51
|
Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 2016; 97:204-36. [PMID: 26592477 DOI: 10.1016/j.addr.2015.11.011] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/06/2023]
Abstract
Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.
Collapse
|
52
|
The protein corona of circulating PEGylated liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:189-96. [DOI: 10.1016/j.bbamem.2015.11.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/16/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022]
|
53
|
Lalatsa A, Barbu E. Carbohydrate Nanoparticles for Brain Delivery. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:115-53. [DOI: 10.1016/bs.irn.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
54
|
Mendes TFS, Kluskens LD, Rodrigues LR. Triple Negative Breast Cancer: Nanosolutions for a Big Challenge. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500053. [PMID: 27980912 PMCID: PMC5115335 DOI: 10.1002/advs.201500053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/03/2015] [Indexed: 05/11/2023]
Abstract
Triple negative breast cancer (TNBC) is a particular immunopathological subtype of breast cancer that lacks expression of estrogen and progesterone receptors (ER/PR) and amplification of the human epidermal growth factor receptor 2 (HER2) gene. Characterized by aggressive and metastatic phenotypes and high rates of relapse, TNBC is the only breast cancer subgroup still lacking effective therapeutic options, thus presenting the worst prognosis. The development of targeted therapies, as well as early diagnosis methods, is vital to ensure an adequate and timely therapeutic intervention in patients with TNBC. This review intends to discuss potentially emerging approaches for the diagnosis and treatment of TNBC patients, with a special focus on nano-based solutions that actively target these particular tumors.
Collapse
Affiliation(s)
| | - Leon D Kluskens
- Centre of Biological Engineering University of Minho 4710-057 Braga Portugal
| | | |
Collapse
|
55
|
Venning FA, Wullkopf L, Erler JT. Targeting ECM Disrupts Cancer Progression. Front Oncol 2015; 5:224. [PMID: 26539408 PMCID: PMC4611145 DOI: 10.3389/fonc.2015.00224] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 12/18/2022] Open
Abstract
Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.
Collapse
Affiliation(s)
- Freja A. Venning
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Lena Wullkopf
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| |
Collapse
|
56
|
Adkins CE, Nounou MI, Hye T, Mohammad AS, Terrell-Hall T, Mohan NK, Eldon MA, Hoch U, Lockman PR. NKTR-102 Efficacy versus irinotecan in a mouse model of brain metastases of breast cancer. BMC Cancer 2015; 15:685. [PMID: 26463521 PMCID: PMC4604629 DOI: 10.1186/s12885-015-1672-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023] Open
Abstract
Background Brain metastases are an increasing problem in women with invasive breast cancer. Strategies designed to treat brain metastases of breast cancer, particularly chemotherapeutics such as irinotecan, demonstrate limited efficacy. Conventional irinotecan distributes poorly to brain metastases; therefore, NKTR-102, a PEGylated irinotecan conjugate should enhance irinotecan and its active metabolite SN38 exposure in brain metastases leading to brain tumor cytotoxicity. Methods Female nude mice were intracranially or intracardially implanted with human brain seeking breast cancer cells (MDA-MB-231Br) and dosed with irinotecan or NKTR-102 to determine plasma and tumor pharmacokinetics of irinotecan and SN38. Tumor burden and survival were evaluated in mice treated with vehicle, irinotecan (50 mg/kg), or NKTR-102 low and high doses (10 mg/kg, 50 mg/kg respectively). Results NKTR-102 penetrates the blood-tumor barrier and distributes to brain metastases. NKTR-102 increased and prolonged SN38 exposure (>20 ng/g for 168 h) versus conventional irinotecan (>1 ng/g for 4 h). Treatment with NKTR-102 extended survival time (from 35 days to 74 days) and increased overall survival for NKTR-102 low dose (30 % mice) and NKTR-102 high dose (50 % mice). Tumor burden decreased (37 % with 10 mg/kg NKTR-102 and 96 % with 50 mg/kg) and lesion sizes decreased (33 % with 10 mg/kg NKTR-102 and 83 % with 50 mg/kg NKTR-102) compared to conventional irinotecan treated animals. Conclusions Elevated and prolonged tumor SN38 exposure after NKTR-102 administration appears responsible for increased survival in this model of breast cancer brain metastasis. Further, SN38 concentrations observed in this study are clinically achieved with 145 mg/m2 NKTR-102, such as those used in the BEACON trial, underlining translational relevance of these results. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1672-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chris E Adkins
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Mohamed I Nounou
- School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Faculty of Pharmacy, Department of Pharmaceutics, Alexandria University, Alexandria, Egypt.
