51
|
Sharma V, Jordan JJ, Ciribilli Y, Resnick MA, Bisio A, Inga A. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay. PLoS One 2015; 10:e0130170. [PMID: 26147604 PMCID: PMC4493129 DOI: 10.1371/journal.pone.0130170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD), a chimeric construct containing the TAD derived from p65 was also generated (p50TAD) to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs) where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators.
Collapse
Affiliation(s)
- Vasundhara Sharma
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jennifer J. Jordan
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael A. Resnick
- Chromosome Stability Group; National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
52
|
Pantziarka P. Primed for cancer: Li Fraumeni Syndrome and the pre-cancerous niche. Ecancermedicalscience 2015; 9:541. [PMID: 26082798 PMCID: PMC4462886 DOI: 10.3332/ecancer.2015.541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 12/26/2022] Open
Abstract
The complex relationship between tumour and stroma is still being elucidated but it is clear that cancer is a disease of more than just malignant cells. However, the dominant focus of our current understanding of Li Fraumeni Syndrome (LFS) remains on the function of p53 as ‘guardian of the genome’. Recent evidence shows that the TP53 gene is at the nexus of a wider range of functions, including aspects of cellular metabolism, aging and immunity. Incorporating this broader picture of the role of TP53 together with our understanding of the role of the host microenvironment in cancer initiation and progression gives a more nuanced picture of LFS. Furthermore, there is clinical evidence to suggest that the host environment in healthy individuals with LFS already includes some of the features of a ‘pre-cancerous niche’ that makes cancer initiation more likely. It is suggested, finally, that there are pharmacological interventions capable of altering this pre-cancerous niche, thus potentially reducing the cancer risk in individuals with LFS.
Collapse
|
53
|
Simultaneous Adrenocortical Carcinoma and Neuroblastoma in an Infant With a Novel Germline p53 Mutation. J Pediatr Hematol Oncol 2015; 37:215-8. [PMID: 25374282 DOI: 10.1097/mph.0000000000000281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We present an infant with 2 simultaneous, but histologically distinct tumors with a novel germline p53 mutation. The child was found to have a paraspinal neuroblastoma, a concurrent adrenal cortical carcinoma, and an I162F p53 gene mutation. We review the associations of germline p53 mutations (or Li-Fraumeni syndrome) with both tumor types and the current research in similar germline p53 mutations. Finally, we discuss the multiple ways in which our patient is unique including the paucity of cases with simultaneous but histologically unrelated tumors and the fact that our patient is the first reported case of an I162F germline p53 mutation.
Collapse
|
54
|
Ashworth J, Bernard B, Reynolds S, Plaisier CL, Shmulevich I, Baliga NS. Structure-based predictions broadly link transcription factor mutations to gene expression changes in cancers. Nucleic Acids Res 2014; 42:12973-83. [PMID: 25378323 PMCID: PMC4245936 DOI: 10.1093/nar/gku1031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/24/2022] Open
Abstract
Thousands of unique mutations in transcription factors (TFs) arise in cancers, and the functional and biological roles of relatively few of these have been characterized. Here, we used structure-based methods developed specifically for DNA-binding proteins to systematically predict the consequences of mutations in several TFs that are frequently mutated in cancers. The explicit consideration of protein-DNA interactions was crucial to explain the roles and prevalence of mutations in TP53 and RUNX1 in cancers, and resulted in a higher specificity of detection for known p53-regulated genes among genetic associations between TP53 genotypes and genome-wide expression in The Cancer Genome Atlas, compared to existing methods of mutation assessment. Biophysical predictions also indicated that the relative prevalence of TP53 missense mutations in cancer is proportional to their thermodynamic impacts on protein stability and DNA binding, which is consistent with the selection for the loss of p53 transcriptional function in cancers. Structure and thermodynamics-based predictions of the impacts of missense mutations that focus on specific molecular functions may be increasingly useful for the precise and large-scale inference of aberrant molecular phenotypes in cancer and other complex diseases.
