51
|
Acquisition of epithelial-mesenchymal transition phenotype in the tamoxifen-resistant breast cancer cell: a new role for G protein-coupled estrogen receptor in mediating tamoxifen resistance through cancer-associated fibroblast-derived fibronectin and β1-integrin signaling pathway in tumor cells. Breast Cancer Res 2015; 17:69. [PMID: 25990368 PMCID: PMC4453053 DOI: 10.1186/s13058-015-0579-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Acquired tamoxifen resistance remains the major obstacle to breast cancer endocrine therapy. β1-integrin was identified as one of the target genes of G protein-coupled estrogen receptor (GPER), a novel estrogen receptor recognized as an initiator of tamoxifen resistance. Here, we investigated the role of β1-integrin in GPER-mediated tamoxifen resistance in breast cancer. METHODS The expression of β1-integrin and biomarkers of epithelial-mesenchymal transition were evaluated immunohistochemically in 53 specimens of metastases and paired primary tumors. The function of β1-integrin was investigated in tamoxifen-resistant (MCF-7R) subclones, derived from parental MCF-7 cells, and MCF-7R β1-integrin-silenced subclones in MTT and Transwell assays. Involved signaling pathways were identified using specific inhibitors and Western blotting analysis. RESULTS GPER, β1-integrin and mesenchymal biomarkers (vimentin and fibronectin) expression in metastases increased compared to the corresponding primary tumors; a close expression pattern of β1-integrin and GPER were in metastases. Increased β1-integrin expression was also confirmed in MCF-7R cells compared with MCF-7 cells. This upregulation of β1-integrin was induced by agonists of GPER and blocked by both antagonist and knockdown of it in MCF-7R cells. Moreover, the epidermal growth factor receptor/extracellular regulated protein kinase (EGFR/ERK) signaling pathway was involved in this transcriptional regulation since specific inhibitors of these kinases also reduced the GPER-induced upregulation of β1-integrin. Interestingly, silencing of β1-integrin partially rescued the sensitivity of MCF-7R cells to tamoxifen and the α5β1-integrin subunit is probably responsible for this phenomenon. Importantly, the cell migration and epithelial-mesenchymal transition induced by cancer-associated fibroblasts, or the product of cancer-associated fibroblasts, fibronectin, were reduced by knockdown of β1-integrin in MCF-7R cells. In addition, the downstream kinases of β1-integrin including focal adhesion kinase, Src and AKT were activated in MCF-7R cells and may be involved in the interaction between cancer cells and cancer-associated fibroblasts. CONCLUSIONS GPER/EGFR/ERK signaling upregulates β1-integrin expression and activates downstream kinases, which contributes to cancer-associated fibroblast-induced cell migration and epithelial-mesenchymal transition, in MCF-7R cells. GPER probably contributes to tamoxifen resistance via interaction with the tumor microenvironment in a β1-integrin-dependent pattern. Thus, β1-integrin may be a potential target to improve anti-hormone therapy responses in breast cancer patients.
Collapse
|
52
|
Liu YC, Kao YT, Huang WK, Lin KY, Wu SC, Hsu SC, Schuyler SC, Li LY, Leigh Lu F, Lu J. CCL5/RANTES is important for inducing osteogenesis of human mesenchymal stem cells and is regulated by dexamethasone. Biosci Trends 2015; 8:138-43. [PMID: 25030847 DOI: 10.5582/bst.2014.01047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we examine the effect of chemokine (C-C motif) ligand 5 (CCL5)/Regulated on Activation Normal T cell Expressed and Secreted (RANTES), a pro-inflammatory cytokine on osteogenic differentiation of human mesenchymal stem cells (hMSCs). We found CCL5 expression was increased during osteogenic differentiation of hMSCs and CCL5 expression is dependent on the presence of dexamethasone. Knocking down endogenous CCL5 expression blocked osteogenesis, as revealed by decreasing alkaline phosphatase (ALP) activity and a reduction in the expression levels of ALP, bone sialoprotein (BSP), and osteopontin (OPN). Of note, the overexpression of CCL5 was sufficient to increase ALP expression and activity. Moreover, the down-regulation of chemokine (C-C motif) receptor 1 (CCR1), one of the CCL5 receptors, significantly decreased the osteogenesis of hMSCs. Interestingly, the down-regulation of CCR1, but not CCL5, was sufficient to affect the cell numbers during the process of osteogenesis. Our findings reveal that both CCL5 and CCR1 are required for osteogenesis of human MSCs, CCL5 is sufficient for the osteogenesis, and provide a novel link between dexamethasone and CCL5 in human osteogenesis.
