51
|
da Cruz EHG, Silvers MA, Jardim GAM, Resende JM, Cavalcanti BC, Bomfim IS, Pessoa C, de Simone CA, Botteselle GV, Braga AL, Nair DK, Namboothiri INN, Boothman DA, da Silva Júnior EN. Synthesis and antitumor activity of selenium-containing quinone-based triazoles possessing two redox centres, and their mechanistic insights. Eur J Med Chem 2016; 122:1-16. [PMID: 27341379 PMCID: PMC5003678 DOI: 10.1016/j.ejmech.2016.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/02/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
Selenium-containing quinone-based 1,2,3-triazoles were synthesized using click chemistry, the copper catalyzed azide-alkyne 1,3-dipolar cycloaddition, and evaluated against six types of cancer cell lines: HL-60 (human promyelocytic leukemia cells), HCT-116 (human colon carcinoma cells), PC3 (human prostate cells), SF295 (human glioblastoma cells), MDA-MB-435 (melanoma cells) and OVCAR-8 (human ovarian carcinoma cells). Some compounds showed IC50 values < 0.3 μM. The cytotoxic potential of the quinones evaluated was also assayed using non-tumor cells, exemplified by peripheral blood mononuclear (PBMC), V79 and L929 cells. Mechanistic role for NAD(P)H Quinone Oxidoreductase 1 (NQO1) was also elucidated. These compounds could provide promising new lead derivatives for more potent anticancer drug development and delivery, and represent one of the most active classes of lapachones reported.
Collapse
Affiliation(s)
- Eduardo H G da Cruz
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Molly A Silvers
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390-8807, USA
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Jarbas M Resende
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Bruno C Cavalcanti
- National Laboratory of Experimental Oncology, Department of Physiology and Pharmacology, Federal University of Ceará, CEP 60180-900, Fortaleza, CE, Brazil
| | - Igor S Bomfim
- National Laboratory of Experimental Oncology, Department of Physiology and Pharmacology, Federal University of Ceará, CEP 60180-900, Fortaleza, CE, Brazil
| | - Claudia Pessoa
- National Laboratory of Experimental Oncology, Department of Physiology and Pharmacology, Federal University of Ceará, CEP 60180-900, Fortaleza, CE, Brazil; Fiocruz-Ceará, CEP 60180-900, Fortaleza, CE, Brazil
| | - Carlos A de Simone
- Institute of Physics, University of São Paulo, 13560-160, São Carlos, SP, Brazil
| | - Giancarlo V Botteselle
- Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Antonio L Braga
- Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Divya K Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | | | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390-8807, USA
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
52
|
Bermejo M, Mangas-Sanjuan V, Gonzalez-Alvarez I, Gonzalez-Alvarez M. Enhancing Oral Absorption of β-Lapachone: Progress Till Date. Eur J Drug Metab Pharmacokinet 2016; 42:1-10. [DOI: 10.1007/s13318-016-0369-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
53
|
Li LS, Reddy S, Lin ZH, Liu S, Park H, Chun SG, Bornmann WG, Thibodeaux J, Yan J, Chakrabarti G, Xie XJ, Sumer BD, Boothman DA, Yordy JS. NQO1-Mediated Tumor-Selective Lethality and Radiosensitization for Head and Neck Cancer. Mol Cancer Ther 2016; 15:1757-67. [PMID: 27196777 PMCID: PMC5123441 DOI: 10.1158/1535-7163.mct-15-0765] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/14/2016] [Indexed: 01/30/2023]
Abstract
UNLABELLED Ionizing radiation (IR) is a key therapeutic regimen for many head and neck cancers (HNC). However, the 5-year overall survival rate for locally advanced HNCs is approximately 50% and better therapeutic efficacy is needed. NAD(P)H quinone oxidoreductase 1 (NQO1) is overexpressed in many cancers, and β-lapachone (β-lap), a unique NQO1 bioactivatable drug, exploits this enzyme to release massive reactive oxygen species (ROS) that synergize with IR to kill by programmed necrosis. β-Lap represents a novel therapeutic opportunity in HNC leading to tumor-selective lethality that will enhance the efficacy of IR. Immunohistochemical staining and Western blot assays were used to assess the expression levels of NQO1 in HNC cells and tumors. Forty-five percent of endogenous HNCs expressed elevated NQO1 levels. In addition, multiple HNC cell lines and tumors demonstrated elevated levels of NQO1 expression and activity and were tested for anticancer lethality and radiosensitization by β-lap using long-term survival assays. The combination of nontoxic β-lap doses and IR significantly enhanced NQO1-dependent tumor cell lethality, increased ROS, TUNEL-positive cells, DNA damage, NAD(+), and ATP consumption, and resulted in significant antitumor efficacy and prolonged survival in two xenograft murine HNC models, demonstrating β-lap radiosensitization of HNCs through a NQO1-dependent mechanism. This translational study offers a potential biomarker-driven strategy using NQO1 expression to select tumors susceptible to β-lap-induced radiosensitization. Mol Cancer Ther; 15(7); 1757-67. ©2016 AACR.
