyanopyridyl-aminothiazole with hydrazonoyl halides) were synthesized and evaluated for their CHK1 inhibitory potential using a cell-based assay cascade. The tested compounds exhibited a potent and selective CHK1 inhibitory activity at nanomolar levels that reflected their ability to abrogate cell cycle arrest and potentiate the cytotoxic effect of the genotoxic drug gemcitabine in colon cancer cells. Molecular modeling simulation revealed that, the most active compound 28a docked well into the enzyme active site and their complex is stabilized by a key H-bonding with the backbone amide of Cys-87 as well as multiple favorable hydrophobic interactions with different hydrophobic binding regions of the enzyme.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | | | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW This review highlights recent clinical developments in the therapeutic targeting of cell cycle control in melanoma with cyclin-dependent kinase inhibitors, checkpoint kinases, MDM2, MDM4 and p53 inhibitors. RECENT FINDINGS The high prevalence of activating genetic aberrations along the p16 INK4A:cyclinD-CDK4/6:RB pathway in melanoma and increasing evidence that alterations in this pathway are linked to melanomagenesis, make targeting the p16 INK4A:cyclinD-CDK4/6:RB pathway in melanoma logical and highly attractive. The presence of elevated CDK4 activity appears to correlate with greater CDK4/6 inhibitor therapeutic activity, whereas the loss of RB1 has been linked to CDK inhibitor resistance. Other novel compounds targeting cell cycle control via reactivating wild-type p53 and checkpoint kinases are also currently under investigation in melanoma. SUMMARY Cell cycle control is a promising target in the management of melanoma with early data reporting therapeutic benefit with cyclin-dependent kinase inhibitors, MDM2, and p53 reactivation compounds. Many of these drugs have entered phase I and II clinical trial development. Preliminary data from these studies are discussed in this review along with future treatment strategies for maximizing treatment outcomes in advanced melanoma. VIDEO ABSTRACT http://links.lww.com/COON/A12.
Collapse
Affiliation(s)
- Belinda Lee
- aDepartment of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne bDepartment of Pathology, University of Melbourne, Parkville cDepartment of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy dMolecular Oncology Laboratory, Oncogenic Signalling and Growth Control Program eTranslational Research Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | |
Collapse
|
77
|
Checkpoint kinase 1 is activated and promotes cell survival after exposure to sulphur mustard. Toxicol Lett 2015; 232:413-21. [DOI: 10.1016/j.toxlet.2014.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/27/2023]
|
78
|
Grabocka E, Commisso C, Bar-Sagi D. Molecular pathways: targeting the dependence of mutant RAS cancers on the DNA damage response. Clin Cancer Res 2014; 21:1243-7. [PMID: 25424849 DOI: 10.1158/1078-0432.ccr-14-0650] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Of the genes mutated in cancer, RAS remains the most elusive to target. Recent technological advances and discoveries have greatly expanded our knowledge of the biology of oncogenic Ras and its role in cancer. As such, it has become apparent that a property that intimately accompanies RAS-driven tumorigenesis is the dependence of RAS-mutant cells on a number of nononcogenic signaling pathways. These dependencies arise as a means of adaptation to Ras-driven intracellular stresses and represent unique vulnerabilities of mutant RAS cancers. A number of studies have highlighted the dependence of mutant RAS cancers on the DNA damage response and identified the molecular pathways that mediate this process, including signaling from wild-type Ras isoforms, ATR/Chk1, and DNA damage repair pathways. Here, we review these findings, and we discuss the combinatorial use of DNA-damaging chemotherapy with blockade of wild-type H- and N-Ras signaling by farnesyltransferase inhibitors, Chk1 inhibitors, or small-molecule targeting DNA damage repair as potential strategies through which the dependence of RAS cancers on the DNA damage response can be harnessed for therapeutic intervention.
Collapse
Affiliation(s)
- Elda Grabocka
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York.
| | - Cosimo Commisso
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| |
Collapse
|
79
|
Synergism between bosutinib (SKI-606) and the Chk1 inhibitor (PF-00477736) in highly imatinib-resistant BCR/ABL⁺ leukemia cells. Leuk Res 2014; 39:65-71. [PMID: 25465126 DOI: 10.1016/j.leukres.2014.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 12/21/2022]
Abstract
Interactions between the dual BCR/ABL and Src inhibitor bosutinib and the Chk1 inhibitor PF-00477736 were examined in BCR/ABL(+) leukemia cells, particularly imatinib-resistant cells, including those with the T315I mutation. Bosutinib blocked PF-00477736-induced ERK1/2 activation and sharply increased apoptosis in association with Mcl-1 inhibition, p34(cdc2) dephosphorylation, BimEL up-regulation, and DNA damage in imatinib-resistant CML or Ph(+) ALL cell lines. Inhibition of Src or MEK1 by shRNA significantly enhanced PF-0047736 lethality. Bosutinib/PF-00477736 co-treatment also potentiated cell death in CD34(+) CML patient samples, including dasatinib-resistant blast crisis cells exhibiting both T315I and E355G mutations, but was minimally toxic to normal CD34(+) cells. Finally, combined in vivo treatment significantly suppressed BaF3/T315I tumor growth and prolonged survival in an allogeneic mouse model. Together, these findings suggest that this targeted combination strategy warrants attention in IM-resistant CML or Ph(+) ALL.