Collapse
Affiliation(s)
- Yu-Chuan Liu
- Graduate Institute of Life Sciences, National Defense Medical Center
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Dauchy RT, Xiang S, Mao L, Brimer S, Wren MA, Yuan L, Anbalagan M, Hauch A, Frasch T, Rowan BG, Blask DE, Hill SM. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res 2015; 74:4099-110. [PMID: 25062775 DOI: 10.1158/0008-5472.can-13-3156] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to antiestrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of estrogen receptor (ERα(+)) MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speed the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characteristics were not observed in animals in which the circadian melatonin rhythm was not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen.
Collapse
Affiliation(s)
- Robert T Dauchy
- Departments of Structural and Cellular Biology and Tulane Circadian Cancer Biology Group; and
| | - Shulin Xiang
- Departments of Structural and Cellular Biology and Tulane Cancer Center and Louisiana Cancer Research Consortium; Tulane Circadian Cancer Biology Group; and
| | - Lulu Mao
- Departments of Structural and Cellular Biology and Tulane Cancer Center and Louisiana Cancer Research Consortium; Tulane Circadian Cancer Biology Group; and
| | | | - Melissa A Wren
- Departments of Structural and Cellular Biology and Tulane Circadian Cancer Biology Group; and Department of Comparative Medicine, Tulane University, New Orleans, Louisiana
| | - Lin Yuan
- Departments of Structural and Cellular Biology and Tulane Circadian Cancer Biology Group; and
| | - Muralidharan Anbalagan
- Departments of Structural and Cellular Biology and Tulane Circadian Cancer Biology Group; and
| | - Adam Hauch
- Surgery, Tulane University School of Medicine; Tulane Circadian Cancer Biology Group; and
| | - Tripp Frasch
- Departments of Structural and Cellular Biology and
| | - Brian G Rowan
- Departments of Structural and Cellular Biology and Tulane Cancer Center and Louisiana Cancer Research Consortium; Tulane Circadian Cancer Biology Group; and
| | - David E Blask
- Departments of Structural and Cellular Biology and Tulane Cancer Center and Louisiana Cancer Research Consortium; Tulane Circadian Cancer Biology Group; and
| | - Steven M Hill
- Departments of Structural and Cellular Biology and Tulane Cancer Center and Louisiana Cancer Research Consortium; Tulane Circadian Cancer Biology Group; and
| |
Collapse
|
54
|
Dabydeen SA, Kang K, Díaz-Cruz ES, Alamri A, Axelrod ML, Bouker KB, Al-Kharboosh R, Clarke R, Hennighausen L, Furth PA. Comparison of tamoxifen and letrozole response in mammary preneoplasia of ER and aromatase overexpressing mice defines an immune-associated gene signature linked to tamoxifen resistance. Carcinogenesis 2014; 36:122-32. [PMID: 25421723 DOI: 10.1093/carcin/bgu237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Response to breast cancer chemoprevention can depend upon host genetic makeup and initiating events leading up to preneoplasia. Increased expression of aromatase and estrogen receptor (ER) is found in conjunction with breast cancer. To investigate response or resistance to endocrine therapy, mice with targeted overexpression of Esr1 or CYP19A1 to mammary epithelial cells were employed, representing two direct pathophysiological interventions in estrogen pathway signaling. Both Esr1 and CYP19A1 overexpressing mice responded to letrozole with reduced hyperplastic alveolar nodule prevalence and decreased mammary epithelial cell proliferation. CYP19A1 overexpressing mice were tamoxifen sensitive but Esr1 overexpressing mice were tamoxifen resistant. Increased ER expression occurred with tamoxifen resistance but no consistent changes in progesterone receptor, pSTAT3, pSTAT5, cyclin D1 or cyclin E levels in association with response or resistance were found. RNA-sequencing (RNA-seq) was employed to seek a transcriptome predictive of tamoxifen resistance using these models and a second tamoxifen-resistant model, BRCA1 deficient/Trp53 haploinsufficient mice. Sixty-eight genes associated with immune system processing were upregulated in tamoxifen-resistant Esr1- and Brca1-deficient mice, whereas genes related to aromatic compound metabolic process were upregulated in tamoxifen-sensitive CYP19A1 mice. Interferon regulatory factor 7 was identified as a key transcription factor regulating these 68 immune processing genes. Two loci encoding novel transcripts with high homology to human immunoglobulin lambda-like polypeptide 1 were uniquely upregulated in the tamoxifen-resistant models. Letrozole proved to be a successful alternative to tamoxifen. Further study of transcriptional changes associated with tamoxifen resistance including immune-related genes could expand our mechanistic understanding and lead to biomarkers predictive of escape or response to endocrine therapies.