Collapse
Affiliation(s)
- Long-Shan Li
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Srilakshmi Reddy
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Zhen-Hua Lin
- Department of Pathology, Yanbian University Medical College, Yanji, Jilin, China
| | - Shuangping Liu
- Department of Pathology, Yanbian University Medical College, Yanji, Jilin, China
| | - Hyunsil Park
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Stephen G Chun
- Department of Radiation Oncology, MD Anderson Comprehensive Cancer Center, Houston, Texas
| | - William G Bornmann
- Department of Experimental Therapeutics, MD Anderson Comprehensive Cancer Center, Houston, Texas
| | - Joel Thibodeaux
- Department of Pathology, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Jingsheng Yan
- Department of Clinical Sciences, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Gaurab Chakrabarti
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Xian-Jin Xie
- Department of Clinical Sciences, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Baran D Sumer
- Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas. Department of Otolaryngology, Head and Neck Surgery, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - David A Boothman
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas. Department of Pharmacology, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - John S Yordy
- Valley Radiation Therapy Center, Palmer, Alaska.
| |
Collapse
|
54
|
Kahanda D, Chakrabarti G, Mcwilliams MA, Boothman DA, Slinker JD. Using DNA devices to track anticancer drug activity. Biosens Bioelectron 2016; 80:647-653. [PMID: 26901461 DOI: 10.1016/j.bios.2016.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 01/13/2023]
Abstract
It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells.
Collapse
Affiliation(s)
- Dimithree Kahanda
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Rd., PHY 36, Richardson, TX 75080, United States
| | - Gaurab Chakrabarti
- Departments of Pharmacology, Oncology and Radiation Oncology, Laboratory of Molecular Stress Responses and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, ND2.210K 601 Forest Park Drive, Dallas, TX 75390-8807, United States
| | - Marc A Mcwilliams
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Rd., PHY 36, Richardson, TX 75080, United States
| | - David A Boothman
- Departments of Pharmacology, Oncology and Radiation Oncology, Laboratory of Molecular Stress Responses and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, ND2.210K 601 Forest Park Drive, Dallas, TX 75390-8807, United States
| | - Jason D Slinker
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Rd., PHY 36, Richardson, TX 75080, United States.
| |
Collapse
|
55
|
Abstract
INTRODUCTION Utilizing the prodrug approach as a method to overcome various pharmaceutical and pharmacokinetic barriers to drug delivery is significantly accelerating and achieving successes. In contrast to the older traditional prodrugs which suffer from decreased bioavailability and a high profile of side effects, due to activation at undesired sites, the targeted prodrug approach utilizes delivery systems to improve delivery for a wide range of therapeutics including anti-cancer, anti-bacterial and anti-inflammatory drugs. AREAS COVERED Recent updates in utilization of prodrugs in drug delivery between 2013 and 2015 are discussed. Targeted prodrugs against cancer, solid tumors, microbial infections, inflammation and other diseases using advanced delivery systems such as theranostic approaches, siRNA, DOX immunoconjugate, C 60-ser carrier vector, biotinylated prodrug, human serum albumin (HSA) carrier and others are presented. EXPERT OPINION Recent research efforts have been directed at developing targeted prodrugs to replace the classical prodrugs. The use of this approach has accelerated following the emergence of encouraging results from several studies on targeted prodrugs that have highlighted their higher efficiency and improved safety profiles. Targeted prodrug delivery is now considered more than a chemical modification method. It is an applicable and promising approach and, in the future, better knowledge and wide application of this approach may be attained which may pave the way for more forward-thinking and creative techniques.
Collapse
Affiliation(s)
- Wajd Amly
- a Pharmaceutical Sciences Department, Faculty of Pharmacy , Al-Quds University , Jerusalem , Palestine , Israel
| | - Rafik Karaman
- a Pharmaceutical Sciences Department, Faculty of Pharmacy , Al-Quds University , Jerusalem , Palestine , Israel.,b Department of Sciences , University of Basilicata , Potenza , Italy
| |
Collapse
|
56
|
Hydroxylated Dimeric Naphthoquinones Increase the Generation of Reactive Oxygen Species, Induce Apoptosis of Acute Myeloid Leukemia Cells and Are Not Substrates of the Multidrug Resistance Proteins ABCB1 and ABCG2. Pharmaceuticals (Basel) 2016; 9:ph9010004. [PMID: 26797621 PMCID: PMC4812368 DOI: 10.3390/ph9010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 01/24/2023] Open
Abstract
Selective targeting of the oxidative state, which is a tightly balanced fundamental cellular property, is an attractive strategy for developing novel anti-leukemic chemotherapeutics with potential applications in the treatment of acute myeloid leukemia (AML), a molecularly heterogeneous disease. Dimeric naphthoquinones (BiQs) with the ability to undergo redox cycling and to generate reactive oxygen species (ROS) in cancer cells are a novel class of compounds with unique characteristics that make them excellent candidates to be tested against AML cells. We evaluated the effect of two BiQ analogues and one monomeric naphthoquinone in AML cell lines and primary cells from patients. All compounds possess one halogen and one hydroxyl group on the quinone cores. Dimeric, but not monomeric, naphthoquinones demonstrated significant anti-AML activity in the cell lines and primary cells from patients with favorable therapeutic index compared to normal hematopoietic cells. BiQ-1 effectively inhibited clonogenicity and induced apoptosis as measured by Western blotting and Annexin V staining and mitochondrial membrane depolarization by flow cytometry. BiQ-1 significantly enhances intracellular ROS levels in AML cells and upregulates expression of key anti-oxidant protein, Nrf2. Notably, systemic exposure to BiQ-1 was well tolerated in mice. In conclusion, we propose that BiQ-induced therapeutic augmentation of ROS in AML cells with dysregulation of antioxidants kill leukemic cells while normal cells remain relatively intact. Further studies are warranted to better understand this class of potential chemotherapeutics.