Collapse
|
80
|
Characterization of the antiproliferative potential and biological targets of a trans ketoimine platinum complex. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.07.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
81
|
Checkpoint kinase inhibitor AZD7762 overcomes cisplatin resistance in clear cell carcinoma of the ovary. Int J Gynecol Cancer 2014; 24:61-9. [PMID: 24362713 DOI: 10.1097/igc.0000000000000014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Checkpoint kinase (Chk) inhibitors are thought to increase the cytotoxic effects of DNA-damaging agents and are undergoing clinical trials. The present study was aimed to assess the potential to use the Chk1 and Chk2 inhibitor, AZD7762, with other anticancer agents in chemotherapy to treat ovarian clear cell carcinoma. METHODS Four ovarian clear cell carcinoma cell lines were used in this study. We treated the cells with AZD7762 and anticancer agents, then assessed cell viability, cell cycle distribution, apoptosis, and the expression of protein in apoptotic pathways and molecules downstream of the Chk signaling pathways. We also investigated the effects of these drug combinations on tumor growth in a nude mouse xenograft model. RESULTS Synergistic effects from the combination of AZD7762 and cisplatin were observed in all 4 cell lines. However, we observed additive effects when AZD7762 was combined with paclitaxel on all cell lines tested. AZD7762 effectively suppressed the Chk signaling pathways activated by cisplatin, dramatically enhanced expression of phosphorylated H2A.X, cleaved caspase 9 and PARP, decreased the proportion of cells in the gap 0/ gap 1 phase and the synthesis-phase fraction, and increased apoptotic cells. Combinations of small interfering RNA against Chk 1 and small interfering RNA against Chk2 enhanced the cytotoxic effect of cisplatin in both RMG-I and KK cells. Finally, treating mice-bearing RMG-I with AZD7762 and cisplatin significantly suppressed growth of tumors in a xenograft model. CONCLUSIONS The present study indicates that chemotherapy with AZD7762 and cisplatin should be explored as a treatment modality for women with ovarian clear cell carcinoma.
Collapse
|
82
|
Bryant C, Rawlinson R, Massey AJ. Chk1 inhibition as a novel therapeutic strategy for treating triple-negative breast and ovarian cancers. BMC Cancer 2014; 14:570. [PMID: 25104095 PMCID: PMC4137066 DOI: 10.1186/1471-2407-14-570] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022] Open
Abstract
Background Chk1 inhibitors are currently in clinical trials as putative potentiators of cytotoxic chemotherapy drugs. Chk1 inhibitors may exhibit single agent anti-tumor activity in cancers with underlying DNA repair, DNA damage response or DNA replication defects. Methods Here we describe the cellular effects of the pharmacological inhibition of the checkpoint kinase Chk1 by the novel inhibitor V158411 in triple-negative breast cancer and ovarian cancer. Cytotoxicity, the effect on DNA damage response and cell cycle along with the ability to potentiate gemcitabine and cisplatin cytotoxicity in cultured cells was investigated. Western blotting of proteins involved in DNA repair, checkpoint activation, cell cycle and apoptosis was used to identify potential predictive biomarkers of Chk1 inhibitor sensitivity. Results The Chk1 inhibitors V158411, PF-477736 and AZD7762 potently inhibited the proliferation of triple-negative breast cancer cells as well as ovarian cancer cells, and these cell lines were sensitive compared to ER positive breast and other solid cancer cells lines. Inhibition of Chk1 in these sensitive cell lines induced DNA damage and caspase-3/7 dependent apoptosis. Western blot profiling identified pChk1 (S296) as a predictive biomarker of Chk1 inhibitor sensitivity in ovarian and triple-negative breast cancer and pH2AX (S139) in luminal breast cancer. Conclusions This finding suggests that Chk1 inhibitors either as single agents or in combination chemotherapy represents a viable therapeutic option for the treatment of triple-negative breast cancer. pChk1 (S296) tumor expression levels could serve as a useful biomarker to stratify patients who might benefit from Chk1 inhibitor therapy.