Collapse
Affiliation(s)
| | - Brady Bernard
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
55
|
Zhang Z, Wang Y, Zhao Q, Li G, Zhao X, Li J, Li X. Mixed adenocarcinoma, sarcomatoid carcinoma and adenosquamous carcinoma of the prostate: A case report. Oncol Lett 2014; 8:2325-2327. [PMID: 25295118 PMCID: PMC4186607 DOI: 10.3892/ol.2014.2493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/01/2014] [Indexed: 12/25/2022] Open
Abstract
Adenosquamous carcinoma (ASC) and sarcomatoid carcinoma (SC) of the prostate are rare, but highly aggressive tumors. The occurrence of mixed carcinomas in the prostate is even more rarely reported. The present study reports the case of a 62-year-old male who was diagnosed with prostatic adenocarcinoma accompanied by multiple bone metastases, as shown by a needle biopsy and skeletal computed tomography scan. The patient was treated with hormonal therapy, but thereafter, specimens from a transurethral resection of the prostate (TURP) were found to be composed of three histologically distinct elements: ASC, SC and adenocarcinoma. The level of p53 was evaluated by immunohistochemistry in detail, and it was found that this was significantly increased in the TURP samples compared with the needle biopsy samples. The abnormal level of p53 was likely associated with the prognosis of the patient; the patient succumbed to prostate carcinoma two months after the confirmation of the diagnosis.
Collapse
Affiliation(s)
- Zhongfu Zhang
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518036, P.R. China
| | - Yadong Wang
- Department of Urology, Zunyi Medical College Fifth Affiliated Hospital, Zhuhai, Guangdong 519100, P.R. China
| | - Qing Zhao
- Department of Urology, Zunyi Medical College Fifth Affiliated Hospital, Zhuhai, Guangdong 519100, P.R. China
| | - Ganhong Li
- Department of Urology, Zunyi Medical College Fifth Affiliated Hospital, Zhuhai, Guangdong 519100, P.R. China
| | - Xingqi Zhao
- Department of Urology, Zunyi Medical College Fifth Affiliated Hospital, Zhuhai, Guangdong 519100, P.R. China
| | - Jun Li
- Department of Urology, Zunyi Medical College Fifth Affiliated Hospital, Zhuhai, Guangdong 519100, P.R. China
| | - Xianxin Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
56
|
Bisio A, Ciribilli Y, Fronza G, Inga A, Monti P. TP53 Mutants in the Tower of Babel of Cancer Progression. Hum Mutat 2014; 35:689-701. [DOI: 10.1002/humu.22514] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Alessandra Bisio
- Laboratory of Transcriptional Networks; Centre for Integrative Biology (CIBIO); University of Trento; Trento Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks; Centre for Integrative Biology (CIBIO); University of Trento; Trento Italy
| | - Gilberto Fronza
- Mutagenesis Unit; IRCSS Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro; Genoa Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks; Centre for Integrative Biology (CIBIO); University of Trento; Trento Italy
| | - Paola Monti
- Mutagenesis Unit; IRCSS Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro; Genoa Italy
| |
Collapse
|
57
|
Bisio A, De Sanctis V, Del Vescovo V, Denti MA, Jegga AG, Inga A, Ciribilli Y. Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer 2013; 13:552. [PMID: 24256616 PMCID: PMC4225545 DOI: 10.1186/1471-2407-13-552] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The tumor suppressor p53 is a sequence-specific transcription factor that regulates an extensive network of coding genes, long non-coding RNAs and microRNAs, that establish intricate gene regulatory circuits influencing many cellular responses beyond the prototypical control of cell cycle, apoptosis and DNA repair. METHODS Using bioinformatic approaches, we identified an additional group of candidate microRNAs (miRs) under direct p53 transcriptional control. To validate p53 family-mediated responsiveness of the newly predicted target miRs we first evaluated the potential for wild type p53, p63β and p73β to transactivate from p53 response elements (REs) mapped in the miR promoters, using an established yeast-based assay. RESULTS The REs found in miR-10b, -23b, -106a, -151a, -191, -198, -202, -221, -320, -1204, -1206 promoters were responsive to p53 and 8 of them were also responsive to p63β or p73β. The potential for germline p53 mutations to drive transactivation at selected miR-associated REs was also examined. Chromatin Immuno-Precipitation (ChIP) assays conducted in doxorubicin-treated MCF7 cells and HCT116 p53+/+ revealed moderate induction of p53 occupancy at the miR-202, -1204, -1206, -10b RE-containing sites, while weak occupancy was observed for the miR-23b-associated RE only in MCF7 cells. RT-qPCR analyses cells showed modest doxorubicin- and/or Nutlin-dependent induction of the levels of mature miR-10b, -23b, -151a in HCT116 p53+/+ and MCF7 cells. The long noncoding RNA PVT1 comprising miR-1204 and -1206 was weakly induced only in HCT116 p53+/+ cells, but the mature miRs were not detected. miR-202 expression was not influenced by p53-activating stimuli in our cell systems. CONCLUSIONS Our study reveals additional miRs, particularly miR-10b and miR-151a, that could be directly regulated by the p53-family of transcription factors and contribute to the tuning of p53-induced responses.
