51
|
Emerging evidence of signalling roles for PI(3,4)P2 in Class I and II PI3K-regulated pathways. Biochem Soc Trans 2016; 44:307-14. [PMID: 26862220 DOI: 10.1042/bst20150248] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There are eight members of the phosphoinositide family of phospholipids in eukaryotes; PI, PI3P, PI4P, PI5P, PI(4,5)P2, PI(3,4)P2, PI(3,5)P2 and PI(3,4,5)P3. Receptor activation of Class I PI3Ks stimulates the phosphorylation of PI(4,5)P2 to form PI(3,4,5)P3. PI(3,4,5)P3 is an important messenger molecule that is part of a complex signalling network controlling cell growth and division. PI(3,4,5)P3 can be dephosphorylated by both 3- and 5-phosphatases, producing PI(4,5)P2 and PI(3,4)P2, respectively. There is now strong evidence that PI(3,4)P2 generated by this route does not merely represent another pathway for removal of PI(3,4,5)P3, but can act as a signalling molecule in its own right, regulating macropinocytosis, fast endophilin-mediated endocytosis (FEME), membrane ruffling, lamellipodia and invadopodia. PI(3,4)P2 can also be synthesized directly from PI4P by Class II PI3Ks and this is important for the maturation of clathrin-coated pits [clathrin-mediated endocytosis (CME)] and signalling in early endosomes. Thus PI(3,4)P2 is emerging as an important signalling molecule involved in the coordination of several specific membrane and cytoskeletal responses. Further, its inappropriate accumulation contributes to pathology caused by mutations in genes encoding enzymes responsible for its degradation, e.g. Inpp4B.
Collapse
|
52
|
Nozhat Z, Hedayati M. PI3K/AKT Pathway and Its Mediators in Thyroid Carcinomas. Mol Diagn Ther 2016; 20:13-26. [PMID: 26597586 DOI: 10.1007/s40291-015-0175-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid malignancies are the most common endocrine system carcinomas, with four histopathological forms. The phosphoinositide 3-kinase-protein kinase B/AKT (PI3K-PKB/AKT) pathway is one of the most critical molecular signaling pathways implicated in key cellular processes. Its continuous activation by several aberrant receptor tyrosine kinases (RTKs) and genetic mutations in its downstream effectors result in high cell proliferation in a broad number of cancers, including thyroid carcinomas. In this review article, the role of different signaling pathways of PI3K/AKT in thyroid cancers, with the emphasis on the PI3K/AKT/mammalian target of rapamycin (mTOR), PI3K/AKT/forkhead box O (FOXO) and PI3K/AKT/phosphatase and tensin homolog deleted on chromosome ten (PTEN) pathways, and various therapeutic strategies targeting these pathways have been summarized. In most of the in vitro studies, agents inhibiting mTOR in monotherapy or in combination with chemotherapy for thyroid malignancies have been introduced as promising anticancer therapies. FOXOs and PTEN are two outstanding downstream targets of the PI3K/AKT pathway. At the present time, no study has been undertaken to consider thyroid cancer treatment via FOXOs and PTEN targeting. According to the critical role of these proteins in cell cycle arrest, it seems that a treatment strategy based on the combination of FOXOs or PTEN activity induction with PI3K/AKT downstream mediators (e.g., mTOR) inhibition will be beneficial and promising in thyroid cancer treatment.