Collapse
|
83
|
γH2AX and Chk1 phosphorylation as predictive pharmacodynamic biomarkers of Chk1 inhibitor-chemotherapy combination treatments. BMC Cancer 2014; 14:483. [PMID: 24996846 PMCID: PMC4094550 DOI: 10.1186/1471-2407-14-483] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/30/2014] [Indexed: 01/20/2023] Open
Abstract
Background Chk1 inhibitors are currently in clinical trials in combination with a range of cytotoxic agents and have the potential to potentiate the clinical activity of a large number of standard of care chemotherapeutic agents. Utilizing pharmacodynamic biomarkers to optimize drug dose and scheduling in these trials could greatly enhance the likelihood of clinical success. Methods In this study, we evaluated the in vitro potentiation of the cytotoxicity of a range of cytotoxic chemotherapeutic drugs by the novel Chk1 inhibitor V158411 in p53 mutant colon cancer cells. Pharmacodynamic biomarkers were evaluated in vitro. Results V158411 potentiated the cytotoxicity of a range of chemotherapeutic agents with distinct mechanisms of action in p53 mutant colon cancer cell lines grown in anchorage dependent or independent culture conditions. Analysis of pharmacodynamic biomarker changes identified dependencies on the chemotherapeutic agent, the concentration of the chemotherapeutic and the duration of time between combination treatment and biomarker analysis. A reduction in total Chk1 and S296/S317/S345 phosphorylation occurred consistently with all cytotoxics in combination with V158411 but did not predict cell line potentiation. Induction of γH2AX levels was chemotherapeutic dependent and correlated closely with potentiation of gemcitabine and camptothecin in p53 mutant colon cancer cells. Conclusions Our results suggest that Chk1 phosphorylation could be a useful biomarker for monitoring inhibition of Chk1 activity in clinical trials involving a range of V158411-chemotherapy combinations and γH2AX induction as a predictor of potentiation in combinations containing gemcitabine or camptothecin.
Collapse
|
84
|
Beeharry N, Banina E, Hittle J, Skobeleva N, Khazak V, Deacon S, Andrake M, Egleston BL, Peterson JR, Astsaturov I, Yen TJ. Re-purposing clinical kinase inhibitors to enhance chemosensitivity by overriding checkpoints. Cell Cycle 2014; 13:2172-91. [PMID: 24955955 DOI: 10.4161/cc.29214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Inhibitors of the DNA damage checkpoint kinase, Chk1, are highly effective as chemo- and radio-sensitizers in preclinical studies but are not well-tolerated by patients. We exploited the promiscuous nature of kinase inhibitors to screen 9 clinically relevant kinase inhibitors for their ability to sensitize pancreatic cancer cells to a sub-lethal concentration of gemcitabine. Bosutinib, dovitinib, and BEZ-235 were identified as sensitizers that abrogated the DNA damage checkpoint. We further characterized bosutinib, an FDA-approved Src/Abl inhibitor approved for chronic myelogenous leukemia. Unbeknownst to us, we used an isomer (Bos-I) that was unknowingly synthesized and sold to the research community as "authentic" bosutinib. In vitro and cell-based assays showed that both the authentic bosutinib and Bos-I inhibited DNA damage checkpoint kinases Chk1 and Wee1, with Bos-I showing greater potency. Imaging data showed that Bos-I forced cells to override gemcitabine-induced DNA damage checkpoint arrest and destabilized stalled replication forks. These inhibitors enhanced sensitivity to the DNA damaging agents' gemcitabine, cisplatin, and doxorubicin in pancreatic cancer cell lines. The in vivo efficacy of Bos-I was validated using cells derived directly from a pancreatic cancer patient's tumor. Notably, the xenograft studies showed that the combination of gemcitabine and Bos-I was significantly more effective in suppressing tumor growth than either agent alone. Finally, we show that the gatekeeper residue in Wee1 dictates its sensitivity to the 2 compounds. Our strategy to screen clinically relevant kinase inhibitors for off-target effects on cell cycle checkpoints is a promising approach to re-purpose drugs as chemosensitizers.