Collapse
Affiliation(s)
- Sarah A Dabydeen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Keunsoo Kang
- Laboratory Genetics and Physiology, NIDDK, NIH, Bethesda, MD 20892, USA Department of Microbiology, Dankook University, Cheonan 330-714, Republic of Korea
| | - Edgar S Díaz-Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA, Department of Pharmaceutical, Social, & Administrative Sciences, Belmont University College of Pharmacy, Nashville, TN 37212, USA
| | - Ahmad Alamri
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA, Clinical Laboratories Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia and
| | - Margaret L Axelrod
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Kerrie B Bouker
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Rawan Al-Kharboosh
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Robert Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | - Priscilla A Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA, Department of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
55
|
Akl MR, Elsayed HE, Ebrahim HY, Haggag EG, Kamal AM, El Sayed KA. 3-O-[N-(p-fluorobenzenesulfonyl)-carbamoyl]-oleanolic acid, a semisynthetic analog of oleanolic acid, induces apoptosis in breast cancer cells. Eur J Pharmacol 2014; 740:209-17. [DOI: 10.1016/j.ejphar.2014.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023]
|
56
|
Pandey V, Wu ZS, Zhang M, Li R, Zhang J, Zhu T, Lobie PE. Trefoil factor 3 promotes metastatic seeding and predicts poor survival outcome of patients with mammary carcinoma. Breast Cancer Res 2014; 16:429. [PMID: 25266665 PMCID: PMC4303111 DOI: 10.1186/s13058-014-0429-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 08/15/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Recurrence or early metastasis remains the predominant cause of mortality in patients with estrogen receptor positive (ER+) mammary carcinoma (MC). However, the molecular mechanisms underlying the initial progression of ER+ MC to metastasis remains poorly understood. Trefoil factor 3 (TFF3) is an estrogen-responsive oncogene in MC. Herein, we provide evidence for a functional role of TFF3 in metastatic progression of ER+ MC. Methods The association of TFF3 expression with clinicopathological parameters and survival outcome in a cohort of MC patients was assessed by immunohistochemistry. The expression of TFF3 in MCF7 and T47D cells was modulated by forced expression or siRNA-mediated depletion of TFF3. mRNA and protein levels were determined using qPCR and western blot. The functional effect of modulation of TFF3 expression in MC cells was determined in vitro and in vivo. Mechanistic analyses were performed using reporter constructs, modulation of signal transducer and activator of transcription 3 (STAT3) expression, and pharmacological inhibitors against c-SRC and STAT3 activity. Results TFF3 protein expression was positively associated with larger tumour size, lymph node metastasis, higher stage, and poor survival outcome. Forced expression of TFF3 in ER+ MC cells stimulated colony scattering, cell adhesion to a Collagen I-coated matrix, colony formation on a Collagen I- or Matrigel-coated matrix, endothelial cell adhesion, and transmigration through an endothelial cell barrier. In vivo, forced expression of TFF3 in MCF7 cells stimulated the formation of metastatic nodules in animal lungs. TFF3 regulation of the mRNA levels of epithelial, mesenchymal, and metastatic-related genes in ER+ MC cells were consistent with the altered cell behaviour. Forced expression of TFF3 in ER+ MC cells stimulated phosphorylation of c-SRC that subsequently increased STAT3 activity, which lead to the downregulation of E-cadherin. siRNA-mediated depletion of TFF3 reduced the invasiveness of ER+ MC cells. Conclusions TFF3 expression predicts metastasis and poor survival outcome of patients with MC and functionally stimulates cellular invasion and metastasis of ER+ MC cells. Adjuvant functional inhibition of TFF3 may therefore be considered to ameliorate outcome of ER+ MC patients. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0429-3) contains supplementary material, which is available to authorized users.