Collapse
|
57
|
Mathis BJ, Cui T. CDDO and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:291-314. [PMID: 27771930 DOI: 10.1007/978-3-319-41342-6_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a continued interest in translational research focused on both natural products and manipulation of functional groups on these compounds to create novel derivatives with higher desired activities. Oleanolic acid, a component of traditional Chinese medicine used in hepatitis therapy, was modified by chemical processes to form 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO). This modification increased anti-inflammatory activity significantly and additional functional groups on the CDDO backbone have shown promise in treating conditions ranging from kidney disease to obesity to diabetes. CDDO's therapeutic effect is due to its upregulation of the master antioxidant transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) through conformational change of Nrf2-repressing, Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and multiple animal and human studies have verified subsequent activation of Nrf2-controlled antioxidant genes via upstream Antioxidant Response Element (ARE) regions. At the present time, positive results have been obtained in the laboratory and clinical trials with CDDO derivatives treating conditions such as lung injury, inflammation and chronic kidney disease. However, clinical trials for cancer and cardiovascular disease have not shown equally positive results and further exploration of CDDO and its derivatives is needed to put these shortcomings into context for the purpose of future therapeutic modalities.
Collapse
Affiliation(s)
- Bryan J Mathis
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Rd., Columbia, South Carolina, 29209, USA.
| |
Collapse
|
58
|
Chakrabarti G, Silvers MA, Ilcheva M, Liu Y, Moore ZR, Luo X, Gao J, Anderson G, Liu L, Sarode V, Gerber DE, Burma S, DeBerardinis RJ, Gerson SL, Boothman DA. Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone. Sci Rep 2015; 5:17066. [PMID: 26602448 PMCID: PMC4658501 DOI: 10.1038/srep17066] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
UNLABELLED Base excision repair (BER) is an essential pathway for pancreatic ductal adenocarcinoma (PDA) survival. Attempts to target this repair pathway have failed due to lack of tumor-selectivity and very limited efficacy. The NAD(P)H Quinone Oxidoreductase 1 (NQO1) bioactivatable drug, ß-lapachone (ARQ761 in clinical form), can provide tumor-selective and enhanced synergy with BER inhibition. ß-Lapachone undergoes NQO1-dependent futile redox cycling, generating massive intracellular hydrogen peroxide levels and oxidative DNA lesions that stimulate poly(ADP-ribose) polymerase 1 (PARP1) hyperactivation. Rapid NAD(+)/ATP depletion and programmed necrosis results. To identify BER modulators essential for repair of ß-lapachone-induced DNA base damage, a focused synthetic lethal RNAi screen demonstrated that silencing the BER scaffolding protein, XRCC1, sensitized PDA cells. In contrast, depleting OGG1 N-glycosylase spared cells from ß-lap-induced lethality and blunted PARP1 hyperactivation. Combining ß-lapachone with XRCC1 knockdown or methoxyamine (MeOX), an apyrimidinic/apurinic (AP)-modifying agent, led to NQO1-dependent synergistic killing in PDA, NSCLC, breast and head and neck cancers. OGG1 knockdown, dicoumarol-treatment or NQO1- cancer cells were spared. MeOX + ß-lapachone exposure resulted in elevated DNA double-strand breaks, PARP1 hyperactivation and TUNEL+ programmed necrosis. Combination treatment caused dramatic antitumor activity, enhanced PARP1-hyperactivation in tumor tissue, and improved survival of mice bearing MiaPaca2-derived xenografts, with 33% apparent cures. SIGNIFICANCE Targeting base excision repair (BER) alone has limited therapeutic potential for pancreatic or other cancers due to a general lack of tumor-selectivity. Here, we present a treatment strategy that makes BER inhibition tumor-selective and NQO1-dependent for therapy of most solid neoplasms, particularly for pancreatic cancer.
Collapse
Affiliation(s)
- Gaurab Chakrabarti
- Departments of Pharmacology, Dallas, TX 75390-8807.,Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8807
| | - Molly A Silvers
- Departments of Pharmacology, Dallas, TX 75390-8807.,Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8807
| | - Mariya Ilcheva
- Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8807
| | - Yuliang Liu
- Departments of Pharmacology, Dallas, TX 75390-8807.,Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8807
| | - Zachary R Moore
- Departments of Pharmacology, Dallas, TX 75390-8807.,Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8807
| | - Xiuquan Luo
- Departments of Pharmacology, Dallas, TX 75390-8807.,Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8807
| | - Jinming Gao
- Departments of Pharmacology, Dallas, TX 75390-8807
| | | | - Lili Liu
- Department of Hematology and Oncology, Case Western Reserve Comprehensive Cancer Center, Cleveland, OH 44106
| | - Venetia Sarode
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390-9234
| | - David E Gerber
- Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8807
| | - Sandeep Burma
- Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8807
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX 75390-8502
| | - Stanton L Gerson
- Department of Hematology and Oncology, Case Western Reserve Comprehensive Cancer Center, Cleveland, OH 44106
| | - David A Boothman
- Departments of Pharmacology, Dallas, TX 75390-8807.,Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8807
| |
Collapse
|
59
|
Madajewski B, Boatman MA, Chakrabarti G, Boothman DA, Bey EA. Depleting Tumor-NQO1 Potentiates Anoikis and Inhibits Growth of NSCLC. Mol Cancer Res 2015; 14:14-25. [PMID: 26553038 DOI: 10.1158/1541-7786.mcr-15-0207-t] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/01/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED The fundamental role that NAD(P)H/quinone oxidoreductase 1 (NQO1) plays, in normal cells, as a cytoprotective enzyme guarding against stress induced by reactive oxygen species (ROS) is well documented. However, what is not known is whether the observed overexpression of NQO1 in neoplastic cells contributes to their survival. The current study discovered that depleting NQO1 expression in A549 and H292 lung adenocarcinoma cells caused an increase in ROS formation, inhibited anchorage-independent growth, increased anoikis sensitization, and decreased three-dimensional tumor spheroid invasion. These in vivo data further implicate tumor-NQO1 expression in a protumor survival role, because its depletion suppressed cell proliferation and decreased lung tumor xenograft growth. Finally, these data reveal an exploitable link between tumor-NQO1 expression and the survival of lung tumors because NQO1 depletion significantly decreased the percentage of ALDH((high)) cancer cells within the tumor population. IMPLICATIONS Loss of tumor-NQO1 expression inhibits tumor growth and suggests that novel therapeutics directed at tumor-NQO1 may have clinical benefit.