Collapse
Affiliation(s)
- Neil Beeharry
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Eugenia Banina
- Program in Developmental Therapeutics; Fox Chase Cancer Center; Philadelphia, PA USA
| | - James Hittle
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Natalia Skobeleva
- Program in Developmental Therapeutics; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Vladimir Khazak
- Program in Developmental Therapeutics; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Sean Deacon
- Reaction Biology Corporation; Malvern, PA USA
| | - Mark Andrake
- Molecular Modeling Facility; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Brian L Egleston
- Biostatistics and Bioinformatics Facility; Fox Chase Cancer Center; Philadelphia, PA USA
| | | | - Igor Astsaturov
- Program in Developmental Therapeutics; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Timothy J Yen
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA USA
| |
Collapse
|
85
|
Calvo E, Chen VJ, Marshall M, Ohnmacht U, Hynes SM, Kumm E, Diaz HB, Barnard D, Merzoug FF, Huber L, Kays L, Iversen P, Calles A, Voss B, Lin AB, Dickgreber N, Wehler T, Sebastian M. Preclinical analyses and phase I evaluation of LY2603618 administered in combination with pemetrexed and cisplatin in patients with advanced cancer. Invest New Drugs 2014; 32:955-68. [PMID: 24942404 DOI: 10.1007/s10637-014-0114-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
Abstract
LY2603618 is an inhibitor of checkpoint kinase 1 (CHK1), an important regulator of the DNA damage checkpoints. Preclinical experiments analyzed NCI-H2122 and NCI-H441 NSCLC cell lines and in vitro/in vivo models treated with pemetrexed and LY2603618 to provide rationale for evaluating this combination in a clinical setting. Combination treatment of LY2603618 with pemetrexed arrested DNA synthesis following initiation of S-phase in cells. Experiments with tumor-bearing mice administered the combination of LY2603618 and pemetrexed demonstrated a significant increase of growth inhibition of NCI-H2122 (H2122) and NCI-H441 (H441) xenograft tumors. These data informed the clinical assessment of LY2603618 in a seamless phase I/II study, which administered pemetrexed (500 mg/m(2)) and cisplatin (75 mg/m(2)) and escalating doses of LY2603618: 130-275 mg. Patients were assessed for safety, toxicity, and pharmacokinetics. In phase I, 14 patients were enrolled, and the most frequently reported adverse events included fatigue, nausea, pyrexia, neutropenia, and vomiting. No DLTs were reported at the tested doses. The systemic exposure of LY2603618 increased in a dose-dependent manner. Pharmacokinetic parameters that correlate with the maximal pharmacodynamic effect in nonclinical xenograft models were achieved at doses ≥240 mg. The pharmacokinetics of LY2603618, pemetrexed, and cisplatin were not altered when used in combination. Two patients achieved a confirmed partial response (both non-small cell lung cancer), and 8 patients had stable disease. LY2603618 administered in combination with pemetrexed and cisplatin demonstrated an acceptable safety profile. The recommended phase II dose of LY2603618 was 275 mg.
Collapse
Affiliation(s)
- Emiliano Calvo
- START Madrid, Clara Campal Comprehensive Cancer Center, Medical Oncology Division, Madrid Norte Sanchinarro University Hospital, Madrid, Spain, 28050,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Al-Ejeh F, Pajic M, Shi W, Kalimutho M, Miranda M, Nagrial AM, Chou A, Biankin AV, Grimmond SM, Brown MP, Khanna KK. Gemcitabine and CHK1 inhibition potentiate EGFR-directed radioimmunotherapy against pancreatic ductal adenocarcinoma. Clin Cancer Res 2014; 20:3187-97. [PMID: 24838526 DOI: 10.1158/1078-0432.ccr-14-0048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To develop effective combination therapy against pancreatic ductal adenocarcinoma (PDAC) with a combination of chemotherapy, CHK1 inhibition, and EGFR-targeted radioimmunotherapy. EXPERIMENTAL DESIGN Maximum tolerated doses were determined for the combination of gemcitabine, the CHK1 inhibitor PF-477736, and Lutetium-177 ((177)Lu)-labeled anti-EGFR antibody. This triple combination therapy was investigated using PDAC models from well-established cell lines, recently established patient-derived cell lines, and fresh patient-derived xenografts. Tumors were investigated for the accumulation of (177)Lu-anti-EGFR antibody, survival of tumor-initiating cells, induction of DNA damage, cell death, and tumor tissue degeneration. RESULTS The combination of gemcitabine and CHK1 inhibitor PF-477736 with (177)Lu-anti-EGFR antibody was tolerated in mice. This triplet was effective in established tumors and prevented the recurrence of PDAC in four cell line-derived and one patient-derived xenograft model. This exquisite response was associated with the loss of tumor-initiating cells as measured by flow cytometric analysis and secondary implantation of tumors from treated mice into treatment-naïve mice. Extensive DNA damage, apoptosis, and tumor degeneration were detected in the patient-derived xenograft. Mechanistically, we observed CDC25A stabilization as a result of CHK1 inhibition with consequent inhibition of gemcitabine-induced S-phase arrest as well as a decrease in canonical (ERK1/2 phosphorylation) and noncanonical EGFR signaling (RAD51 degradation) as a result of EGFR inhibition. CONCLUSIONS Our study developed an effective combination therapy against PDAC that has potential in the treatment of PDAC.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Benzodiazepinones/pharmacology
- Blotting, Western
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Proliferation/drug effects
- Checkpoint Kinase 1
- Combined Modality Therapy
- DNA Damage/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Synergism
- ErbB Receptors/antagonists & inhibitors
- Female
- Humans
- Immunoenzyme Techniques
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Phosphorylation/drug effects
- Protein Kinases/chemistry
- Pyrazoles/pharmacology
- Radioimmunotherapy
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Gemcitabine
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Marina Pajic
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Wei Shi
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Murugan Kalimutho
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Mariska Miranda
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Adnan M Nagrial
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Angela Chou
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Andrew V Biankin
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Sean M Grimmond
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medic
| | - Michael P Brown
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Kum Kum Khanna
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
87
|