Collapse
|
57
|
Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun 2014; 5:4715. [PMID: 25178650 PMCID: PMC4351998 DOI: 10.1038/ncomms5715] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 07/16/2014] [Indexed: 02/07/2023] Open
Abstract
Breast cancer metastasis involves lymphatic dissemination in addition to hematogenous spreading. Although stromal lymphatic vessels (LVs) serve as initial metastatic routes, roles of organ-residing LVs are under-investigated. Here we show that lymphatic endothelial cells (LECs), a component of LVs within pre-metastatic niches, are conditioned by triple-negative breast cancer (TNBC) cells to accelerate metastasis. LECs within the lungs and lymph nodes, conditioned by tumor-secreted factors express CCL5 that is not expressed either in normal LECs or cancer cells, and direct tumor dissemination into these tissues. Moreover, tumor-conditioned LECs promote angiogenesis in these organs, allowing tumor extravasation and colonization. Mechanistically, tumor cell-secreted IL6 causes Stat3 phosphorylation in LECs. This pStat3 induces HIF-1α and VEGF, and a pStat3-pc-Jun-pATF-2 ternary complex induces CCL5 expression in LECs. This study demonstrates anti-metastatic activities of multiple repurposed drugs, blocking a self-reinforcing paracrine loop between breast cancer cells and LECs.
Collapse
|
58
|
Elsayed HE, Akl MR, Ebrahim HY, Sallam AA, Haggag EG, Kamal AM, El Sayed KA. Discovery, optimization, and pharmacophore modeling of oleanolic acid and analogues as breast cancer cell migration and invasion inhibitors through targeting Brk/Paxillin/Rac1 axis. Chem Biol Drug Des 2014; 85:231-43. [PMID: 24954090 DOI: 10.1111/cbdd.12380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/07/2014] [Accepted: 06/07/2014] [Indexed: 01/01/2023]
Abstract
Bioassay-guided fractionation of Terminalia bentzoe L. leaves methanol extract identified the known triterpene oleanolic acid (1) as its major breast cancer cell migration inhibitor. Further chemical optimization afforded five new (9-12 and 15) and seven known (4-8, 13, and 14) semisynthetic analogues. All compounds were tested for their ability to inhibit human breast cancer MDA-MB-231 cells migration, proliferation, and invasion. The results revealed that 3-O-[N-(3'-chlorobenzenesulfonyl)-carbamoyl]-oleanolic acid (11) and 3-O-[N-(5'-fluorobenzenesulfonyl)-carbamoyl]-oleanolic acid (12) were the most active hits at low μM concentration. Western blot analysis indicated the activity of 1, 11, and 12 might be related, at least in part, to the suppression of Brk/Paxillin/Rac1 signaling pathway. Pharmacophore modeling study was conducted to better understand the common structural binding epitopes important for the antimigratory activity. The sulfonyl carbamoyl moiety with an optimal bulkiness electron-deficient phenyl ring is associated with improved activity. This study is the first to discover the antimigratory and anti-invasive activities of oleanolic acid and analogues through targeting the Brk/Paxillin/Rac1 axis.