Collapse
Affiliation(s)
- Alessandra Bisio
- Laboratory of Transcriptional Networks, Center for Integrative Biology, CIBIO, University of Trento, Trento, Italy.
| | | | | | | | | | | | | |
Collapse
|
58
|
Yamada T, Das Gupta TK, Beattie CW. p28, an Anionic Cell-Penetrating Peptide, Increases the Activity of Wild Type and Mutated p53 without Altering Its Conformation. Mol Pharm 2013; 10:3375-83. [DOI: 10.1021/mp400221r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tohru Yamada
- Department of Surgery, Division of
Surgical Oncology,
University of Illinois at Chicago College of Medicine, 840 South Wood
Street, Suite 618, Chicago, Illinois 60612, United States
| | - Tapas K. Das Gupta
- Department of Surgery, Division of
Surgical Oncology,
University of Illinois at Chicago College of Medicine, 840 South Wood
Street, Suite 618, Chicago, Illinois 60612, United States
| | - Craig W. Beattie
- Department of Surgery, Division of
Surgical Oncology,
University of Illinois at Chicago College of Medicine, 840 South Wood
Street, Suite 618, Chicago, Illinois 60612, United States
| |
Collapse
|
59
|
Ciribilli Y, Monti P, Bisio A, Nguyen HT, Ethayathulla AS, Ramos A, Foggetti G, Menichini P, Menendez D, Resnick MA, Viadiu H, Fronza G, Inga A. Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code. Nucleic Acids Res 2013; 41:8637-53. [PMID: 23892287 PMCID: PMC3794606 DOI: 10.1093/nar/gkt657] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural and biochemical studies have demonstrated that p73, p63 and p53 recognize DNA with identical amino acids and similar binding affinity. Here, measuring transactivation activity for a large number of response elements (REs) in yeast and human cell lines, we show that p53 family proteins also have overlapping transactivation profiles. We identified mutations at conserved amino acids of loops L1 and L3 in the DNA-binding domain that tune the transactivation potential nearly equally in p73, p63 and p53. For example, the mutant S139F in p73 has higher transactivation potential towards selected REs, enhanced DNA-binding cooperativity in vitro and a flexible loop L1 as seen in the crystal structure of the protein–DNA complex. By studying, how variations in the RE sequence affect transactivation specificity, we discovered a RE-transactivation code that predicts enhanced transactivation; this correlation is stronger for promoters of genes associated with apoptosis.