Bryant C, Scriven K, Massey AJ. Inhibition of the checkpoint kinase Chk1 induces DNA damage and cell death in human Leukemia and Lymphoma cells. Mol Cancer 2014; 13:147. [PMID: 24913641 PMCID: PMC4082411 DOI: 10.1186/1476-4598-13-147] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022] Open
Abstract
Background Chk1 forms a core component of the DNA damage response and small molecule inhibitors are currently being investigated in the clinic as cytotoxic chemotherapy potentiators. Recent evidence suggests that Chk1 inhibitors may demonstrate significant single agent activity in tumors with specific DNA repair defects, a constitutively activated DNA damage response or oncogene induced replicative stress. Methods Growth inhibition induced by the small molecule Chk1 inhibitor V158411 was assessed in a panel of human leukemia and lymphoma cell lines and compared to cancer cell lines derived from solid tumors. The effects on cell cycle and DNA damage response markers were further evaluated. Results Leukemia and lymphoma cell lines were identified as particularly sensitive to the Chk1 inhibitor V158411 (mean GI50 0.17 μM) compared to colon (2.8 μM) or lung (6.9 μM) cancer cell lines. Chk1 inhibition by V158411 in the leukemia and lymphoma cell lines induced DNA fragmentation and cell death that was both caspase dependent and independent, and prevented cells undergoing mitosis. An analysis of in vitro pharmacodynamic markers identified a dose dependent decrease in Chk1 and cyclin B1 protein levels and Cdc2 Thr15 phosphorylation along with a concomitant increase in H2AX phosphorylation at Ser139 following V158411 treatment. Conclusions These data support the further evaluation of Chk1 inhibitors in hematopoietic cancers as single agents as well as in combination with standard of care cytotoxic drugs.
Collapse
|
88
|
Thompson R, Eastman A. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design. Br J Clin Pharmacol 2014; 76:358-69. [PMID: 23593991 DOI: 10.1111/bcp.12139] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/11/2013] [Indexed: 12/21/2022] Open
Abstract
Many anticancer agents damage DNA and activate cell cycle checkpoints that permit time for the cells to repair their DNA and recover. These checkpoints have undergone intense investigation as potential therapeutic targets and Chk1 inhibitors have emerged as promising novel therapeutic agents. Chk1 was initially recognized as a regulator of the G2/M checkpoint, but has since been demonstrated to have additional roles in replication fork stability, replication origin firing and homologous recombination. Inhibition of these pathways can dramatically sensitize cells to some antimetabolites. Current clinical trials with Chk1 inhibitors are primarily focusing on their combination with gemcitabine. Here, we discuss the mechanisms of, and emerging uses for Chk1 inhibitors as single agents and in combination with antimetabolites. We also discuss the pharmacodynamic issues that need to be addressed in attaining maximum efficacy in vivo. Following administration of gemcitabine to mice and humans, tumour cells accumulate in S phase for at least 24 h before recovering. In addition, stalled replication forks evolve over time to become more Chk1 dependent. We emphasize the need to assess cell cycle perturbation and Chk1 dependence of tumours in patients administered gemcitabine. These assessments will define the optimum dose and schedule for administration of these drug combinations.
Collapse
Affiliation(s)
- Ruth Thompson
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Lebanon, NH, USA
| | | |
Collapse
|
89
|
Jekimovs C, Bolderson E, Suraweera A, Adams M, O’Byrne KJ, Richard DJ. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising. Front Oncol 2014; 4:86. [PMID: 24795863 PMCID: PMC4001069 DOI: 10.3389/fonc.2014.00086] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell's genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.
Collapse
Affiliation(s)
- Christian Jekimovs
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amila Suraweera
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark Adams
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth J. O’Byrne
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
90
|
Fokas E, Prevo R, Hammond EM, Brunner TB, McKenna WG, Muschel RJ. Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat Rev 2014; 40:109-17. [PMID: 23583268 DOI: 10.1016/j.ctrv.2013.03.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/12/2022]
Abstract
The ataxia telangiectasia and Rad3-related (ATR) plays an important role in maintaining genome integrity during DNA replication through the phosphorylation and activation of Chk1 and regulation of the DNA damage response. Preclinical studies have shown that disruption of ATR pathway can exacerbate the levels of replication stress in oncogene-driven murine tumors to promote cell killing. Additionally, inhibition of ATR can sensitise tumor cells to radiation or chemotherapy. Accumulating evidence suggests that targeting ATR can selectively sensitize cancer cells but not normal cells to DNA damage. Furthermore, in hypoxic conditions, ATR blockade results in overloading replication stress and DNA damage response causing cell death. Despite the attractiveness of ATR inhibition in the treatment of cancer, specific ATR inhibitors have remained elusive. In the last two years however, selective ATR inhibitors suitable for in vitro and - most recently - in vivo studies have been identified. In this article, we will review the literature on ATR function, its role in DDR and the potential of ATR inhibition to enhance the efficacy of radiation and chemotherapy.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, Oxford University, Oxford, United Kingdom; Department of Radiation Therapy and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
91
|
Pitts TM, Davis SL, Eckhardt SG, Bradshaw-Pierce EL. Targeting nuclear kinases in cancer: development of cell cycle kinase inhibitors. Pharmacol Ther 2013; 142:258-69. [PMID: 24362082 DOI: 10.1016/j.pharmthera.2013.12.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022]
Abstract
Cellular proliferation is a tightly controlled set of events that is regulated by numerous nuclear protein kinases. The proteins involved include checkpoint kinases (CHK), cyclin-dependent kinases (CDK), which regulate the cell cycle and aurora kinases (AURK) and polo-like kinases (PLK), which regulate mitosis. In cancer, these nuclear kinases are often dysregulated and cause uncontrolled cell proliferation and growth. Much work has gone into developing novel therapeutics that target each of these protein kinases in cancer but none have been approved in patients. In this review we provide an overview of the current compounds being developed clinically to target these nuclear kinases involved in regulating the cell cycle and mitosis.