Collapse
Affiliation(s)
- Heba E Elsayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA; Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Helwan, Cairo, 11795, Egypt
| | | | | | | | | | | | | |
Collapse
|
59
|
Dos Anjos Pultz B, da Luz FAC, de Faria PR, Oliveira APL, de Araújo RA, Silva MJB. Far beyond the usual biomarkers in breast cancer: a review. J Cancer 2014; 5:559-71. [PMID: 25057307 PMCID: PMC4107232 DOI: 10.7150/jca.8925] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
Research investigating biomarkers for early detection, prognosis and the prediction of treatment responses in breast cancer is rapidly expanding. However, no validated biomarker currently exists for use in routine clinical practice, and breast cancer detection and management remains dependent on invasive procedures. Histological examination remains the standard for diagnosis, whereas immunohistochemical and genetic tests are utilized for treatment decisions and prognosis determinations. Therefore, we conducted a comprehensive review of literature published in PubMed on breast cancer biomarkers between 2009 and 2013. The keywords that were used together were breast cancer, biomarkers, diagnosis, prognosis and drug response. The cited references of the manuscripts included in this review were also screened. We have comprehensively summarized the performance of several biomarkers for diagnosis, prognosis and predicted drug responses of breast cancer. Finally, we have identified 15 biomarkers that have demonstrated promise in initial studies and several miRNAs. At this point, such biomarkers must be rigorously validated in the clinical setting to be translated into clinically useful tests for the diagnosis, prognosis and prediction of drug responses of breast cancer.
Collapse
Affiliation(s)
- Brunna Dos Anjos Pultz
- 1. Laboratório de Imunoparasitologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Paulo Rogério de Faria
- 2. Laboratório de Histologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Paula Lima Oliveira
- 2. Laboratório de Histologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Marcelo José Barbosa Silva
- 1. Laboratório de Imunoparasitologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
60
|
The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014; 2014:292376. [PMID: 24523569 PMCID: PMC3910068 DOI: 10.1155/2014/292376] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
Until recently, inflammatory chemokines were viewed mainly as indispensable “gate keepers” of immunity and inflammation. However, updated research indicates that cancer cells subvert the normal chemokine system and these molecules and their receptors become important constituents of the tumor microenvironment with very different ways to exert tumor-promoting roles. The CCR5 and the CCL5 ligand have been detected in some hematological malignancies, lymphomas, and a great number of solid tumors, but extensive studies on the role of the CCL5/CCR axis were performed only in a limited number of cancers. This review summarizes updated information on the role of CCL5 and its receptor CCR5 in cancer cell proliferation, metastasis, and the formation of an immunosuppressive microenvironment and highlights the development of newer therapeutic strategies aimed to inhibit the binding of CCL5 to CCR5, to inhibit CCL5 secretion, or to inhibit the interactions among tumor cells and the microenvironment leading to CCL5 secretion.
Collapse
|
61
|
Chung SS, Giehl N, Wu Y, Vadgama JV. STAT3 activation in HER2-overexpressing breast cancer promotes epithelial-mesenchymal transition and cancer stem cell traits. Int J Oncol 2013; 44:403-11. [PMID: 24297508 PMCID: PMC3898805 DOI: 10.3892/ijo.2013.2195] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/30/2013] [Indexed: 12/18/2022] Open
Abstract
Clinically, HER2 proto-oncogene amplification is found in about 25–30% of human breast cancers, where it is correlated to a poor prognosis. Constitutive STAT3 activation is found in about 50–60% of the breast tumors and associated with tumorigenesis and drug resistance. In this study, we showed that STAT3 was phosphorylated in HER2-overexpressing, ER-positive human breast tumors and, furthermore, phosphorylated STAT3 promoted the stem-like cell phenotype. We examined the dysregulation of the stem cell markers (Oct-4, Sox-2 and CD44) and the tumorsphere formation in HER2-overexpressing human breast cancer cell lines. We demonstrated that the STAT3 inhibitor, Stattic, treatment abolished the cancer stem cell phenotype in HER2-positive breast cancers. Combined treatment of Herceptin and Stattic showed the synergistic effect on the cancer cell growth in vitro. In addition, when the STAT3 gene was knocked down, the expression of the stem cell markers Oct-4, Sox-2 and CD44 were downregulated and tumorsphere formation was abolished. HER2-elicited STAT3 signaling may provide a potential model for drug resistance induced by stem-like cell characteristics. This mechanism may be responsible for acquiring resistance to Herceptin in the treatment of HER2-overexpressing breast tumors. Based on our findings, targeting pSTAT3 could overcome Herceptin-induced resistance in HER2-overexpressing breast tumors.