Collapse
Affiliation(s)
- Zahra Nozhat
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Biotechnology Department, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Chen H, Li H, Chen Q. INPP4B reverses docetaxel resistance and epithelial-to-mesenchymal transition via the PI3K/Akt signaling pathway in prostate cancer. Biochem Biophys Res Commun 2016; 477:467-72. [PMID: 27318090 DOI: 10.1016/j.bbrc.2016.06.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Docetaxel efficiency in the therapy of prostate cancer (PCa) patients is limited due to the development of chemoresistance. Recent studies have implied a role of INPP4B in tumor chemoresistance, while the effects of INPP4B on docetaxel resistance in PCa have not been elucidated. In the present study, the docetaxel-resistant human PCa cell lines PC3-DR and DU-145-DR were established from the parental cell lines PC3 and DU-145, and the expression and role of INPP4B in docetaxel-resistant PCa cells were investigated. The results demonstrated that INPP4B expression was significantly downregulated in docetaxel-resistant cells. Overexpression of INPP4B increased the sensitivity to docetaxel and promoted cell apoptosis in PC3-DR and DU-145-DR cells. In addition, INPP4B overexpression downregulated the expression of the mesenchymal markers fibronectin, N-cadherin, and vimentin, and upregulated the expression level of the epithelial maker E-cadherin. Furthermore, INPP4B overexpression markedly inhibited the PI3K/Akt pathway. We also found that IGF-1, the inhibitor of PI3K/Akt, markedly blocked the change in EMT markers induced by overexpression of INPP4B, and reversed the resistance of PC3-DR and DU-145-DR cells to docetaxel, which is sensitized by Flag-INPP4B. In summary, the presented data indicate that INPP4B is crucial for docetaxel-resistant PCa cell survival, potentially by regulating EMT through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Haiwen Chen
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiao Tong University, PR China
| | - Hongliang Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiao Tong University, PR China.
| | - Qi Chen
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiao Tong University, PR China
| |
Collapse
|
54
|
Hu QL, Wang HB, Yang M. Significance of expression of INPP4B in gastric cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:2478-2484. [DOI: 10.11569/wcjd.v24.i16.2478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of inositol polyphosphate-4-phosphatase, type II (INPP4B) in gastric cancer, and to analyze its relationship with clinical and pathological characteristics.
METHODS: The expression of INPP4B mRNA and protein in 50 gastric cancer tissues and matched tumor-adjacent normal tissues was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC), respectively. The relationship between INPP4B expression and clinical and pathological characteristics was then analyzed.
RESULTS: INPP4B mRNA expression was significantly lower in gastric cancer tissue than in adjacent normal tissues (P < 0.01). The expression of INPP4B protein in gastric cancer tissues was also significantly lower compared with adjacent normal tissues (28.0% vs 82.0%, P < 0.01). The expression of INPP4B mRNA and protein was significantly related to tumor differentiation, lymph node metastasis and TNM stage in GC (P < 0.05), but not to gender, age or tumor size (P > 0.05).
CONCLUSION: Both INPP4B protein and mRNA are down-regulated in gastric cancer, and its expression significantly correlates with tumor differentiation, lymph node metastasis and TNM stage. INPP4B may be a tumor suppressor gene for gastric cancer.
Collapse
|
55
|
miR-937 contributes to the lung cancer cell proliferation by targeting INPP4B. Life Sci 2016; 155:110-5. [PMID: 27179609 DOI: 10.1016/j.lfs.2016.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, microRNAs play critical role in the initiation and development of lung cancer. Here, we used MTT assay, colony formation assay, soft agar growth assay and BrdU incorporation assay to investigate miR-937's role in lung cancer. We found that miR-937 was upregulated in lung cancer tissues and cells. Overexpression of miR-937 in A549 promoted anchorage -dependent and -independent growth, whereas knockdown of miR-937 reduced this effect. Meanwhile, we also found miR-937 overexpression increased CCND1 and c-Myc levels in both mRNA and protein levels, knockdown of miR-937 reduced this effect, confirming miR-937 promoted cell proliferation. Mechanism analyses found polyphosphate 4-phosphatase type II (INPP4B) was the target of miR-937, miR-937 directly bound to the 3'UTR of INPP4B, knockdown of INPP4B in A549 with miR-937 inhibitor promoted anchorage -dependent and -independent growth, suggesting miR-937 contributed to cell proliferation of lung cancer by inhibiting INPP4B, it might be a valuable target for lung cancer therapy.
Collapse
|
56
|
Abstract
Enzymes (PI3K and PTEN) controlling cellular levels of 3-phosphorylated phosphoinositides are known as important drivers or suppressors of tumorigenesis in various cancers. In this issue of Cancer Discovery, Kofuji and colleagues and Chew and colleagues identify the lipid phosphatase INPP4B as a context-specific tumor suppressor that controls phosphoinositide levels and AKT2 activation in PTEN-deficient cells.