Collapse
Affiliation(s)
- Brian Madajewski
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506
| | - Michael A Boatman
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506
| | - Gaurab Chakrabarti
- Department of Pharmacology, Laboratory of Molecular Cell Stress Responses, Program in Cell Stress and Cancer Nanomedicine, Simmons Cancer Center, UT Southwestern Medical Center at Dallas, TX 75390-8807
| | - David A Boothman
- Department of Pharmacology, Laboratory of Molecular Cell Stress Responses, Program in Cell Stress and Cancer Nanomedicine, Simmons Cancer Center, UT Southwestern Medical Center at Dallas, TX 75390-8807
| | - Erik A Bey
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
60
|
Ma J, Lim C, Sacher JR, Van Houten B, Qian W, Wipf P. Mitochondrial targeted β-lapachone induces mitochondrial dysfunction and catastrophic vacuolization in cancer cells. Bioorg Med Chem Lett 2015; 25:4828-4833. [PMID: 26159482 PMCID: PMC4607627 DOI: 10.1016/j.bmcl.2015.06.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/12/2022]
Abstract
Mitochondria play important roles in tumor cell physiology and survival by providing energy and metabolites for proliferation and metastasis. As part of their oncogenic status, cancer cells frequently produce increased levels of mitochondrial-generated reactive oxygen species (ROS). However, extensive stimulation of ROS generation in mitochondria has been shown to be able to induce cancer cell death, and is one of the major mechanisms of action of many anticancer agents. We hypothesized that enhancing mitochondrial ROS generation through direct targeting of a ROS generator into mitochondria will exhibit tumor cell selectivity, as well as high efficacy in inducing cancer cell death. We thus synthesized a mitochondrial targeted version of β-lapachone (XJB-Lapachone) based on our XJB mitochondrial targeting platform. We found that the mitochondrial targeted β-lapachone is more efficient in inducing apoptosis compared to unconjugated β-lapachone, and the tumor cell selectivity is maintained. XJB-Lapachone also induced extensive cellular vacuolization and autophagy at a concentration not observed with unconjugated β-lapachone. Through characterization of mitochondrial function we revealed that XJB-Lapachone is indeed more capable of stimulating ROS generation in mitochondria, which led to a dramatic mitochondrial uncoupling and autophagic degradation of mitochondria. Taken together, we have demonstrated that targeting β-lapachone accomplishes higher efficacy through inducing ROS generation directly in mitochondria, resulting in extensive mitochondrial and cellular damage. XJB-Lapachone will thus help to establish a novel platform for the design of next generation mitochondrial targeted ROS generators for cancer therapy.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, and Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213, United States; Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College of HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Chaemin Lim
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States; Accelerated Chemical Discovery Center, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Joshua R Sacher
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, and Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Wei Qian
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, and Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213, United States.
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States; Accelerated Chemical Discovery Center, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States.
| |
Collapse
|
61
|
Abstract
One of the major goals of cancer therapy is the selective targeting of cancer cells over normal cells. Unfortunately, even with recent advances, the majority of chemotherapeutics still indiscriminately kill all rapidly dividing cells. Although these drugs are effective in certain settings, their inability to specifically target cancer results in significant dose-limiting toxicities. One way to avoid such toxicities is to target an aspect of the cancer cell that is not shared by normal cells. A potential cancer-specific target is the enzyme NAD(P)H quinone oxidoreductase 1 (NQO1). NQO1 is a 2-electron reductase responsible for the detoxification of quinones. Its expression is typically quite low in normal tissue, but it has been found to be greatly overexpressed in many types of solid tumors, including lung, breast, pancreatic, and colon cancers. This overexpression is thought to be in response to the higher oxidative stress of the cancer cell, and it is possible that NQO1 contributes to tumor progression. The overexpression of NQO1 and its correlation with poor patient outcome make it an intriguing target. Although some have explored inhibiting NQO1 as an anticancer strategy, this has generally been unsuccessful. A more promising strategy is to utilize NQO1 substrates that are activated upon reduction by NQO1. For example, in principle, reduction of a quinone can result in a hydroquinone that is a DNA alkylator, protein inhibitor, or reduction-oxidation cycler. Although there are many proposed NQO1 substrates, head-to-head assays reveal only two classes of compounds that convincingly induce cancer cell death through NQO1-mediated activation. In this Account, we describe the discovery and development of one of these compounds, the natural product deoxynyboquinone (DNQ), an excellent NQO1 substrate and anticancer agent. A modular synthesis of DNQ was developed that enabled access to the large compound quantities needed to conduct extensive mechanistic evaluations and animal experiments. During these evaluations, we found that DNQ is an outstanding NQO1 substrate that is processed much more efficiently than other putative NQO1 substrates. Importantly, its anticancer activity is strictly dependent on the overexpression of active NQO1. Using previous crystal structures of NQO1, novel DNQ derivatives were designed that are also excellent NQO1 substrates and possess properties that make them more attractive than the parent natural product for translational development. Given their selectivity, potency, outstanding pharmacokinetic properties, and the ready availability of diagnostics to assess NQO1 in patients, DNQ and its derivatives have considerable potential as personalized medicines for the treatment of cancer.