Collapse
Affiliation(s)
- Seyung S Chung
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Nolan Giehl
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| |
Collapse
|
62
|
Tada N, Tsuno NH, Kawai K, Murono K, Nirei T, Ishihara S, Sunami E, Kitayama J, Watanabe T. Changes in the plasma levels of cytokines/chemokines for predicting the response to chemoradiation therapy in rectal cancer patients. Oncol Rep 2013; 31:463-71. [PMID: 24253593 DOI: 10.3892/or.2013.2857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/14/2013] [Indexed: 01/15/2023] Open
Abstract
In the present study, we aimed to characterize the predictive value of cytokines/chemokines in rectal cancer (RC) patients receiving chemoradiation therapy (CRT). Blood samples were obtained pre- and post-CRT from 35 patients with advanced RC, who received neoadjuvant CRT followed by surgery, and the correlation between plasma levels of cytokines/chemokines and the response to CRT was analyzed. The pre-CRT levels of soluble CD40-ligand (sCD40L) and the post-CRT levels of chemokine ligand-5 (CCL-5) were significantly associated with the depth of tumor invasion and with venous invasion. In addition, a significant decrease in sCD40L and CCL-5, as well as in platelet counts, was associated with a favorable response to CRT. A significant correlation between pre-CRT platelet counts and sCD40L was observed in patients with a favorable response. By contrast, higher post-CRT interleukin (IL)-6 was associated with a poor response. Platelets, immune system and cancer cells, cross-linked through various cytokines/chemokines, appear to play an important role in the response to CRT, and by understanding their roles, new approaches for the improvement of the therapy might be proposed.
Collapse
Affiliation(s)
- Noriko Tada
- Department of Surgical Oncology, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
BST-2 is a potential activator of invasion and migration in tamoxifen-resistant breast cancer cells. Biochem Biophys Res Commun 2013; 435:685-90. [PMID: 23702480 DOI: 10.1016/j.bbrc.2013.05.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/10/2013] [Indexed: 11/20/2022]
Abstract
Bone marrow stromal cell antigen 2 (BST-2) is a type II transmembrane protein that is known to be a therapeutic target in several types of cancer. However, despite its clinical importance, the roles of BST-2 expression have remained elusive. Here, we found that BST-2 expression is up-regulated in tamoxifen-resistant MCF-7 human breast cancer (TRM-7) cells, resulting in enhanced invasiveness and migration. Matrigel and wound healing assays also showed that overexpression of BST-2 increased invasion and migration in MCF-7 cells, whereas invasion and migration were decreased by the silencing of BST-2 in TRM-7 cells. In addition, B16F10 cells expressing BST-2 showed increased metastatic melanoma nodule growth in a lung metastasis mouse model. Furthermore, BST-2 expression and promoter activity were regulated by activated signal transducer and activator of transcription 3 (STAT3). Taken together, our results indicate that BST-2 is an important factor in the invasiveness and motility of tamoxifen-resistant breast cancer cells, and that its expression and activity are regulated by activated STAT3. Therefore, regulation of BST-2 is a potential therapeutic target for tamoxifen-resistant breast cancer.
Collapse
|