Collapse
Affiliation(s)
- Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, TN, 38060 Italy, Molecular Mutagenesis and DNA Repair Unit, IRCSS Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa 16132, Italy, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA and Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIEHS, NIH, RTP, NC, 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Monti P, Russo D, Bocciardi R, Foggetti G, Menichini P, Divizia MT, Lerone M, Graziano C, Wischmeijer A, Viadiu H, Ravazzolo R, Inga A, Fronza G. EEC- and ADULT-associated TP63 mutations exhibit functional heterogeneity toward P63 responsive sequences. Hum Mutat 2013; 34:894-904. [PMID: 23463580 DOI: 10.1002/humu.22304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/22/2013] [Indexed: 01/05/2023]
Abstract
TP63 germ-line mutations are responsible for a group of human ectodermal dysplasia syndromes, underlining the key role of P63 in the development of ectoderm-derived tissues. Here, we report the identification of two TP63 alleles, G134V (p.Gly173Val) and insR155 (p.Thr193_Tyr194insArg), associated to ADULT and EEC syndromes, respectively. These alleles, along with previously identified G134D (p.Gly173Asp) and R204W (p.Arg243Trp), were functionally characterized in yeast, studied in a mammalian cell line and modeled based on the crystal structure of the P63 DNA-binding domain. Although the p.Arg243Trp mutant showed both complete loss of transactivation function and ability to interfere over wild-type P63, the impact of p.Gly173Asp, p.Gly173Val, and p.Thr193_Tyr194insArg varied depending on the response element (RE) tested. Interestingly, p.Gly173Asp and p.Gly173Val mutants were characterized by a severe defect in transactivation along with interfering ability on two DN-P63α-specific REs derived from genes closely related to the clinical manifestations of the TP63-associated syndromes, namely PERP and COL18A1. The modeling of the mutations supported the distinct functional effect of each mutant. The present results highlight the importance of integrating different functional endpoints that take in account the features of P63 proteins' target sequences to examine the impact of TP63 mutations and the associated clinical variability.
Collapse
Affiliation(s)
- Paola Monti
- Molecular Mutagenesis and DNA Repair Unit, Istituto di Ricerca e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Lee MK, Teoh WW, Phang BH, Tong WM, Wang ZQ, Sabapathy K. Cell-type, dose, and mutation-type specificity dictate mutant p53 functions in vivo. Cancer Cell 2012; 22:751-64. [PMID: 23238012 DOI: 10.1016/j.ccr.2012.10.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 01/27/2012] [Accepted: 10/28/2012] [Indexed: 12/11/2022]
Abstract
The specific roles of mutant p53's dominant-negative (DN) or gain-of-function (GOF) properties in regulating acute response and long-term tumorigenesis is unclear. Using "knockin" mouse strains expressing varying R246S mutant levels, we show that the DN effect on transactivation is universally observed after acute p53 activation, whereas the effect on cellular outcome is cell-type specific. Reducing mutant p53 levels abrogated the DN effect. Mutant p53's DN effect protected against radiation-induced death but did not accentuate tumorigenesis. Furthermore, the R246S mutant did not promote tumorigenesis compared to p53(-/-) mice in various models, even when MDM2 is absent, unlike the R172H mutant. Together, these data demonstrate that mutant p53's DN property only affects acute responses, whereas GOF is not universal, being mutation-type specific.
Collapse
Affiliation(s)
- Ming Kei Lee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore 169610, Singapore
| | | | | | | | | | | |
Collapse
|
62
|
Walerych D, Napoli M, Collavin L, Del Sal G. The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 2012; 33:2007-17. [PMID: 22822097 PMCID: PMC3483014 DOI: 10.1093/carcin/bgs232] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most frequent invasive tumor diagnosed in women, causing over 400 000 deaths yearly worldwide. Like other tumors, it is a disease with a complex, heterogeneous genetic and biochemical background. No single genomic or metabolic condition can be regarded as decisive for its formation and progression. However, a few key players can be pointed out and among them is the TP53 tumor suppressor gene, commonly mutated in breast cancer. In particular, TP53 mutations are exceptionally frequent and apparently among the key driving factors in triple negative breast cancer -the most aggressive breast cancer subgroup-whose management still represents a clinical challenge. The majority of TP53 mutations result in the substitution of single aminoacids in the central region of the p53 protein, generating a spectrum of variants ('mutant p53s', for short). These mutants lose the normal p53 oncosuppressive functions to various extents but can also acquire oncogenic properties by gain-of-function mechanisms. This review discusses the molecular processes translating gene mutations to the pathologic consequences of mutant p53 tumorigenic activity, reconciling cell and animal models with clinical outcomes in breast cancer. Existing and speculative therapeutic methods targeting mutant p53 are also discussed, taking into account the overlap of mutant and wild-type p53 regulatory mechanisms and the crosstalk between mutant p53 and other oncogenic pathways in breast cancer. The studies described here concern breast cancer models and patients-unless it is indicated otherwise and justified by the importance of data obtained in other models.
Collapse
Affiliation(s)
- Dawid Walerych
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy
| | | | | | | |
Collapse
|