Collapse
Affiliation(s)
- Elizabeth I. Parkinson
- Department of Chemistry,
Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry,
Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
62
|
Chakrabarti G, Moore ZR, Luo X, Ilcheva M, Ali A, Padanad M, Zhou Y, Xie Y, Burma S, Scaglioni PP, Cantley LC, DeBerardinis RJ, Kimmelman AC, Lyssiotis CA, Boothman DA. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer Metab 2015; 3:12. [PMID: 26462257 PMCID: PMC4601138 DOI: 10.1186/s40170-015-0137-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinomas (PDA) activate a glutamine-dependent pathway of cytosolic nicotinamide adenine dinucleotide phosphate (NADPH) production to maintain redox homeostasis and support proliferation. Enzymes involved in this pathway (GLS1 (mitochondrial glutaminase 1), GOT1 (cytoplasmic glutamate oxaloacetate transaminase 1), and GOT2 (mitochondrial glutamate oxaloacetate transaminase 2)) are highly upregulated in PDA, and among these, inhibitors of GLS1 were recently deployed in clinical trials to target anabolic glutamine metabolism. However, single-agent inhibition of this pathway is cytostatic and unlikely to provide durable benefit in controlling advanced disease. RESULTS Here, we report that reducing NADPH pools by genetically or pharmacologically (bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) or CB-839) inhibiting glutamine metabolism in mutant Kirsten rat sarcoma viral oncogene homolog (KRAS) PDA sensitizes cell lines and tumors to ß-lapachone (ß-lap, clinical form ARQ761). ß-Lap is an NADPH:quinone oxidoreductase (NQO1)-bioactivatable drug that leads to NADPH depletion through high levels of reactive oxygen species (ROS) from the futile redox cycling of the drug and subsequently nicotinamide adenine dinucleotide (NAD)+ depletion through poly(ADP ribose) polymerase (PARP) hyperactivation. NQO1 expression is highly activated by mutant KRAS signaling. As such, ß-lap treatment concurrent with inhibition of glutamine metabolism in mutant KRAS, NQO1 overexpressing PDA leads to massive redox imbalance, extensive DNA damage, rapid PARP-mediated NAD+ consumption, and PDA cell death-features not observed in NQO1-low, wild-type KRAS expressing cells. CONCLUSIONS This treatment strategy illustrates proof of principle that simultaneously decreasing glutamine metabolism-dependent tumor anti-oxidant defenses and inducing supra-physiological ROS formation are tumoricidal and that this rationally designed combination strategy lowers the required doses of both agents in vitro and in vivo. The non-overlapping specificities of GLS1 inhibitors and ß-lap for PDA tumors afford high tumor selectivity, while sparing normal tissue.
Collapse
Affiliation(s)
- Gaurab Chakrabarti
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Drive, Dallas, 75390-8807 TX USA ; Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Zachary R Moore
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Drive, Dallas, 75390-8807 TX USA ; Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Xiuquan Luo
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Drive, Dallas, 75390-8807 TX USA ; Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Mariya Ilcheva
- Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Aktar Ali
- Touchstone Diabetes Center, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Mahesh Padanad
- Department of Internal Medicine, Weill Cornell Medical College, 413 East 69th Street, BB-1362, New York, NY 10021 USA
| | - Yunyun Zhou
- Department of Bioinformatics and Biostatistics, Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Yang Xie
- Department of Bioinformatics and Biostatistics, Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Sandeep Burma
- Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Pier P Scaglioni
- Department of Internal Medicine, Weill Cornell Medical College, 413 East 69th Street, BB-1362, New York, NY 10021 USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, 413 East 69th Street, BB-1362, New York, NY 10021 USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 USA ; Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109 USA
| | - David A Boothman
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Drive, Dallas, 75390-8807 TX USA ; Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
63
|
Ma X, Moore ZR, Huang G, Huang X, Boothman DA, Gao J. Nanotechnology-enabled delivery of NQO1 bioactivatable drugs. J Drug Target 2015; 23:672-80. [DOI: 10.3109/1061186x.2015.1073296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
64
|
Vieira AA, Brandão IR, Valença WO, de Simone CA, Cavalcanti BC, Pessoa C, Carneiro TR, Braga AL, da Silva EN. Hybrid compounds with two redox centres: Modular synthesis of chalcogen-containing lapachones and studies on their antitumor activity. Eur J Med Chem 2015; 101:254-65. [DOI: 10.1016/j.ejmech.2015.06.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 12/25/2022]
|
65
|
Synthesis and anti-Trypanosoma cruzi activity of new 3‐phenylthio-nor-β-lapachone derivatives. Bioorg Med Chem 2015; 23:4763-4768. [DOI: 10.1016/j.bmc.2015.05.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/15/2015] [Accepted: 05/24/2015] [Indexed: 01/21/2023]
|
66
|
Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation. Biochimie 2015; 116:141-53. [PMID: 26188110 DOI: 10.1016/j.biochi.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/13/2015] [Indexed: 11/23/2022]
Abstract
UNLABELLED Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells: NAD(P)H quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using β-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy.
Collapse
|
67
|
Osman NATAG, Abd El-Maqsoud NMR, El Gelany SAA. Correlation of NQO1 and Nrf2 in Female Genital Tract Cancer and Their Precancerous Lesions (Cervix, Endometrium and Ovary). World J Oncol 2015; 6:364-374. [PMID: 28983331 PMCID: PMC5624662 DOI: 10.14740/wjon931w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2015] [Indexed: 01/29/2023] Open
Abstract
Background NAD (P) H/quinone oxidoreductase 1 (NQO1) is a metabolizing enzyme that detoxifies chemical stressors and antioxidants. Nuclear factor erythroid 2-related factor 2 (NrF2) is an important transcriptional activator involved in the cellular defense mechanisms against oxidative stress. Methods The immunohistochemical expression of NQO1 and Nrf2 in 80 cervical, 80 endometrial and 100 ovarian specimens with different lesions was studied. Then we study the relation of both NQO1 and Nrf2 expression and clinicopathological features of carcinoma cases. Results Immunohistochemical stain showed that NQO1 and Nrf2 were highly expressed in carcinoma compared with normal and precancerous lesions. Significant positive correlations were found between the mean expression of NQO1 and Nrf2 in different lesions. Moreover, there was significant correlation between the high level of NQO1 and Nrf2 expression and high tumor grade in cervical and endometrial carcinoma cases. Nrf2 expression was significant with advanced stage in endometrial and ovarian carcinomas. Conclusions NQO1 and Nrf2 might be new biomarkers for early diagnosis and prognostic evaluation as well as being targets for therapy in patients with tumors in female genital tract.