Collapse
Affiliation(s)
- Thanh-Trang T Vo
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California
| | - David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California.
| |
Collapse
|
57
|
DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice. Leukemia 2016; 30:1388-98. [PMID: 26876596 PMCID: PMC4869893 DOI: 10.1038/leu.2016.29] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 12/21/2022]
Abstract
TEN-ELEVEN-TRANSLOCATION-2 (TET2) and DNA-METHYLTRANSFERASE-3A (DNMT3A), both encoding proteins involved in regulating DNA methylation, are mutated in hematological malignancies affecting both myeloid and lymphoid lineages. We previously reported an association of TET2 and DNMT3A mutations in progenitors of patients with angioimmunoblastic T-cell lymphomas (AITL). Here, we report on the cooperative effect of Tet2-inactivation and DNMT3A mutation affecting arginine 882 (DNMT3AR882H) using a murine bone marrow transplantation assay. Five out of 18 primary recipients developed hematological malignancies with one mouse developing an AITL-like disease, 2 mice presenting acute myeloid leukemia (AML)-like and 2 others T cell acute lymphoblastic leukemia (T-ALL)-like diseases within 6 months following transplantation. Serial transplantations of DNMT3AR882H Tet2−/− progenitors led to a differentiation bias toward the T-cell compartment, eventually leading to AITL-like disease in 9/12 serially transplanted recipients. Expression profiling suggested that DNMT3AR882H Tet2−/− T-ALLs resemble those of NOTCH1 mutant. Methylation analysis of DNMT3AR882H Tet2−/− T-ALLs showed a global increase in DNA methylation affecting tumor suppressor genes and local hypomethylation affecting genes involved in the Notch pathway. Our data confirm the transformation potential of DNMT3AR882H Tet2−/− progenitors and represent the first cooperative model in mice involving Tet2-inactivation driving lymphoid malignancies.
Collapse
|
58
|
Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases. Biochem Soc Trans 2016; 44:240-52. [DOI: 10.1042/bst20150214] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) generated lipid signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, are both required for the maximal activation of the serine/threonine kinase proto-oncogene Akt. The inositol polyphosphate 5-phosphatases (5-phosphatases) hydrolyse the 5-position phosphate from the inositol head group of PtdIns(3,4,5)P3 to yield PtdIns(3,4)P2. Extensive work has revealed several 5-phosphatases inhibit PI3K-driven Akt signalling, by decreasing PtdIns(3,4,5)P3 despite increasing cellular levels of PtdIns(3,4)P2. The roles that 5-phosphatases play in suppressing cell proliferation and transformation are slow to emerge; however, the 5-phosphatase PIPP [proline-rich inositol polyphosphate 5-phosphatase; inositol polyphosphate 5-phosphatase (INPP5J)] has recently been identified as a putative tumour suppressor in melanoma and breast cancer and SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] inhibits haematopoietic cell proliferation. INPP5E regulates cilia stability and INPP5E mutations have been implicated ciliopathy syndromes. This review will examine 5-phosphatase regulation of PI3K/Akt signalling, focussing on the role PtdIns(3,4,5)P3 5-phosphatases play in developmental diseases and cancer.
Collapse
|
59
|
Biological and clinical significance of loss of heterozygosity at the INPP4B gene locus in Japanese breast cancer. Breast 2016; 25:62-8. [DOI: 10.1016/j.breast.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 01/21/2023] Open
|
60
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
61
|
Phosphoinositide signaling in cancer: INPP4B Akt(s) out. Trends Mol Med 2015; 21:530-2. [DOI: 10.1016/j.molmed.2015.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022]
|
62
|
Abstract
In this issue of Cancer Cell, Ooms and colleagues show that the lipid phosphatase PIPP/INPP5J, frequently inactivated in triple-negative breast cancers, functions as a tumor suppressor by specifically modulating the activity of AKT1 in the context of oncogenic PI3K signaling, leading to inhibition of metastatic dissemination.
Collapse
Affiliation(s)
- Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Lucia Rameh
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
63
|
Affiliation(s)
- Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, and in the Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| |
Collapse
|