Collapse
Affiliation(s)
- Todd M Pitts
- Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, United States; University of Colorado Cancer Center, University of Colorado Denver, Anschutz Medical Campus, United States.
| | - S Lindsey Davis
- Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, United States
| | - S Gail Eckhardt
- Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, United States; University of Colorado Cancer Center, University of Colorado Denver, Anschutz Medical Campus, United States
| | - Erica L Bradshaw-Pierce
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, United States; University of Colorado Cancer Center, University of Colorado Denver, Anschutz Medical Campus, United States
| |
Collapse
|
92
|
Lancelot N, Piotto M, Theret I, Lesur B, Hennig P. Applications of NMR screening techniques to the pharmaceutical target Checkpoint kinase 1. J Pharm Biomed Anal 2013; 93:125-35. [PMID: 24280017 DOI: 10.1016/j.jpba.2013.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Ligand screening techniques based on NMR spectroscopy are not as sensitive as other commonly used methods like fluorescence, radiolabeling and surface plasmon resonance. However, using modern NMR instrumentation, they can achieve reliable screening under near physiological condition using as little as 4.6 nmol of receptor and 100 nmol of ligand. Additionally, these NMR methods can also provide valuable and specific information on the ligand under investigation such as the dissociation constant KD, the binding epitope and most importantly some structural information on the actual conformation in the bound state. In this manuscript, we describe the use of NMR based screening techniques ("Saturation Transfer Difference" (STD) and "Water Ligand Observed via Gradient SpectroscopY" (WaterLOGSY)) to detect small therapeutic molecules that interact with the DNA damage checkpoint enzyme Checkpoint kinase 1 (Chk1). After the identification of the most potent ligand, we used specific NMR experiments to perform the epitope mapping of this ligand ("Group epitope mapping-STD" (GEM-STD), "Difference of Inversion REcovery rate with and without Target IrradiatiON" (DIRECTION)) and to characterize its bound conformation ("Transferred-Nuclear Overhauser Effect SpectroscopY" (tr-NOESY), "Transferred-Rotating frame Overhauser Effect SpectroscopY" (tr-ROESY)). Finally, we used molecular docking procedures to position the ligand within the active site of Chk1. On the experimental level, a comparison between NMR studies performed in a 90%H2O/10%D2O buffer and a 100% D2O buffer is also presented and discussed.
Collapse
Affiliation(s)
- N Lancelot
- Institut de Recherches Servier, Analytical and Physical Chemistry Department, 11 rue des Moulineaux, 92150 Suresnes, France.
| | - M Piotto
- Bruker BioSpin, Laboratoire d'applications RMN, 34 rue de l'industrie, 67166 Wissembourg, France.
| | - I Theret
- Institut de Recherches Servier, Chimie Partenariats et Modélisation Moléculaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - B Lesur
- Institut de Recherches Servier, Chimie Partenariats et Modélisation Moléculaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - P Hennig
- Institut de Recherches Servier, Analytical and Physical Chemistry Department, 11 rue des Moulineaux, 92150 Suresnes, France
| |
Collapse
|
93
|
Sankunny M, Parikh RA, Lewis DW, Gooding WE, Saunders WS, Gollin SM. Targeted inhibition of ATR or CHEK1 reverses radioresistance in oral squamous cell carcinoma cells with distal chromosome arm 11q loss. Genes Chromosomes Cancer 2013; 53:129-43. [PMID: 24327542 DOI: 10.1002/gcc.22125] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), a subset of head and neck squamous cell carcinoma (HNSCC), is the eighth most common cancer in the U.S.. Amplification of chromosomal band 11q13 and its association with poor prognosis has been well established in OSCC. The first step in the breakage-fusion-bridge (BFB) cycle leading to 11q13 amplification involves breakage and loss of distal 11q. Distal 11q loss marked by copy number loss of the ATM gene is observed in 25% of all Cancer Genome Atlas (TCGA) tumors, including 48% of HNSCC. We showed previously that copy number loss of distal 11q is associated with decreased sensitivity (increased resistance) to ionizing radiation (IR) in OSCC cell lines. We hypothesized that this radioresistance phenotype associated with ATM copy number loss results from upregulation of the compensatory ATR-CHEK1 pathway, and that knocking down the ATR-CHEK1 pathway increases the sensitivity to IR of OSCC cells with distal 11q loss. Clonogenic survival assays confirmed the association between reduced sensitivity to IR in OSCC cell lines and distal 11q loss. Gene and protein expression studies revealed upregulation of the ATR-CHEK1 pathway and flow cytometry showed G2 M checkpoint arrest after IR treatment of cell lines with distal 11q loss. Targeted knockdown of the ATR-CHEK1 pathway using CHEK1 or ATR siRNA or a CHEK1 small molecule inhibitor (SMI, PF-00477736) resulted in increased sensitivity of the tumor cells to IR. Our results suggest that distal 11q loss is a useful biomarker in OSCC for radioresistance that can be reversed by ATR-CHEK1 pathway inhibition.