Collapse
Affiliation(s)
| | | | - Saad Abdelnaby A El Gelany
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Maternity Hospital, Egypt
| |
Collapse
|
68
|
Prasai B, Silvers WC, McCarley RL. Oxidoreductase-Facilitated Visualization and Detection of Human Cancer Cells. Anal Chem 2015; 87:6411-8. [PMID: 26005900 DOI: 10.1021/acs.analchem.5b01615] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED Achieving highly selective and sensitive detection/visualization of intracellular biological events through the use of cell-penetrable, bioanalyte-activatable, turn-on probes is dependent on the presence of specific event-linked cellular biomarkers, if and only if there exist activatable probes that appropriately respond to the biomarker analyte. Here is described the evaluation of, and use in cellular imaging studies, a previously undisclosed naphthalimide probe QMeNN, whose fluorescence is deactivated by photoinduced electron transfer (PeT) quenching that results from the presence of a covalently linked biomarker-specific quinone trigger group. Highly selective and rapid activation of the quinone group by the human cancer tumor-linked NAD(P)H quinone oxido-reductase isozyme 1 (hNQO1) results in fast trigger group removal to yield a highly fluorescent green-energy-range reporter that possesses a high molar absorptivity; there is a 136-fold increase in brightness for the enzymatically produced reporter versus probe precursor, a value 4 times greater than previously reported for the hNQO1 analyte. The novel probe is taken up and activated rapidly within only hNQO1-positive human cancer cells; addition of an hNQO1 inhibitor prevents the selective activation of the probe. Comparison of cytosolic fluorescence intensity in positive cells versus background in negative cells yields a quantitative metric (positive-to-negative ratio, PNR) for judging hNQO1 activity. We show it is possible to determine hNQO1 presence in previously studied colorectal cancer cells and the unexplored ovarian cancer cell line NIH:OVCAR-3, with respective PNR values of 926 and 34 being obtained. Even with 10 min probe incubation, ready discrimination of positive cells from negative cells is achieved. Cell viability is unaffected by probe presence, thereby highlighting the practicality of probe use in live-cell imaging applications.
Collapse
Affiliation(s)
- Bijeta Prasai
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - William C Silvers
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Robin L McCarley
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| |
Collapse
|
69
|
Chakrabarti G, Gerber DE, Boothman DA. Expanding antitumor therapeutic windows by targeting cancer-specific nicotinamide adenine dinucleotide phosphate-biogenesis pathways. Clin Pharmacol 2015; 7:57-68. [PMID: 25870517 PMCID: PMC4381889 DOI: 10.2147/cpaa.s79760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) biogenesis is an essential mechanism by which both normal and cancer cells maintain redox balance. While antitumor approaches to treat cancers through elevated reactive oxygen species (ROS) are not new ideas, depleting specific NADPH-biogenesis pathways that control recovery and repair pathways are novel, viable approaches to enhance cancer therapy. However, to elicit efficacious therapies exploiting NADPH-biogenic pathways, it is crucial to understand and specifically define the roles of NADPH-biogenesis pathways used by cancer cells for survival or recovery from cell stress. It is equally important to select NADPH-biogenic pathways that are expendable or not utilized in normal tissue to avoid unwanted toxicity. Here, we address recent literature that demonstrates specific tumor-selective NADPH-biogenesis pathways that can be exploited using agents that target specific cancer cell pathways normally not utilized in normal cells. Defining NADPH-biogenesis profiles of specific cancer-types should enable novel strategies to exploit these therapeutic windows for increased efficacy against recalcitrant neoplastic disease, such as pancreatic cancers. Accomplishing the goal of using ROS as a weapon against cancer cells will also require agents, such as NQO1 bioactivatable drugs, that selectively induce elevated ROS levels in cancer cells, while normal cells are protected.
Collapse
Affiliation(s)
- Gaurab Chakrabarti
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA ; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA ; Harold C Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX, USA ; Harold C Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - David A Boothman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA ; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA ; Harold C Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
70
|
Moore Z, Chakrabarti G, Luo X, Ali A, Hu Z, Fattah FJ, Vemireddy R, DeBerardinis RJ, Brekken RA, Boothman DA. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone. Cell Death Dis 2015; 6:e1599. [PMID: 25590809 PMCID: PMC4669762 DOI: 10.1038/cddis.2014.564] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 01/01/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD(+) synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD(+) pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD(+) consumption. Synergy with FK866+β-lap was tumor-selective, only occurring in NQO1-overexpressing cancer cells, which is noted in a majority (∼85%) of PDA cases. This treatment strategy simultaneously decreases NAD(+) synthesis while increasing NAD(+) consumption, reducing required doses and treatment times for both drugs and increasing potency. These complementary mechanisms caused profound NAD(P)(+) depletion and inhibited glycolysis, driving down adenosine triphosphate levels and preventing recovery normally observed with either agent alone. Cancer cells died through an ROS-induced, μ-calpain-mediated programmed cell death process that kills independent of caspase activation and is not driven by PAR accumulation, which we call NAD(+)-Keresis. Non-overlapping specificities of FK866 for PDA tumors that rely heavily on NAMPT-catalyzed NAD(+) synthesis and β-lap for cancer cells with elevated NQO1 levels affords high tumor-selectivity. The concept of reducing NAD(+) pools in cancer cells to sensitize them to ROS-mediated cell death by β-lap is a novel strategy with potential application for pancreatic and other types of NQO1+ solid tumors.