| | - Tanvirul Hye
- School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Afroz S Mohammad
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Tori Terrell-Hall
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Neel K Mohan
- Nektar Therapeutics, San Francisco, CA, 94158, USA.
| | | | - Ute Hoch
- Nektar Therapeutics, San Francisco, CA, 94158, USA.
| | - Paul R Lockman
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
57
|
Yin S, Huai J, Chen X, Yang Y, Zhang X, Gan Y, Wang G, Gu X, Li J. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Acta Biomater 2015; 26:274-85. [PMID: 26300335 DOI: 10.1016/j.actbio.2015.08.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 11/26/2022]
Abstract
Polymer-drug conjugates have demonstrated application potentials in optimizing chemotherapeutics. In this study a new bioconjugate, HA-ss-PTX, was designed and synthesized with cooperative dual characteristics of active tumor targeting and selective intracellular drug release. Paclitaxel (PTX) was covalently attached to hyaluronic acid (HA) with various sizes (MW 9.5, 35, 770 kDa); a cross-linker containing disulfide bond was also used to shield drug leakage in blood circulation and to achieve rapid drug release in tumor cells in response to glutathione. Incorporation of HA to the conjugate enhanced the capabilities of drug loading, intracellular endocytosis and tumor targeting of micelles in comparison to mPEG. HA molecular weight showed significant effect on properties and antitumor efficacy of the synthesized conjugates. Intracellular uptake of HA-ss-PTX toward MCF-7 cells was mediated by CD44-caveolae-mediated endocytosis. Compared to Taxol and mPEG-ss-PTX, HA9.5-ss-PTX demonstrated improved tumor growth inhibition in vivo with a TIR of 83.27 ± 5.20%. It was concluded that HA9.5-ss-PTX achieved rapid intracellular release of PTX and enhanced its therapeutic efficacy, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics. STATEMENT OF SIGNIFICANCE Polymer-drug conjugates, promising nanomedicines, still face some technical challenges including a lack of specific targeting and rapid intracellular drug release at the target site. In this manuscript we designed and constructed a novel bioconjugate HA-ss-PTX, which possessed coordinated dual characteristics of active tumor targeting and selective intracellular drug release. Redox-responsive disulfide bond was introduced to the conjugate to shield drug leakage in blood circulation and to achieve rapid drug release at tumor site in response to reductant like glutathione. Paclitaxel was selected as a model drug to be covalently attached to hyaluronic acid (HA) with various sizes to elucidate the structure-activity relationship and to address whether HA could substitute PEG as a carrier for polymeric conjugates. Based on a series of in vitro and in vivo experiments, HA-ss-PTX performed well in drug loading, cellular internalization, tumor targeting by entering tumor cells via CD44-caveolae-mediated endocytosis and rapidly release drug at target in the presence of GSH. One of the key issues in clinical oncology is to enhance drug delivery efficacy while minimizing side effects. The study indicated that this new polymeric conjugate system would be useful in delivering anticancer agents to improve therapeutic efficacy and to minimize adverse effects, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics.
Collapse
|
58
|
Kodack DP, Askoxylakis V, Ferraro GB, Fukumura D, Jain RK. Emerging strategies for treating brain metastases from breast cancer. Cancer Cell 2015; 27:163-75. [PMID: 25670078 PMCID: PMC4325273 DOI: 10.1016/j.ccell.2015.01.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/25/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
Abstract
Brain metastasis is an end stage in breast cancer progression. Traditional treatment options have minimal efficacy, and overall survival is on the order of months. The incidence of brain metastatic disease is increasing with the improved management of systemic disease and prolongation of survival. Unfortunately, the targeted therapies that control systemic disease have diminished efficacy against brain lesions. There are reasons to be optimistic, however, as emerging therapies have shown promise in preclinical and early clinical settings. This review discusses recent advances in breast cancer brain metastasis therapy and potential approaches for successful treatment.