Collapse
Affiliation(s)
- Madhav Sankunny
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
94
|
McNeely S, Beckmann R, Bence Lin AK. CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther 2013; 142:1-10. [PMID: 24140082 DOI: 10.1016/j.pharmthera.2013.10.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/05/2013] [Indexed: 02/06/2023]
Abstract
CHEK1 encodes the serine/threonine kinase CHK1, a central component of the DNA damage response. CHK1 regulates cell cycle checkpoints following genotoxic stress to prevent the entry of cells with damaged DNA into mitosis and coordinates various aspects of DNA repair. Accordingly, CHK1 has become a target of considerable interest in oncology. CHK1 inhibitors potentiate the efficacy of DNA-damaging chemotherapeutics by abrogating CHK1-mediated cell cycle arrest and preventing repair of damaged DNA. In addition, CHK1 inhibitors interfere with the biological role of CHK1 as a principal regulator of the cell cycle that controls the initiation of DNA replication, stabilizes replication forks, and coordinates mitosis. Since these functions of CHK1 facilitate progression through an unperturbed cell cycle, CHK1 inhibitors are being developed not only as chemopotentiators, but also as single-agent therapies. This review is intended to provide information on the current progress of CHK1 inhibitors in pre-clinical and clinical development and will focus on mechanisms of single-agent activity and potential strategies for patient tailoring and combinations with non-genotoxic agents.
Collapse
Affiliation(s)
- S McNeely
- Eli Lilly and Company, Indianapolis, IN, United States.
| | - R Beckmann
- Eli Lilly and Company, Indianapolis, IN, United States
| | - A K Bence Lin
- Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
95
|
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to originate from undifferentiated neural crest cells. Amplification of the MYC family member, MYCN, is found in ∼25% of cases and correlates with high-risk disease and poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and highlights recent identification of other driver mutations. Strategies to target MYCN at the level of protein stability and transcription are also reviewed.
Collapse
Affiliation(s)
- Miller Huang
- Departments of Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, California 94158-9001
| | | |
Collapse
|
96
|
Xiao Y, Ramiscal J, Kowanetz K, Del Nagro C, Malek S, Evangelista M, Blackwood E, Jackson PK, O'Brien T. Identification of preferred chemotherapeutics for combining with a CHK1 inhibitor. Mol Cancer Ther 2013; 12:2285-95. [PMID: 24038068 DOI: 10.1158/1535-7163.mct-13-0404] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here we report that GNE-783, a novel checkpoint kinase-1 (CHK1) inhibitor, enhances the activity of gemcitabine by disabling the S- and G2 cell-cycle checkpoints following DNA damage. Using a focused library of 51 DNA-damaging agents, we undertook a systematic screen using three different cell lines to determine which chemotherapeutics have their activity enhanced when combined with GNE-783. We found that GNE-783 was most effective at enhancing activity of antimetabolite-based DNA-damaging agents; however, there was a surprisingly wide range of activity within each class of agents. We, next, selected six different therapeutic agents and screened these in combination with GNE-783 across a panel of cell lines. This revealed a preference for enhanced chemopotentiation of select agents within tumor types, as, for instance, GNE-783 preferentially enhanced the activity of temozolomide only in melanoma cell lines. Additionally, although p53 mutant status was important for the overall response to combinations with some agents; our data indicate that this alone was insufficient to predict synergy. We finally compared the ability of a structurally related CHK1 inhibitor, GNE-900, to enhance the in vivo activity of gemcitabine, CPT-11, and temozolomide in xenograft models. GNE-900 significantly enhanced activity of only gemcitabine in vivo, suggesting that strong chemopotentiation in vitro can translate into chemopotentiation in vivo. In conclusion, our results show that selection of an appropriate agent to combine with a CHK1 inhibitor needs to be carefully evaluated in the context of the genetic background and tumor type in which it will be used.