Collapse
Affiliation(s)
- Z Moore
- Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Chakrabarti
- Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - X Luo
- Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A Ali
- Internal Medicine and Touchstone Diabetes Center, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Z Hu
- Children's Medical Center Research Institute, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - F J Fattah
- Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Vemireddy
- Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R J DeBerardinis
- Children's Medical Center Research Institute, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R A Brekken
- Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D A Boothman
- Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
71
|
Ma X, Huang X, Moore Z, Huang G, Kilgore JA, Wang Y, Hammer S, Williams NS, Boothman DA, Gao J. Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy. J Control Release 2014; 200:201-11. [PMID: 25542645 DOI: 10.1016/j.jconrel.2014.12.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022]
Abstract
UNLABELLED Lung cancer is one of the most lethal forms of cancer and current chemotherapeutic strategies lack broad specificity and efficacy. Recently, β-lapachone (β-lap) was shown to be highly efficacious in killing non-small cell lung cancer (NSCLC) cells regardless of their p53, cell cycle and caspase status. Pre-clinical and clinical use of β-lap (clinical form, ARQ501 or 761) is hampered by poor pharmacokinetics and toxicity due to hemolytic anemia. Here, we report the development and preclinical evaluation of β-lap prodrug nanotherapeutics consisting of diester derivatives of β-lap encapsulated in biocompatible and biodegradable poly(ethylene glycol)-b-poly(D,L-lactic acid) (PEG-b-PLA) micelles. Compared to the parent drug, diester derivatives of β-lap showed higher drug loading densities inside PEG-b-PLA micelles. After esterase treatment, micelle-delivered β-lap-dC3 and -dC6 prodrugs were converted to β-lap. Cytotoxicity assays using A549 and H596 lung cancer cells showed that both micelle formulations maintained NAD(P)H quinone oxidoreductase 1 (NQO1)-dependent cytotoxicity. However, antitumor efficacy study of β-lap-dC3 micelles against orthotopic A549 NSCLC xenograft-bearing mice showed significantly greater long-term survival over β-lap-dC6 micelles or β-lap-HPβCD complexes. Improved therapeutic efficacy of β-lap-dC3 micelles correlated with higher area under the concentration-time curves of β-lap in tumors, and enhanced pharmacodynamic endpoints (e.g., PARP1 hyperactivation, γH2AX, and ATP depletion). β-Lap-dC3 prodrug micelles provide a promising strategy for NQO1-targeted therapy of lung cancer with improved safety and antitumor efficacy.
Collapse
Affiliation(s)
- Xinpeng Ma
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Xiumei Huang
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Zachary Moore
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Jessica A Kilgore
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Yiguang Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Suntrea Hammer
- Department of Pathology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - David A Boothman
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| |
Collapse
|
72
|
Ohayon S, Refua M, Hendler A, Aharoni A, Brik A. Harnessing the Oxidation Susceptibility of Deubiquitinases for Inhibition with Small Molecules. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
73
|
Ohayon S, Refua M, Hendler A, Aharoni A, Brik A. Harnessing the oxidation susceptibility of deubiquitinases for inhibition with small molecules. Angew Chem Int Ed Engl 2014; 54:599-603. [PMID: 25327786 DOI: 10.1002/anie.201408411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 01/08/2023]
Abstract
Deubiquitinases (DUBs) counteract ubiquitination by removing or trimming ubiquitin chains to alter the signal. Their diverse role in biological processes and involvement in diseases have recently attracted great interest with regard to their mechanism and inhibition. It has been shown that some DUBs are regulated by reactive oxygen species (ROS) in which the catalytic Cys residue undergoes reversible oxidation, hence modulating DUBs activity under oxidative stress. Reported herein for the first time, the observation that small molecules, which are capable of generating ROS efficiently, inhibit DUBs by selective and nonreversible oxidation of the catalytic Cys residue. Interestingly, the small molecule beta-lapachone, which is currently in clinical trials for cancer, is among the potent inhibitors, thus suggesting possible new cellular targets for its therapeutic effects. Our study describes a novel mechanism of DUBs inhibition and opens new opportunities in exploiting them for cancer therapy.