Collapse
Affiliation(s)
- David P Kodack
- Edwin L. Steele Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Vasileios Askoxylakis
- Edwin L. Steele Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Gino B Ferraro
- Edwin L. Steele Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
59
|
Qhattal HSS, Hye T, Alali A, Liu X. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. ACS NANO 2014; 8:5423-40. [PMID: 24806526 PMCID: PMC4072417 DOI: 10.1021/nn405839n] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hyaluronan-grafted liposomes (HA-liposomes) preferentially target CD44-overexpressing tumor cells in vitro via receptor-mediated endocytosis. We investigated the pharmacokinetics and biodistribution of HA-liposomes with various sizes of HA (MW 5-8, 50-60, and 175-350 kDa) in mice. Incorporation of negatively charged HA on the liposome surface compromised its blood circulation time, which led to decreased tumor accumulation in CD44+ human breast cancer MDA-MB-231 xenografts compared to PEGylated liposomes (PEG-5000). Clearance of HA-liposomes was HA polymer length-dependent; high MW (175-350 kDa, highest ligand binding affinity) HA-liposomes displayed faster clearance compared to low MW (5-8, 50-60 kDa) HA-liposomes or PEGylated liposomes. Surface HA ligand density can also affect clearance of HA-liposomes. Thus, HA is not an effective stealth coating material. When dual coating of PEG and HA was used, the PEG-HA-liposomes displayed similar blood circulation time and tumor accumulation to that of the PEGylated liposomes; however, the PEG-HA-liposomes displayed better cellular internalization capability in vivo. Tumor histology showed that PEG-HA-liposomes had a more direct association with CD44+ cancer cells, while PEGylated liposomes located predominantly in the tumor periphery, with less association with CD44+ cells. Flow cytometry analysis of ex vivo tumor cells showed that PEG-HA-liposomes had significantly higher tumor cell internalization compared to PEGylated liposomes. This study demonstrates that a long blood circulation time is critical for active tumor targeting. Furthermore, the use of the tumor-targeting ligand HA does not increase total tumor accumulation of actively targeted liposomes in solid tumors; however, it can enhance intracellular delivery.
Collapse
|
60
|
Roy A, Bhattacharyya M, Ernsting MJ, May JP, Li SD. Recent progress in the development of polysaccharide conjugates of docetaxel and paclitaxel. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:349-68. [PMID: 24652678 DOI: 10.1002/wnan.1264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 11/07/2022]
Abstract
UNLABELLED Taxanes are one of the most potent and broadest spectrum chemotherapeutics used clinically, but also induce significant side effects. Different strategies have been developed to produce a safer taxane formulation. Development of polysaccharide drug conjugates has increased in the recent years because of the demonstrated biocompatibility, biodegradability, safety, and low cost of the biopolymers. This review focuses on polysaccharide-taxane conjugates and provides an overview on various conjugation strategies and their effect on the efficacy. Detailed analyses on the designing factors of an effective polysaccharide-drug conjugate are provided with a discussion on the future direction of this field. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Aniruddha Roy
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
61
|
Arpicco S, Milla P, Stella B, Dosio F. Hyaluronic acid conjugates as vectors for the active targeting of drugs, genes and nanocomposites in cancer treatment. Molecules 2014; 19:3193-230. [PMID: 24642908 PMCID: PMC6271549 DOI: 10.3390/molecules19033193] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid (HA) is a naturally-occurring glycosaminoglycan and a major component of the extracellular matrix. Low levels of the hyaluronic acid receptor CD44 are found on the surface of epithelial, hematopoietic, and neuronal cells; it is overexpressed in many cancer cells, and in particular in tumor-initiating cells. HA has recently attracted considerable interest in the field of developing drug delivery systems, having been used, as such or encapsulated in different types of nanoassembly, as ligand to prepare nano-platforms for actively targeting drugs, genes, and diagnostic agents. This review describes recent progress made with the several chemical strategies adopted to synthesize conjugates and prepare novel delivery systems with improved behaviors.
Collapse
Affiliation(s)
- Silvia Arpicco
- Dipartimento di Scienza e Tecnologia del Farmaco (Department of Drug Science and Technology), University of Torino, Torino, I-10125, Italy
| | - Paola Milla
- Dipartimento di Scienza e Tecnologia del Farmaco (Department of Drug Science and Technology), University of Torino, Torino, I-10125, Italy
| | - Barbara Stella
- Dipartimento di Scienza e Tecnologia del Farmaco (Department of Drug Science and Technology), University of Torino, Torino, I-10125, Italy
| | - Franco Dosio
- Dipartimento di Scienza e Tecnologia del Farmaco (Department of Drug Science and Technology), University of Torino, Torino, I-10125, Italy.
| |
Collapse
|
62
|
Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:814208. [PMID: 24672796 PMCID: PMC3950423 DOI: 10.1155/2014/814208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/25/2013] [Indexed: 12/14/2022]
Abstract
Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1-100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy.
Collapse
Affiliation(s)
- Su-Eon Jin
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Hyo-Eon Jin
- Department of Bioengineering, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Soon-Sun Hong
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| |
Collapse
|