Collapse
Affiliation(s)
- Yang Xiao
- Corresponding Author: Thomas O'Brien, Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Busch CJ, Kriegs M, Laban S, Tribius S, Knecht R, Petersen C, Dikomey E, Rieckmann T. HPV-positive HNSCC cell lines but not primary human fibroblasts are radiosensitized by the inhibition of Chk1. Radiother Oncol 2013; 108:495-9. [DOI: 10.1016/j.radonc.2013.06.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
|
98
|
Raleigh DR, Haas-Kogan DA. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncol 2013; 9:219-33. [PMID: 23414472 DOI: 10.2217/fon.12.185] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cellular reaction to genomic instability includes a network of signal transduction pathways collectively referred to as the DNA damage response (DDR). Activated by a variety of DNA lesions, the DDR orchestrates cell cycle arrest and DNA repair, and initiates apoptosis in instances where damage cannot be repaired. As such, disruption of the DDR increases the prevalence of DNA damage secondary to incomplete repair, and in doing so, enhances radiation-induced cytotoxicity. This article describes the molecular agents and their targets within DDR pathways that sensitize cells to radiation. Moreover, it reviews the therapeutic implications of these compounds, provides an overview of relevant clinical trials and offers a viewpoint on the evolution of the field in the years to come.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
99
|
Cazares-Körner C, Pires IM, Swallow ID, Grayer S, O’Connor LJ, Olcina M, Christlieb M, Conway SJ, Hammond EM. CH-01 is a hypoxia-activated prodrug that sensitizes cells to hypoxia/reoxygenation through inhibition of Chk1 and Aurora A. ACS Chem Biol 2013; 8:1451-9. [PMID: 23597309 PMCID: PMC3719478 DOI: 10.1021/cb4001537] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 04/18/2013] [Indexed: 12/13/2022]
Abstract
The increased resistance of hypoxic cells to all forms of cancer therapy presents a major barrier to the successful treatment of most solid tumors. Inhibition of the essential kinase Checkpoint kinase 1 (Chk1) has been described as a promising cancer therapy for tumors with high levels of hypoxia-induced replication stress. However, as inhibition of Chk1 affects normal replication and induces DNA damage, these agents also have the potential to induce genomic instability and contribute to tumorigenesis. To overcome this problem, we have developed a bioreductive prodrug, which functions as a Chk1/Aurora A inhibitor specifically in hypoxic conditions. To achieve this activity, a key functionality on the Chk1 inhibitor (CH-01) is masked by a bioreductive group, rendering the compound inactive as a Chk1/Aurora A inhibitor. Reduction of the bioreductive group nitro moiety, under hypoxic conditions, reveals an electron-donating substituent that leads to fragmentation of the molecule, affording the active inhibitor. Most importantly, we show a significant loss of viability in cancer cell lines exposed to hypoxia in the presence of CH-01. This novel approach targets the most aggressive and therapy-resistant tumor fraction while protecting normal tissue from therapy-induced genomic instability.
Collapse
Affiliation(s)
- Cindy Cazares-Körner
- Cancer Research U.K./MRC Gray
Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building,
Oxford OX3 7DQ, U.K
- Department
of Chemistry, Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Isabel M. Pires
- Cancer Research U.K./MRC Gray
Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building,
Oxford OX3 7DQ, U.K
| | - I. Diane Swallow
- Department
of Chemistry, Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Samuel
C. Grayer
- Department
of Chemistry, Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Liam J. O’Connor
- Cancer Research U.K./MRC Gray
Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building,
Oxford OX3 7DQ, U.K
- Department
of Chemistry, Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Monica
M. Olcina
- Cancer Research U.K./MRC Gray
Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building,
Oxford OX3 7DQ, U.K
| | - Martin Christlieb
- Cancer Research U.K./MRC Gray
Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building,
Oxford OX3 7DQ, U.K
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Ester M. Hammond
- Cancer Research U.K./MRC Gray
Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building,
Oxford OX3 7DQ, U.K
| |
Collapse
|
100
|
Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line. Front Med 2013; 7:462-76. [PMID: 23820871 DOI: 10.1007/s11684-013-0270-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 03/19/2013] [Indexed: 01/05/2023]
Abstract
Evaluating the effects of novel drugs on appropriate tumor models has become crucial for developing more effective therapies that target highly tumorigenic and drug-resistant cancer stem cell (CSC) populations. In this study, we demonstrate that a subset of cancer cells with CSC properties may be enriched into tumor spheroids under stem cell conditions from a non-small cell lung cancer cell line. Treating these CSC-like cells with gemcitabine alone and a combination of gemcitabine and the novel CHK1 inhibitor PF-00477736 revealed that PF-00477736 enhances the anti-proliferative effect of gemcitabine against both the parental and the CSC-like cell populations. However, the CSC-like cells exhibited resistance to gemcitabine-induced apoptosis. Collectively, the spheroid-forming CSC-like cells may serve as a model system for understanding the mechanism underlying the drug resistance of CSCs and for guiding the development of better therapies that can inhibit tumor growth and eradicate CSCs.
Collapse
|