Collapse
Affiliation(s)
- Shimrit Ohayon
- Department of Chemistry, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501 (Israel)
| | | | | | | | | |
Collapse
|
74
|
Cao L, Li LS, Spruell C, Xiao L, Chakrabarti G, Bey EA, Reinicke KE, Srougi MC, Moore Z, Dong Y, Vo P, Kabbani W, Yang CR, Wang X, Fattah F, Morales JC, Motea EA, Bornmann WG, Yordy JS, Boothman DA. Tumor-selective, futile redox cycle-induced bystander effects elicited by NQO1 bioactivatable radiosensitizing drugs in triple-negative breast cancers. Antioxid Redox Signal 2014; 21:237-50. [PMID: 24512128 PMCID: PMC4060774 DOI: 10.1089/ars.2013.5462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS β-Lapachone (β-lap), a novel radiosensitizer with potent antitumor efficacy alone, selectively kills solid cancers that over-express NAD(P)H quinone oxidoreductase 1 (NQO1). Since breast or other solid cancers have heterogeneous NQO1 expression, therapies that reduce the resistance (e.g., NQO1(low)) of tumor cells will have significant clinical advantages. We tested whether NQO1-proficient (NQO1(+)) cells generated sufficient hydrogen peroxide (H2O2) after β-lap treatment to elicit bystander effects, DNA damage, and cell death in neighboring NQO1(low) cells. RESULTS β-Lap showed NQO1-dependent efficacy against two triple-negative breast cancer (TNBC) xenografts. NQO1 expression variations in human breast cancer patient samples were noted, where ~60% cancers over-expressed NQO1, with little or no expression in associated normal tissue. Differential DNA damage and lethality were noted in NQO1(+) versus NQO1-deficient (NQO1(-)) TNBC cells and xenografts after β-lap treatment. β-Lap-treated NQO1(+) cells died by programmed necrosis, whereas co-cultured NQO1(-) TNBC cells exhibited DNA damage and caspase-dependent apoptosis. NQO1 inhibition (dicoumarol) or H2O2 scavenging (catalase [CAT]) blocked all responses. Only NQO1(-) cells neighboring NQO1(+) TNBC cells responded to β-lap in vitro, and bystander effects correlated well with H2O2 diffusion. Bystander effects in NQO1(-) cells in vivo within mixed 50:50 co-cultured xenografts were dramatic and depended on NQO1(+) cells. However, normal human cells in vitro or in vivo did not show bystander effects, due to elevated endogenous CAT levels. Innovation and Conclusions: NQO1-dependent bystander effects elicited by NQO1 bioactivatable drugs (β-lap or deoxynyboquinone [DNQ]) likely contribute to their efficacies, killing NQO1(+) solid cancer cells and eliminating surrounding heterogeneous NQO1(low) cancer cells. Normal cells/tissue are protected by low NQO1:CAT ratios.
Collapse
Affiliation(s)
- Lifen Cao
- 1 Department of General Surgery, The Second Xiangya Hospital of Central South University , Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK. β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis 2014; 5:e1230. [PMID: 24832602 PMCID: PMC4047891 DOI: 10.1038/cddis.2014.202] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
Abstract
β-Lapachone activates multiple cell death mechanisms including apoptosis, autophagy and necrotic cell death in cancer cells. In this study, we investigated β-lapachone-induced cell death and the underlying mechanisms in human hepatocellular carcinoma SK-Hep1 cells. β-Lapachone markedly induced cell death without caspase activation. β-Lapachone increased PI uptake and HMGB-1 release to extracellular space, which are markers of necrotic cell death. Necrostatin-1 (a RIP1 kinase inhibitor) markedly inhibited β-lapachone-induced cell death and HMGB-1 release. In addition, β-lapachone activated poly (ADP-ribosyl) polymerase-1(PARP-1) and promoted AIF release, and DPQ (a PARP-1 specific inhibitor) or AIF siRNA blocked β-lapachone-induced cell death. Furthermore, necrostatin-1 blocked PARP-1 activation and cytosolic AIF translocation. We also found that β-lapachone-induced reactive oxygen species (ROS) production has an important role in the activation of the RIP1-PARP1-AIF pathway. Finally, β-lapachone-induced cell death was inhibited by dicoumarol (a NQO-1 inhibitor), and NQO1 expression was correlated with sensitivity to β-lapachone. Taken together, our results demonstrate that β-lapachone induces programmed necrosis through the NQO1-dependent ROS-mediated RIP1-PARP1-AIF pathway.
Collapse
Affiliation(s)
- E J Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | - K-j Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | - T-J Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, Korea
| | - Y H Yoo
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan, Korea
| | - Y-S Kim
- Department of Biochemistry, Ajou University School of Medicine, San 5, Wonchon-dong, Yeongtong-gu, Suwon, Korea
| | - T K Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
76
|
Yang Y, Zhang Y, Wu Q, Cui X, Lin Z, Liu S, Chen L. Clinical implications of high NQO1 expression in breast cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:14. [PMID: 24499631 PMCID: PMC3944477 DOI: 10.1186/1756-9966-33-14] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/27/2014] [Indexed: 01/01/2023]
Abstract
Background NAD (P) H: quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing enzyme that detoxifies chemical stressors and antioxidants, providing cytoprotection in normal tissues. However, high-level expression of NQO1 has been correlated with numerous human malignancies, suggesting a role in carcinogenesis and tumor progression. This study aimed to explore the clinicopathological significance of NQO1 and as a prognostic determinant in breast cancer. Methods A total of 176 breast cancer patients with strict follow-up, 45 ductal carcinoma in situ (DCIS), 22 hyperplasia and 52 adjacent non-tumor breast tissues were selected for immunohistochemical staining of NQO1 protein. Immunofluorescence staining was also performed to detect the subcellular localization of NQO1 protein in MCF-7 breast cancer cells. Eight fresh breast cancers paired with adjacent non-tumor tissues were quantified using real time RT-PCR (qRT-PCR) and western blot. The correlations between NQO1 overexpression and the clinical features of breast cancer were evaluated using chi-square test and Fisher’s exact tests. The survival rate was calculated using the Kaplan–Meier method, and the relationship between prognostic factors and patient survival was also analyzed by the Cox proportional hazards models. Results NQO1 protein showed a mainly cytoplasmic staining pattern in breast cancer. The strongly positive rate of NQO1 protein was 61.9% (109/176) in breast cancer, and was significantly higher than in DCIS (31.1%, 14/45), hyperplasia tissues (13.6%, 3/22) and adjacent non-tumor tissues (13.5%, 7/52). High-level expression of NQO1 protein was correlated with late clinical stage, poor differentiation, lymph node metastasis, Her2 expression and disease-free and 10-year overall survival rates in breast cancer. Moreover, multivariate analysis suggested that NQO1 emerged as a significant independent prognostic factor along with clinical stage and Her2 expression status in patients with breast cancer. Conclusions High-level expression of NQO1 appears to be associated with breast cancer progression, and may be a potential biomarker for poor prognostic evaluation of breast cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuangping Liu
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China.
| | | |
Collapse
|